首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type I adenylyl cyclase is a neurospecific enzyme that is stimulated by Ca2+ and calmodulin (CaM). This enzyme couples the Ca2+ and cyclic AMP (cAMP) regulatory systems in neurons, and it may play an important role for some forms of synaptic plasticity. Mutant mice lacking type I adenylyl cyclase show deficiencies in spatial memory and altered long-term potentiation (Z. Wu, S. A. Thomas, Z. Xia, E. C. Villacres, R. D. Palmiter, and D. R. Storm, Proc. Natl. Acad. Sci. USA 92:220-224, 1995). Although type I adenylyl cyclase is synergistically stimulated by Ca2+ and G-protein-coupled receptors in vivo, very little is known about mechanisms for inhibition of the enzyme. Here, we report that type I adenylyl cyclase is inhibited by CaM kinase IV in vivo. Expression of constitutively active or wild-type CaM kinase IV inhibited Ca2+ stimulation of adenylyl cyclase activity without affecting basal or forskolin-stimulated activity. Type I adenylyl cyclase has two CaM kinase IV consensus phosphorylation sequences near its CaM binding domain at Ser-545 and Ser-552. Conversion of either serine to alanine by mutagenesis abolished CaM kinase IV inhibition of adenylyl cyclase. This suggests that the activity of this enzyme may be directly inhibited by CaM kinase IV phosphorylation. Type VIII adenylyl cyclase, another enzyme stimulated by CaM, was not inhibited by CaM kinase II or IV. We propose that CaM kinase IV may function as a negative feedback regulator of type I adenylyl cyclase and that CaM kinases may regulate cAMP levels in some cells.  相似文献   

2.
E J Choi  Z Xia  D R Storm 《Biochemistry》1992,31(28):6492-6498
Characterization of adenylyl cyclases has been facilitated by the isolation of cDNA clones for distinct adenylyl cyclases including the type I and type III enzymes. Expression of type I adenylyl cyclase activity in animal cells has established that this enzyme is stimulated by calmodulin and Ca2+. Type III adenylyl cyclase is enriched in olfactory neurons and is regulated by stimulatory G proteins. The sensitivity of the type III adenylyl cyclase to Ca2+ and calmodulin has not been reported. In this study, type III adenylyl cyclase was expressed in human kidney 293 cells to determine if the enzyme is stimulated by Ca2+ and calmodulin. The type III enzyme was not stimulated by Ca2+ and calmodulin in the absence of other effectors. It was, however, stimulated by Ca2+ through calmodulin when the enzyme was concomitantly activated by either GppNHp or forskolin. The concentrations of free Ca2+ for half-maximal stimulation of type I and type III adenylyl cyclases were 0.05 and 5.0 microM Ca2+, respectively. These data suggest that the type III adenylyl cyclase is stimulated by Ca2+ when the enzyme is activated by G-protein-coupled receptors and that increases in free Ca2+ accompanying receptor activation may amplify the primary cyclic AMP signal.  相似文献   

3.
Phosphodiesterases (PDEs) catalyze the hydrolysis of the second messengers cAMP and cGMP. However, little is known about how PDE activity regulates cyclic nucleotide signals in vivo because, outside of specialized cells, there are few methods with the appropriate spatial and temporal resolution to measure cyclic nucleotide concentrations. We have previously demonstrated that adenovirus-expressed, olfactory cyclic nucleotide-gated channels provide real-time sensors for cAMP produced in subcellular compartments of restricted diffusion near the plasma membrane (Rich, T.C., K.A. Fagan, H. Nakata, J. Schaack, D.M.F. Cooper, and J.W. Karpen. 2000. J. Gen. Physiol. 116:147-161). To increase the utility of this method, we have modified the channel, increasing both its cAMP sensitivity and specificity, as well as removing regulation by Ca(2)+-calmodulin. We verified the increased sensitivity of these constructs in excised membrane patches, and in vivo by monitoring cAMP-induced Ca(2)+ influx through the channels in cell populations. The improved cAMP sensors were used to monitor changes in local cAMP concentration induced by adenylyl cyclase activators in the presence and absence of PDE inhibitors. This approach allowed us to identify localized PDE types in both nonexcitable HEK-293 and excitable GH4C1 cells. We have also developed a quantitative framework for estimating the K(I) of PDE inhibitors in vivo. The results indicate that PDE type IV regulates local cAMP levels in HEK-293 cells. In GH4C1 cells, inhibitors specific to PDE types I and IV increased local cAMP levels. The results suggest that in these cells PDE type IV has a high K(m) for cAMP, whereas PDE type I has a low K(m) for cAMP. Furthermore, in GH4C1 cells, basal adenylyl cyclase activity was readily observable after application of PDE type I inhibitors, indicating that there is a constant synthesis and hydrolysis of cAMP in subcellular compartments near the plasma membrane. Modulation of constitutively active adenylyl cyclase and PDE would allow for rapid control of cAMP-regulated processes such as cellular excitability.  相似文献   

4.
Cyclic AMP is a ubiquitous second messenger that coordinates diverse cellular functions. Current methods for measuring cAMP lack both temporal and spatial resolution, leading to the pervasive notion that, unlike Ca(2+), cAMP signals are simple and contain little information. Here we show the development of adenovirus-expressed cyclic nucleotide-gated channels as sensors for cAMP. Homomultimeric channels composed of the olfactory alpha subunit responded rapidly to jumps in cAMP concentration, and their cAMP sensitivity was measured to calibrate the sensor for intracellular measurements. We used these channels to detect cAMP, produced by either heterologously expressed or endogenous adenylyl cyclase, in both single cells and cell populations. After forskolin stimulation, the endogenous adenylyl cyclase in C6-2B glioma cells produced high concentrations of cAMP near the channels, yet the global cAMP concentration remained low. We found that rapid exchange of the bulk cytoplasm in whole-cell patch clamp experiments did not prevent the buildup of significant levels of cAMP near the channels in human embryonic kidney 293 (HEK-293) cells expressing an exogenous adenylyl cyclase. These results can be explained quantitatively by a cell compartment model in which cyclic nucleotide-gated channels colocalize with adenylyl cyclase in microdomains, and diffusion of cAMP between these domains and the bulk cytosol is significantly hindered. In agreement with the model, we measured a slow rate of cAMP diffusion from the whole-cell patch pipette to the channels (90% exchange in 194 s, compared with 22-56 s for substances that monitor exchange with the cytosol). Without a microdomain and restricted diffusional access to the cytosol, we are unable to account for all of the results. It is worth noting that in models of unrestricted diffusion, even in extreme proximity to adenylyl cyclase, cAMP does not reach high enough concentrations to substantially activate PKA or cyclic nucleotide-gated channels, unless the entire cell fills with cAMP. Thus, the microdomains should facilitate rapid and efficient activation of both PKA and cyclic nucleotide-gated channels, and allow for local feedback control of adenylyl cyclase. Localized cAMP signals should also facilitate the differential regulation of cellular targets.  相似文献   

5.
In immortalized GnRH neurons, cAMP production is elevated by increased extracellular Ca2+ and the Ca2+ channel agonist, BK-8644, and is diminished by low extracellular Ca2+ and treatment with nifedipine, consistent with the expression of adenylyl cyclase type I (AC I). Potassium-induced depolarization of GT1-7 neurons causes a dose-dependent monotonic increase in [Ca2+]i and elicits a bell-shaped cAMP response. The inhibitory phase of the cAMP response is prevented by pertussis toxin (PTX), consistent with the activation of G(i)-related proteins during depolarization. Agonist activation of the endogenous GnRH receptor in GT1-7 neurons also elicits a bell-shaped change in cAMP production. The inhibitory action of high GnRH concentrations is prevented by PTX, indicating coupling of the GnRH receptors to G(i)-related proteins. The stimulation of cAMP production by activation of endogenous LH receptors is enhanced by low (nanomolar) concentrations of GnRH but is abolished by micromolar concentrations of GnRH, again in a PTX-sensitive manner. These findings indicate that GnRH neuronal cAMP production is maintained by Ca2+ entry through voltage-sensitive calcium channels, leading to activation of Ca2+-stimulated AC I. Furthermore, the Ca2+ influx-dependent activation of AC I acts in conjunction with AC-regulatory G proteins to determine basal and agonist-stimulated levels of cAMP production.  相似文献   

6.
Calcitonin (CT), a polypeptide hormone, regulates calcium homeostasis by activating surface receptors coupled to stimulation of adenylyl cyclase in bone and kidney cells. CT has also been reported to increase cytoplasmic Ca2+ in osteoclasts and renal tubule cells. Signaling pathways activated by a recombinant porcine renal calcitonin receptor transiently expressed in HEK-293 cells were studied. In cells expressing the recombinant CT receptor, salmon CT stimulated cAMP accumulation (EC50, 0.16 nM) and synthesis of inositol phosphates (IP; EC50, 3.7 nM). Two other recombinant receptors, the m1-muscarinic acetylcholine receptor and the LH receptor, activated synthesis of either IP or cAMP, respectively, but not both. Stable expression of the CT receptor in a CT receptor-deficient cell line, M18, restored the cells' ability to increase cytoplasmic Ca2+ in response to salmon CT. These results show that a single recombinant CT receptor can independently activate effector pathways mediated by cAMP and IP/Ca2+.  相似文献   

7.
1. Ca2+ and cAMP both act as intracellular second messengers of receptor activation. In neuronal tissue, Ca2+ acting via calmodulin can elevate cAMP levels. This regulation by Ca2+ provides a means whereby the elevation of intracellular [Ca2+] might modulate cAMP generation. 2. In the present studies, the impact of the Ca2+/calmodulin regulation on receptor-mediated stimulation of activity is compared in striatum and hippocampus--regions of differing sensitivity to Ca2+/camodulin. Ca2+/calmodulin stimulated striatal and hippocampal adenylate cyclase activity by 1.4- and 2.7-fold respectively, while dopamine and vasoactive intestinal peptide (VIP) stimulated the enzyme activity of these respective regions by 1.3- and 2-fold. 3. In the presence of Ca2+/calmodulin, the dopamine dose-response curve in the striatum was shifted upward, without alteration of the slope of the curve or of the maximal stimulation of activity elicited by dopamine. In the hippocampus, the ability of VIP to stimulate adenylate cyclase activity was reduced by the presence of calmodulin. 4. The dose dependence of these actions of calmodulin was examined. In the striatum, the stimulation of adenylate cyclase activity by 0.1 to 0.3 microM calmodulin obscured dopamine stimulation, while 1 to 10 microM was additive with the dopamine stimulation. In the hippocampus, all concentrations of calmodulin (0.1 to 10 microM) reduced VIP-mediated stimulation of enzyme activity. 5. These data suggest that the ratio of calmodulin-sensitive to calmodulin-insensitive adenylate cyclase activity varies in different rat brain regions and that, in those regions in which this ratio is low (e.g., rat striatum and most peripheral systems), calmodulin- and receptor-mediated activation of adenylate cyclase activity will be additive, while in those systems in which this ratio is high (e.g., most of the central nervous system), calmodulin will reduce receptor-mediated stimulation of enzyme activity.  相似文献   

8.
Stimulation of adenylyl cyclase in the hippocampus is critical for memory formation. However, generation of cAMP signals within an optimal range for memory may require a balance between stimulatory and inhibitory mechanisms. The role of adenylyl cyclase inhibitory mechanisms for memory has not been addressed. One of the mechanisms for inhibition of adenylyl cyclase is through activation of G(i)-coupled receptors, a mechanism that could serve as a constraint on memory formation. Here we report that ablation of G(ialpha1) by gene disruption increases hippocampal adenylyl cyclase activity and enhances LTP in area CA1. Furthermore, gene ablation of G(ialpha1) or antisense oligonucleotide-mediated depletion of G(ialpha1) disrupted hippocampus-dependent memory. We conclude that G(ialpha1) provides a critical mechanism for tonic inhibition of adenylyl cyclase activity in the hippocampus. We hypothesize that loss of G(ialpha1) amplifies the responsiveness of CA1 postsynaptic neurons to stimuli that strengthen synaptic efficacy, thereby diminishing synapse-specific plasticity required for new memory formation.  相似文献   

9.
Since many isoforms of adenylyl cyclase and adenosine 3', 5'-monophosphate (cAMP) phosphodiesterase have been cloned, it is likely that receptors of each hormone have a specific combination of these isoforms. Types I, III and VIII adenylyl cyclases are reported to be stimulated by Ca(2+)-calmodulin, type I phosphodiesterase by Ca(2+)-calmodulin, but types IV and VII (cAMP-specific) phosphodiesterases by Co2+. In the present study, we examined different effects of Ca2+ and Co2+ on hormone-induced cAMP response in the isolated perfused rat liver.The removal of Ca2+ from the perfusion medium (0 mM CaCl(2 ) + 0.5 mM EGTA) did not affect glucagon (0.1 nM)-responsive cAMP but reduced secretin (1 nM)-, vasoactive intestinal polypeptide (VIP, 1-10 nM)- and forskolin (1 microM)-responsive cAMP considerably. The addition of 1 mM CoCl2 reduced glucagon- and secretin-responsive cAMP considerably, forskolin-responsive cAMP partly, did not affect 1 nM VIP-responsive cAMP, but enhanced 10 nM VIP-responsive cAMP. Forskolin- and VIP-responsive cAMP was greater in the combination (0 mM CaCl(2) + 0.5 mM EGTA + 3 mM CoCl2) than in the Ca(2+)-free perfusion alone.These results suggest that secretin, VIP1 and VIP2 receptors are linked to Ca(2+)-calmodulin-sensitive adenylyl cyclase; glucagon receptor to Ca(2+)-calmodulin-insensitive adenylyl cyclase; VIP1 receptor to Ca(2+)-calmodulin-dependent phosphodiesterase; glucagon, secretin and VIP2 receptors to cAMP-specific phosphodiesterase, respectively, in the rat liver.  相似文献   

10.
An elevated free Ca2+ concentration reduces odor-stimulated production of cyclic AMP (cAMP) in the outer dendritic membranes of lobster olfactory receptor neurons in vitro. This effect can occur within 50 ms of odor stimulation. The effect is concentration-dependent at submicromolar concentrations of free Ca2+. An elevated free Ca2+ concentration also reduces basal and forskolin-stimulated cAMP levels in a concentration-dependent manner, suggesting that Ca2+ is not targeting the activation of the odor receptor/G protein complex. The degradation of synthetic cAMP by phosphodiesterases is not enhanced by an increased free Ca2+ concentration, suggesting that Ca2+ acts by down-regulating the olfactory adenylyl cyclase. Western blot analysis of the lobster olfactory sensilla that contain the outer dendrites reveals a protein in the transduction zone with a molecular mass of approximately 138 kDa that is immunoreactive to an antiserum against adenylyl cyclase type III. Given earlier evidence that Ca2+ potentially enters the receptor cell through odor-activated inositol 1,4,5-trisphosphate-gated channels, our results suggest a possible route for cross talk between the cyclic nucleotide and the inositol phospholipid signaling pathways in lobster olfactory receptor neurons.  相似文献   

11.
Ca(2+)-sensitive adenylyl cyclases may act as early integrators of the two major second messenger-signaling pathways mediated by Ca(2+) and cAMP. Ca(2+) stimulation of adenylyl cyclase type I (ACI) and adenylyl cyclase type VIII (ACVIII) is mediated by calmodulin and the site on these adenylyl cyclases that interacts with calmodulin has been defined. By contrast, the mechanism whereby Ca(2+) inhibits adenylyl cyclase type V (ACV) and adenylyl cyclase type VI (ACVI) is unknown. In this study, Ca(2+), Sr(2+), and Ba(2+) were compared to probe the involvement of E-F hand-like domains in both Ca(2+) stimulation and inhibition of ACVIII and ACVI, respectively. HEK 293 cells transfected with ACVIII cDNA and C6-2B glioma cells (where the endogenous adenylyl cyclases is predominantly ACVI) were used to compare the effects of these three cations in in vitro and in vivo measurements. The in vitro data identified two Ca(2+) regulatory sites for both ACVIII and ACVI. Strikingly different potency series for these cations at mediating high affinity stimulation and inhibition of ACVIII and ACVI, respectively, effectively rule out the possibility that calmodulin or proteins utilizing similar Ca(2+)-binding motifs mediate inhibition of ACVI. On the other hand, the low affinity inhibition that is common to both ACVIII and ACVI showed virtually identical potency profiles for the IIa cation series, indicating a common site of action. Remarkably, whereas Sr(2+) was rather ineffective at regulating these cyclases (particularly ACVI) in vitro, adequate concentrations accumulated in the vicinity of these enzymes as a consequence of capacitative cation entry to partially regulate both of these activities in vivo. This latter finding consolidates earlier observations that Ca(2+)-sensitive adenylyl cyclases detect and respond to capacitative cation entry rather than global cytosolic cation concentrations.  相似文献   

12.
Although M1-M4 muscarinic acetylcholine receptors (mAChRs) in HEK-293 cells internalize on agonist stimulation, only M1, M3, and M4 but not M2 mAChRs recycle to the plasma membrane. To investigate the functional consequences of this phenomenon, we compared desensitization and resensitization of M2 versus M4 mAChRs. Treatment with 1 mM carbachol for 1 h at 37 degrees C reduced numbers of cell surface M2 and M4 mAChRs by 40-50% and M2 and M4 mAChR-mediated inhibition of adenylyl cyclase, intracellular Ca2+ concentration ([Ca2+]i) increases, and phospholipase C (PLC) activation by 60-70%. Receptor-mediated inhibition of adenylyl cyclase and [Ca2+]i increases significantly resensitized within 3 h. However, M4 but not M2 mAChR-mediated PLC activation resensitized. At 16 degrees C, M2 mAChR-mediated [Ca2+]i increases and PLC stimulation desensitized to a similar extent as at 37 degrees C. However, at 16 degrees C, where M2 mAChR internalization is negligible, both M2 mAChR responses resensitized, demonstrating that M2 mAChR resensitization proceeds at the plasma membrane. Examination of M2 mAChR responses following inactivation of cell surface mAChRs by quinuclidinyl benzilate revealed substantial receptor reserve for coupling to [Ca2+]i increases but not to PLC. We conclude that M2 mAChR internalization induces long-lasting PLC desensitization predominantly because receptor loss is not compensated for by receptor recycling or receptor reserve.  相似文献   

13.
It is hypothesized that Ca2+ stimulation of calmodulin (CaM)-activated adenylyl cyclases (AC1 or AC8) generates cAMP signals critical for late phase LTP (L-LTP) and long-term memory (LTM). However, mice lacking either AC1 or AC8 exhibit normal L-LTP and LTM. Here, we report that mice lacking both enzymes (DKO) do not exhibit L-LTP or LTM. To determine if these defects are due to a loss of cAMP increases in the hippocampus, DKO mice were unilaterally cannulated to deliver forskolin. Administration of forskolin to area CA1 before training restored normal LTM. We conclude that Ca2+-stimulated adenylyl cyclase activity is essential for L-LTP and LTM and that AC1 or AC8 can produce the necessary cAMP signal.  相似文献   

14.
The regulation of adenylyl cyclase activity by varying concentrations of Ca2+ was examined in plasma membrane preparations derived from a number of neural and non-neural cells. Enzyme activity in neural tissue (i.e. cerebellum) neural-derived pheochromocytoma PC12 cells and certain endocrine cells (i.e. pancreatic RINm5f and parathyroid cells) was stimulated by physiologic concentrations of Ca2+ by a calmodulin (CaM)-dependent mechanism. In contrast, adenylyl cyclase activity in non-neural cells (e.g. platelets and GH3 cells) was not stimulated by Ca2+. In these latter sources, enzyme activity was inhibited by increasing concentrations of Ca2+, independent of CaM. In liver membranes, Ca2+ and/or CaM did not alter adenylyl cyclase activity. These results demonstrate that the effects exerted by physiologic concentrations of Ca2+ on adenylyl cyclase activity range from CaM-dependent stimulation of activity to no effect, to CaM-independent inhibition of activity. The actions of Ca2+ on adenylyl cyclase may be major contributors to the various synergistic or antagonistic interactions that are seen between cAMP-generating and Ca(2+)-mobilizing systems.  相似文献   

15.
Adenylyl cyclases present a potential focal point for signal integration in vascular smooth muscle cells (VSMC) influencing contractile state and cellular responses to vessel wall injury. In the present study, we examined the influence of the vasoactive peptide arginine vasopressin (AVP) on cAMP regulation in primary cultures of rat aortic VSMC and in the A7r5 arterial smooth muscle cell line. In cultured VSMC and A7r5 cells, AVP had no effect on basal cAMP but differentially affected beta-adrenergic receptor-induced activation of adenylyl cyclase. AVP synergistically increased (twofold) isoproterenol-stimulated cAMP production in VSMC but inhibited the effect of isoproterenol (50%) in the A7r5 cell line. The effects of AVP in both preparations were blocked when cells were pretreated with a selective V(1) vasopressin receptor antagonist. Moreover, the actions of AVP in both models were dependent on release of intracellular Ca(2+) and were mimicked by elevation of Ca(2+) with the ionophore A23187, suggesting that the responses to AVP involve Ca(2+)-mediated regulation of adenylyl cyclase stimulation. Adenylyl cyclase types I, III, and VIII are stimulated by Ca(2+)/calmodulin, whereas types V and VI are directly inhibited by Ca(2+). RNA blot analysis for effector isotypes indicated that both VSMC and A7r5 cells expressed types III, V, and VI. VSMC also expressed mRNA for type IV and VIII effectors, which could account for the cell-specific responses to peptide hormone and Ca(2+).  相似文献   

16.
Abstract: Ca2+/calmodulin-sensitive adenylyl cyclase plays a role in several forms of synaptic plasticity and learning. To understand how cellular signals from neuronal activity during behavioral stimuli might be integrated by adenylyl cyclase, we have characterized the response of type I adenylyl cyclase to transient Ca2+ stimuli. Stimulation by a several second Ca2+ stimulus is delayed, rising to a peak after the Ca2+ stimulus has ended. We attempted to identify the site of the persistent Ca2+ signal that enabled adenylyl cyclase stimulation to increase after free Ca2+ had declined. Free calmodulin itself displayed no persistent activation by Ca2+ and was unable to activate adenylyl cyclase if exposed to low Ca2+ solution <1 s before reaching adenylyl cyclase. In contrast, activation of the calmodulin-adenylyl cyclase complex persisted for seconds after Ca2+ stimulus. Activation decayed with a time constant of 6 or 13 s depending on assay conditions. These results suggest that the calmodulin-adenylyl cyclase complex can serve as a site of cellular memory for a Ca2+ transient that has ended even before adenylyl cyclase is fully activated.  相似文献   

17.
Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory.  相似文献   

18.
The intracellular second messenger cyclic AMP (cAMP) is degraded by phosphodiesterases (PDE). The knowledge of individual families and subtypes of PDEs is considerable, but how the different PDEs collaborate in the cell to control a cAMP signal is still not fully understood. In order to investigate compartmentalized cAMP signaling, we have generated a membrane-targeted variant of the cAMP Bioluminiscence Resonance Energy Transfer (BRET) sensor CAMYEL and have compared intracellular cAMP measurements with it to measurements with the cytosolic BRET sensor CAMYEL in HEK293 cells. With these sensors we observed a slightly higher cAMP response to adenylyl cyclase activation at the plasma membrane compared to the cytosol, which is in accordance with earlier results from Fluorescence Resonance Energy Transfer (FRET) sensors. We have analyzed PDE activity in fractionated lysates from HEK293 cells using selective PDE inhibitors and have identified PDE3 and PDE10A as the major membrane-bound PDEs and PDE4 as the major cytosolic PDE. Inhibition of membrane-bound or cytosolic PDEs can potentiate the cAMP response to adenylyl cyclase activation, but we see no significant difference between the potentiation of the cAMP response at the plasma membrane and in cytosol when membrane-bound and cytosolic PDEs are inhibited. When different levels of stimulation were tested, we found that PDEs 3 and 10 are mainly responsible for cAMP degradation at low intracellular cAMP concentrations, whereas PDE4 is more important for control of cAMP at higher concentrations.  相似文献   

19.
We recently showed that colchicine treatment of rat ventricular myocytes increases the L-type Ca2+ current (I(Ca)) and intracellular Ca2+ concentration ([Ca2+](i)) transients and interferes with adrenergic signaling. These actions were ascribed to adenylyl cyclase (AC) stimulation after G(s) activation by alpha,beta-tubulin. Colchicine depolymerizes microtubules into alpha,beta-tubulin dimers. This study analyzed muscarinic signals in myocytes with intact or depolymerized microtubules. Myocytes were loaded with the Ca2+ indicator fluo 3 and were field stimulated at 1 Hz or voltage clamped. In untreated cells, carbachol (CCh; 1 microM) induced ACh-activated K(+) current [I(K(ACh))], which happens via betagamma-subunits from the activation of G(i). Carbachol also reduced [Ca2+](i) transients and contractions. Once G(i) is activated by muscarinic agonist, the alpha(i)-subunit is released from the betagamma-subunits, but it is silent, and its inhibition of the AC/cAMP cascade, manifested by I(Ca) reduction, is not seen unless AC has been previously activated. In colchicine-treated cells, CCh caused greater reductions of [Ca2+](i) transients and contractions than in untreated cells. The alpha(i)-subunit became effective in signaling through the AC/cAMP cascade and reduced I(Ca) without changing its voltage-dependence. Isoproterenol (Iso) regained its efficacy and reversed I(Ca) inhibition by CCh. Stimulation of I(Ca) by forskolin persisted in colchicine-treated cells when Iso was ineffective. The effect of CCh on I(K(ACh)) was occluded in colchicine-treated cells. Colchicine treatment, per se, may increase I(K(ACh)) by betagamma-subunits released from G(s) to mask this effect of CCh. Microtubules suppress I(Ca) regulation by alpha(i); their disruption releases restraints that unmask muscarinic inhibition of I(Ca). Summarily, colchicine treatment reverses regulation of ventricular excitation-contraction coupling by autonomic agents.  相似文献   

20.
Ca2+-regulated exocytosis, previously believed to be restricted to specialized cells, was recently recognized as a ubiquitous process. In mammalian fibroblasts and epithelial cells, exocytic vesicles mobilized by Ca2+ were identified as lysosomes. Here we show that elevation in intracellular cAMP potentiates Ca2+-dependent exocytosis of lysosomes in normal rat kidney fibroblasts. The process can be modulated by the heterotrimeric G proteins Gs and Gi, consistent with activation or inhibition of adenylyl cyclase. Normal rat kidney cell stimulation with isoproterenol, a beta-adrenergic agonist that activates adenylyl cyclase, enhances Ca2+-dependent lysosome exocytosis and cell invasion by Trypanosoma cruzi, a process that involves parasite-induced [Ca2+]i transients and fusion of host cell lysosomes with the plasma membrane. Similarly to what is observed for T. cruzi invasion, the actin cytoskeleton acts as a barrier for Ca2+-induced lysosomal exocytosis. In addition, infective stages of T. cruzi trigger elevation in host cell cAMP levels, whereas no effect is observed with noninfective forms of the parasite. These findings demonstrate that cAMP regulates lysosomal exocytosis triggered by Ca2+ and a parasite/host cell interaction known to involve Ca2+-dependent lysosomal fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号