首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The muscleblind‐like (MBNL) proteins 1, 2, and 3, which contain four CCCH zinc finger motifs (ZF1–4), are involved in the differentiation of muscle inclusion by controlling the splicing patterns of several pre‐mRNAs. Especially, MBNL1 plays a crucial role in myotonic dystrophy. The CCCH zinc finger is a sequence motif found in many RNA binding proteins and is suggested to play an important role in the recognition of RNA molecules. Here, we solved the solution structures of both tandem zinc finger (TZF) motifs, TZF12 (comprising ZF1 and ZF2) and TZF34 (ZF3 and ZF4), in MBNL2 from Homo sapiens. In TZF12 of MBNL2, ZF1 and ZF2 adopt a similar fold, as reported previously for the CCCH‐type zinc fingers in the TIS11d protein. The linker between ZF1 and ZF2 in MBNL2 forms an antiparallel β‐sheet with the N‐terminal extension of ZF1. Furthermore, ZF1 and ZF2 in MBNL2 interact with each other through hydrophobic interactions. Consequently, TZF12 forms a single, compact global fold, where ZF1 and ZF2 are approximately symmetrical about the C2 axis. The structure of the second tandem zinc finger (TZF34) in MBNL2 is similar to that of TZF12. This novel three‐dimensional structure of the TZF domains in MBNL2 provides a basis for functional studies of the CCCH‐type zinc finger motifs in the MBNL protein family.  相似文献   

5.
Cross‐brace structural motifs are required as a scaffold to design artificial RING fingers (ARFs) that function as ubiquitin ligase (E3) in ubiquitination and have specific ubiquitin‐conjugating enzyme (E2)‐binding capabilities. The Simple Modular Architecture Research Tool database predicted the amino acid sequence 131–190 (KIAA1045ZF) of the human KIAA1045 protein as an unidentified structural region. Herein, the stoichiometry of zinc ions estimated spectrophotometrically by the metallochromic indicator revealed that the KIAA1045ZF motif binds to two zinc atoms. The structure of the KIAA1045ZF motif bound to the zinc atoms was elucidated at the atomic level by nuclear magnetic resonance. The actual structure of the KIAA1045ZF motif adopts a C4HC3‐type PHD fold belonging to the cross‐brace structural family. Therefore, the utilization of the KIAA1045ZF motif as a scaffold may lead to the creation of a novel ARF.  相似文献   

6.

Background  

A wide variety of stabilizing factors have been invoked so far to elucidate the structural basis of protein thermostability. These include, amongst the others, a higher number of ion-pairs interactions and hydrogen bonds, together with a better packing of hydrophobic residues. It has been frequently observed that packing of hydrophobic side chains is improved in hyperthermophilic proteins, when compared to their mesophilic counterparts. In this work, protein crystal structures from hyper/thermophilic organisms and their mesophilic homologs have been compared, in order to quantify the difference of apolar contact area and to assess the role played by the hydrophobic contacts in the stabilization of the protein core, at high temperatures.  相似文献   

7.

Background  

A recent study by Tadepally et al. describes the clustering of zinc finger (ZF) genes in the human genome and traces their evolutionary history among several placental mammals with complete or draft genome sequences. One of the main conclusions from the paper is that there is a dramatic rate of gene duplication and gene loss, including the surprising result that 118 human ZF genes are absent in chimpanzee. The authors also present evidence concerning the ancestral order in which the ZF-associated KRAB and SCAN domains were recruited to ZF proteins.  相似文献   

8.
9.

Background

The Nse1, Nse3 and Nse4 proteins form a tight sub-complex of the large SMC5-6 protein complex. hNSE3/MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and the Nse4 kleisin subunit is related to the EID (E1A-like inhibitor of differentiation) family of proteins. We have recently shown that human MAGE proteins can interact with NSE4/EID proteins through their characteristic conserved hydrophobic pocket.

Methodology/Principal Findings

Using mutagenesis and protein-protein interaction analyses, we have identified a new Nse3/MAGE-binding domain (NMBD) of the Nse4/EID proteins. This short domain is located next to the Nse4 N-terminal kleisin motif and is conserved in all NSE4/EID proteins. The central amino acid residues of the human NSE4b/EID3 domain were essential for its binding to hNSE3/MAGEG1 in yeast two-hybrid assays suggesting they form the core of the binding domain. PEPSCAN ELISA measurements of the MAGEC2 binding affinity to EID2 mutant peptides showed that similar core residues contribute to the EID2-MAGEC2 interaction. In addition, the N-terminal extension of the EID2 binding domain took part in the EID2-MAGEC2 interaction. Finally, docking and molecular dynamic simulations enabled us to generate a structure model for EID2-MAGEC2. Combination of our experimental data and the structure modeling showed how the core helical region of the NSE4/EID domain binds into the conserved pocket characteristic of the MAGE protein family.

Conclusions/Significance

We have identified a new Nse4/EID conserved domain and characterized its binding to Nse3/MAGE proteins. The conservation and binding of the interacting surfaces suggest tight co-evolution of both Nse4/EID and Nse3/MAGE protein families.  相似文献   

10.
Zic family proteins have five C2H2-type zinc finger (ZF) motifs. We physicochemically characterized the folding properties of Zic ZFs. Alteration of chelation with zinc ions and of hydrophobic interactions changed circular dichroism spectra, suggesting that they caused structural changes. The motifs were heat stable, but electrostatic interactions had little effect on structural stability. These results highlight the importance of chelating interactions and hydrophobic interactions for the stability of the folding structure of Zic ZF proteins.  相似文献   

11.

Background  

The DExD/H domain containing RNA helicases such as retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are key cytosolic pattern recognition receptors (PRRs) for detecting nucleotide pathogen associated molecular patterns (PAMPs) of invading viruses. The RIG-I and MDA5 proteins differentially recognise conserved PAMPs in double stranded or single stranded viral RNA molecules, leading to activation of the interferon system in vertebrates. They share three core protein domains including a RNA helicase domain near the C terminus (HELICc), one or more caspase activation and recruitment domains (CARDs) and an ATP dependent DExD/H domain. The RIG-I/MDA5 directed interferon response is negatively regulated by laboratory of genetics and physiology 2 (LGP2) and is believed to be controlled by the mitochondria antiviral signalling protein (MAVS), a CARD containing protein associated with mitochondria.  相似文献   

12.
Wu H  Zeng H  Lam R  Tempel W  Amaya MF  Xu C  Dombrovski L  Qiu W  Wang Y  Min J 《PloS one》2011,6(6):e18919

Background

The PWWP domain was first identified as a structural motif of 100–130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain ‘Royal Family’, which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently.

Methodology/Principal Findings

The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other ‘Royal Family’ members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3.

Conclusions

PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical β-barrel core, an insertion motif between the second and third β-strands and a C-terminal α-helix bundle. Both the canonical β-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

Enhanced version

This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.  相似文献   

13.

Background  

Hydrophobic Cluster Analysis (HCA) is an efficient way to compare highly divergent sequences through the implicit secondary structure information directly derived from hydrophobic clusters. However, its efficiency and application are currently limited by the need of user expertise. In order to help the analysis of HCA plots, we report here the structural preferences of hydrophobic cluster species, which are frequently encountered in globular domains of proteins. These species are characterized only by their hydrophobic/non-hydrophobic dichotomy. This analysis has been extended to loop-forming clusters, using an appropriate loop alphabet.  相似文献   

14.
This study was concerned with theeffects of NaCl administered in vivo or added in vitro to isolatednuclei on [3H]tryptophan binding to rat hepaticnuclei assayed in vitro. Hypertonic (10.7%) NaCl administered in vivoto rats caused at 10 min a marked decrease in in vitro binding (totaland specific) of [3H]tryptophan to hepaticnuclei. In vitro incubation of isolated hepatic nuclei, but not ofisolated nuclear envelopes, with added NaCl (particularly at 0.125 × 104 M and 0.25 × 104 M) revealed significant inhibition of[3H]tryptophan binding. However, isolatedhepatic nuclear envelopes prepared after in vitro incubation ofisolated nuclei with added NaCl did show inhibition of[3H]tryptophan binding (total and specific)compared with controls. Other salts (KCl, MgCl2,NaHCO3, NaC2H3O2, NaF,or Na2SO4), at similar concentrations to thatof NaCl except for MgCl2, when added to isolated nuclei didnot appreciably inhibit nuclear tryptophan binding. Kinetic studies ofin vitro nuclear [3H]tryptophan binding in thepresence of 0.125 × 104 M NaCl revealed thatbinding decreased at 0.5 h and continued to 2 h compared with nuclear[3H]tryptophan binding with controls (withoutNaCl addition). The results obtained in vivo in rats and those obtainedin vitro with isolated hepatic nuclei revealed NaCl-induced inhibitoryeffects on [3H]tryptophan binding to hepaticnuclei. Although the inhibitory effects were similar under the twodifferent experimental conditions, the mechanism for each may bedifferent in that the NaCl concentration in hepatic cells afteradministration of NaCl in vivo was appreciably higher than the lowlevels added in vitro to the isolated hepatic nuclei.

  相似文献   

15.

Background

HP1 proteins are highly conserved heterochromatin proteins, which have been identified to be structural adapters assembling a variety of macromolecular complexes involved in regulation of gene expression, chromatin remodeling and heterochromatin formation. Much evidence shows that HP1 proteins interact with numerous proteins including methylated histones, histone methyltransferases and so on. Cbx3 is one of the paralogues of HP1 proteins, which has been reported to specifically recognize trimethylated histone H3K9 mark, and a consensus binding motif has been defined for the Cbx3 chromodomain.

Methodology/Principal Findings

Here, we found that the Cbx3 chromodomain can bind to H1K26me2 and G9aK185me3 with comparable binding affinities compared to H3K9me3. We also determined the crystal structures of the human Cbx3 chromodomain in complex with dimethylated histone H1K26 and trimethylated G9aK185 peptides, respectively. The complex structures unveil that the Cbx3 chromodomain specifically bind methylated histone H1K26 and G9aK185 through a conserved mechanism.

Conclusions/Significance

The Cbx3 chromodomain binds with comparable affinities to all of the methylated H3K9, H1K26 and G9aK185 peptides. It is suggested that Cbx3 may regulate gene expression via recognizing both histones and non-histone proteins.  相似文献   

16.
17.

Background

Few high-resolution structures of integral membranes proteins are available, as crystallization of such proteins needs yet to overcome too many technical limitations. Nevertheless, prediction of their transmembrane (TM) structure by bioinformatics tools provides interesting insights on the topology of these proteins.

Methods

We describe here how to extract new information from the analysis of hydrophobicity variations or hydrophobic pulses (HPulses) in the sequence of integral membrane proteins using the Hydrophobic Pulse Predictor, a new tool we developed for this purpose. To analyze the primary sequence of 70 integral membrane proteins we defined two levels of analysis: G1-HPulses for sliding windows of n = 2 to 6 and G2-HPulses for sliding windows of n = 12 to 16.

Results

The G2-HPulse analysis of 541 transmembrane helices allowed the definition of the new concept of transmembrane unit (TMU) that groups together transmembrane helices and segments with potential adjacent structures. In addition, the G1-HPulse analysis identified helix irregularities that corresponded to kinks, partial helices or unannotated structural events. These irregularities could represent key dynamic elements that are alternatively activated depending on the channel status as illustrated by the crystal structures of the lactose permease in different conformations.

Conclusions

Our results open a new way in the understanding of transmembrane secondary structures: hydrophobicity through hydrophobic pulses strongly impacts on such embedded structures and is not confined to define the transmembrane status of amino acids.  相似文献   

18.

Background

Alkyl hydroperoxidase activity provides an important antioxidant defense for bacterial cells. The catalytic mechanism requires two peroxidases, AhpC and AhpD, where AhpD plays the role of an essential adaptor protein.

Results

The crystal structure of a putative AhpD from Pseudomonas aeruginosa has been determined at 1.9 Å. The protein has an all-helical fold with a chain topology similar to a known AhpD from Mycobacterium tuberculosis despite a low overall sequence identity of 9%. A conserved two α-helical motif responsible for function is present in both. However, in the P. aeruginosa protein, helices H3, H4 of this motif are located at the N-terminal part of the chain, while in M. tuberculosis AhpD, the corresponding helices H8, H9 are situated at the C-terminus. Residues 24-62 of the putative catalytic region of P. aeruginosa have a higher sequence identity of 33% where the functional activity is supplied by a proton relay system of five residues, Glu36, Cys48, Tyr50, Cys51, and His55, and one structural water molecule. A comparison of five other related hypothetical proteins from various species, assigned to the alkyl hydroperoxidase D-like protein family, shows they contain the same conserved structural motif and catalytic sequence Cys-X-X-Cys. We have shown that AhpD from P. aeruginosa exhibits a weak ability to reduce H2O2 as tested using a ferrous oxidation-xylenol orange (FOX) assay, and this activity is blocked by thiol alkylating reagents.

Conclusion

Thus, this hypothetical protein was assigned to the AhpD-like protein family with peroxidase-related activity. The functional relationship of specific oligomeric structures of AhpD-like structural family is discussed.
  相似文献   

19.

Background  

ALG-2 (a gene product of PDCD6) belongs to the penta-EF-hand (PEF) protein family and Ca2+-dependently interacts with various intracellular proteins including mammalian Alix, an adaptor protein in the ESCRT system. Our previous X-ray crystal structural analyses revealed that binding of Ca2+ to EF3 enables the side chain of R125 to move enough to make a primary hydrophobic pocket (Pocket 1) accessible to a short fragment of Alix. The side chain of F122, facing a secondary hydrophobic pocket (Pocket 2), interacts with the Alix peptide. An alternatively spliced shorter isoform, designated ALG-2ΔGF122, lacks Gly121Phe122 and does not bind Alix, but the structural basis of the incompetence has remained to be elucidated.  相似文献   

20.

Background  

Argonaute (Ago) proteins interact with small regulatory RNAs to mediate gene regulatory pathways. A recent report by Kiriakidou et al. [1] describes an MC sequence region identified in Ago2 that displays similarity to the cap-binding motif in translation initiation factor 4E (eIF4E). In a cap-bound eIF4E structure, two important aromatic residues of the motif stack on either side of a 7-methylguanosine 5'-triphosphate (m7Gppp) base. The corresponding Ago2 aromatic residues (F450 and F505) were hypothesized to perform the same cap-binding function. However, the detected similarity between the MC sequence and the eIF4E cap-binding motif was questionable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号