首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We conducted a study to determine the relationship between turfgrass management intensity and natural occurrence of entomopathogenic nematodes (EPNs). We surveyed for EPNs on putting greens, fairways, and rough areas—three distinct surface types on golf courses that are managed with different intensities. We collected 159 soil samples from putting greens, contiguous fairways, and rough areas from 19 golf courses in Ohio, USA. Nematodes were recovered from soil samples using the insect baiting technique. We also analyzed the soil samples for texture, organic matter, pH, phosphorus, calcium, magnesium and potassium. We used principal components analysis and Pearson correlation to determine the relationship between nematode occurrence and the measured parameters. Surface type was the most important factor in predicting EPNs occurrence. Putting greens differed significantly from fairways and rough areas in the number of EPN-positive sites. No EPNs were recovered from putting greens but were recovered from 43% of the fairways and 57% of the rough areas. Putting greens also differed significantly from fairways and rough areas in organic matter, pH, calcium, and phosphorus. The fairways and rough areas did not however differ in number of EPN-positive sites and measured soil parameters. Presence of EPNs correlated significantly, although weakly, with sand, silt, phosphorus, organic matter, and magnesium content, but not with clay, pH, calcium, and potassium. Nematode isolates were identified as Heterorhabditis bacteriophora, Steinernema carpocapsae, and S. glaseri. This suggests that EPNs are more likely to occur in less intensively managed sites that receive fewer inputs and have relatively high sand, and moderate silt, organic matter, phosphorus, and magnesium content.  相似文献   

2.
Studies with established turf and golf courses have indicated minimal risk of nitrate pollution of groundwater resulting from turfgrass management, but soil nitrate flux in turfgrass sod production farms and golf courses has received less attention. Information about nitrate-N flux at a particular location can be helpful to the sod producer or the golf course manager when efficiently applying N fertilizers and minimizing risk of nitrate pollution. We used an ion exchange resin capsule system to continuously monitor soil nitrate-N fluxes at 12 sites in southern Rhode Island, including turfgrass sod production farms and a low-maintenance environment. Four capsules were placed in the soil at each site and retrieved at intervals coinciding with management and meteorological events to determine nitrate ion accumulation. We found that the golf course green exhibited significantly higher nitrate-N fluxes than the sod farms and the low-maintenance turf. There was significant interaction between sampling date and study site, indicating that seasonal variation in soil nitrate-N fluxes was affected by turfgrass management. The cultural practice of late fall fertilization to stimulate early spring growth in the following year appeared to present some risk of nitrate loss during the winter from the golf course greens in our region. We conclude that site-specific and time-relevant monitoring is needed to produce and manage turfgrasses in an environmentally sound manner.  相似文献   

3.
Field experiments were conducted in 1989 and 1990 to examine the population fluctuation patterns of Tylenchorhynchus nudus, Criconemella curvata, and Helicotylenchus cornurus in mixed bentgrass and annual bluegrass putting greens on two golf courses near Chicago, Illinois, to determine if fluctuation patterns could be extrapolated to unsampled greens. Fenamiphos-treated and untreated plots were established on seven putting greens on two golf courses. Greens were sampled intensively five times during the growing season, and statistical comparisons of population levels per gram of root were made among dates for each green. Population levels per gram of root changed significantly on all greens in both years for each of the three nematode populations. Within a putting green in either year, population fluctuation patterns in fenamiphos-treated and untreated plots were similar. Population fluctuation patterns were different between years, however. Within a year, population fluctuation patterns among greens showed similarities indicating that carefully monitoring a few locations may allow extrapolation of population fluctuation data to other locations within that year.  相似文献   

4.
Jason P. Harmon  D. A. Andow 《Oikos》2007,116(6):1030-1036
Density-dependent mutualisms have been well documented, but the behavioral mechanisms that can produce such interactions are not as well understood. We investigated interactions between predatory ladybirds and the ant Lasius neoniger, which engages in a facultative association with the aphid Aphis fabae . We found that ants disrupted predator aggregation and deterred foraging, but that this effect varied with aphid density. In the field, smaller aphid colonies had higher numbers of ants per aphid (higher relative ant density), whereas plants with larger aphid colonies had lower relative ant density. Ants deterred ladybird foraging when relative ant density was high, but when relative ant density was low, ladybirds aggregated to aphids and foraged more successfully. This difference in ladybird foraging success appeared to be driven by variation in the ants' distribution on the plant and the ladybirds' reaction to ants. When relative ant density was high, ants moved around the perimeter of the aphid colonies, which resulted in faster detection of predators and a greater likelihood of ladybirds leaving. However, when relative ant density was low, ants moved only in the midst of the aphid colonies and rarely around the perimeter, which allowed predators to approach the aphid colony from the perimeter and feed without detection. Such predators were less likely to leave the aphid colony when subsequently detected by ants. We suggest that differences in relative ant numbers, ant distribution, and predator reaction to detection by ants could lead to complex population-level consequences including density-dependent mutualisms and the possibility that predators act as prudent predators.  相似文献   

5.
Soil water repellency (SWR) is a common phenomenon on sand-based golf greens. Soils are considered severely water repellent if water droplets remain on the surface of undisturbed, air-dried soil samples for more than 600 seconds before penetrating. The objective of this research was to evaluate the potential of a surfactant to overcome SWR and restore turfgrass quality on a green with severe drought symptoms. The surfactant Aqueduct® was applied at a rate of 25 L ha?1 at weekly intervals from 4 June through 25 June 2008, either alone or after aeration with solid tines to 5 cm depth before each application. The experiment was irrigated uniformly corresponding to 1.65 times pan evaporation values from 4 June till 12 June, after which irrigation was not necessary due to natural rainfall. Conspicuous and statistically significant improvements in turfgrass quality occurred 10–12 days after the first application of surfactant, and the difference from untreated control plots continued to increase for about two and a half months after the completion of treatments. The improvement was accompanied by a significant increase in the SWC of the 0–20 cm soil layer and a deeper root system. The difference in WDPT between treated and untreated plots was significant at 1 cm, but not at 2, 3, 5 or 10 cm soil depths which were always far more water repellent than the thatch layer. Repeated aeration had no significant effect on turfgrass quality, and there was no significant interaction between surfactant and aeration treatments.  相似文献   

6.
AIMS: As high rates of nitrogen fertilization are used in turfgrass management, there is a great potential for nitrogen loss. Research on identification of denitrifiers in turfgrass has been limited. Therefore, the aim was to identify denitrifier species and genes from turfgrass roots. METHODS AND RESULTS: Rhizobacteria were isolated from roots of bentgrass and bermudagrass in sand-based United States Golf Association (USGA) golf greens and used for denitrification biochemical analysis. Seventeen per cent (34 isolates) were identified as denitrifiers, 47% were classified as nitrate-reducers and 36% were nondenitrifiers. Identification of species of the denitrifiers was performed by chromatography fatty acid methyl ester (GC-FAME) and16S rDNA analyses. Bacillus and Pseudomonas were the major turfgrass denitrifiers. The two methods showed a 60% agreement at the genus level. Nitrite reductase genes nirK and nirS were detected in 74 and 15% of the denitrifiers, respectively, but not in nondenitrifiers. The nosZ gene encoding nitrous oxide reductase was detected in all the denitrifiers, but also in some nondenitrifiers. CONCLUSIONS: To our knowledge, this is the first report for identification of denitrifiers and denitrification-related genes associated with turfgrass roots. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide valuable data for future denitrification studies that seek to improve turfgrass nitrogen management for maximum efficiency.  相似文献   

7.
Alba-Lynn C  Detling JK 《Oecologia》2008,157(2):269-278
Disturbances such as fire, grazing, and soil mixing by animals interact to shape vegetation in grassland ecosystems. Animal-generated disturbances are unique in that they arise from a suite of behaviors that are themselves subject to modification by external factors. The manner in which co-occurring animal taxa interact to alter vegetation is a function of their respective behaviors, which shape the characteristics (e.g., the magnitude or extent) of their disturbances. To determine whether prairie dogs (Cynomys ludovicianus) and harvester ants (Pogonomyrmex occidentalis) interactively alter vegetation structure and heterogeneity on the Colorado shortgrass steppe, we characterized the size, dispersion, and vegetation of prairie dog burrow mounds and ant nests (located on and off prairie dog colonies) and vegetation growing beyond mound and nest perimeters. Ants located on prairie dog colonies engineered significantly larger nests and disturbed nearly twice as much total soil area as their off-colony counterparts. Ant nests were overdispersed both on and off prairie dog colonies, while prairie dog mounds were randomly dispersed. Where harvester ants and prairie dogs co-occur, the overdispersed pattern of on-colony ant nests is in effect "overlaid" onto the random pattern of prairie dog mounds, resulting in a unique, aggregated pattern of soil disturbance. Ant nests on prairie dog colonies had significantly less vegetation and lower plant species diversity than did prairie dog mounds, while off-colony nests were similar to mounds. These results suggest that ant nests are more highly disturbed when located on prairie dog colonies. Beyond nests proper, ants did not appear to alter vegetation in a manner distinct from prairie dogs. As such, the interactive effects of prairie dogs and ants on vegetation arise mainly from the disturbance characteristics of mounds and nests proper.  相似文献   

8.
Abstract. 1. Subterranean aphids in old pasture were found to show extremely clumped distributions with about 3000 aphids (omitting first instars) per ant nest throughout the year.
2. They were generally distributed in and away from the nest mounds, but within the ant's foraging territories.
3. At summer temperatures, more than 3000 first instars are lost from the aphid population per ant nest per day and it is concluded that these are eaten by the ants in addition to some older aphids and the honeydew produced.
4. The aphids may therefore provide enough food to maintain the ants with very little extra needed in the form of other prey.  相似文献   

9.
Agrotis ipsilon multiple nucleopolyhedrovirus (family Baculoviridae, genus Nucleopolyhedrovirus, AgipMNPV), a naturally occurring baculovirus, was found infecting black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), on central Kentucky golf courses. Laboratory, greenhouse, and field studies investigated the potential of AgipMNPV for managing black cutworms in turfgrass. The virus was highly active against first instars (LC50 = 73 occlusion bodies [OBs] per microl with 2-microl dose; 95% confidence intervals, 55-98). First instars that ingested a high lethal dose stopped feeding and died in 3-6 d as early second instars, whereas lethally infected fourth instars continued to feed and grow for 4-9 d until death. Sublethal doses consumed by third or fifth instars had little or no effect on subsequent developmental rate or pupal weight. Horizontal transmission of AgipMNPV in turfgrass plots was shown. Sprayed suspensions of AgipMNPV (5 x 10(8) - 6 x 10(9) OBs/m2) resulted in 75 to > 93% lethal infection of third or fourth instars in field plots of fairway-height creeping bentgrass, Agrostis stolonifera (Huds.), and on a golf course putting green collar. Virus spray residues (7 x 10(9) OBs/m2) allowed to weather on mowed and irrigated creeping bentgrass field plots significantly increased lethal infection of implanted larvae for at least 4 wk. This study, the first to evaluate a virus against a pest in turfgrass, suggests that AgipMNPV has potential as a preventive bioinsecticide targeting early instar black cutworms. Establishing a virus reservoir in the thatch and soil could suppress successive generations of that key pest on golf courses and sport fields.  相似文献   

10.
Black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), flight activity was monitored on three golf courses in Wisconsin by using two types of pheromone traps: the Texas cone trap and sticky wing trap. The Texas cone trap caught significantly more black cutworm males compared with the sticky wing trap, capturing almost 12-fold more males. Black cutworm males were most abundant during mid-July in 2001 and 2002, between 700 and 800 cumulative degree-days. Flight activity also was detected in early May and mid-August, but these peaks were not as pronounced as in mid-July. No definitive relationship between black cutworm flight activity and subsequent larval infestations on golf course putting greens occurred.  相似文献   

11.
Plant-parasitic nematodes are important pathogens of intensely-managed turf used on golf courses. Two of these nematodes that are common in the southeastern US are Belonolaimus longicaudatus and Mesocriconema ornata. Currently, there is a lack of effective treatments that can be used to manage these important pests. Turfgrass field trials evaluated DL-methionine as a turfgrass nematicide against B. longicaudatus and M. ornata. One trial was on a bermudagrass putting green, the other was on zoysiagrass maintained under putting-green conditions. Two rates of methionine, 1120 kg/ha in a single application, and 112 kg/ha applied twice four weeks apart, were compared with untreated control and fenamiphos treatments. Measurements collected included soil nematode counts, turf density, and root lengths. In both trials, 1120 kg/ha of methionine reduced numbers of both nematode species (P ≤ 0.1), and 112 kg/ha of methionine reduced numbers of both nematode species after two applications. Bermudagrass turf density responded favorably to both methionine rates and root lengths were improved by the 1120 kg/ha rate. Zoysiagrass showed short-term phytotoxicity to methionine, but quickly recovered and treated plots were improved compared to the untreated controls by the end of the trial. These trials indicated that methionine has potential for development as a turfgrass nematicide, but further research is needed to determine how it can best be used.  相似文献   

12.
Seasonal foraging activity and microhabitat selection by echidnas on the New England Tablelands was determined by monitoring the number and relative predominance of different types of digging activity on a 2 km × 50 m transect over a 12 month period. Digging was classified into four basic types: those into the soil surface (SOILDIGS); those at the base of logs, stumps or trees (LOGDIGS); those at the base of termite mounds; and those in the litter. SOILDIGS were most prevalent, accounting for 490 (74%) of the total 666 digging records. The number of SOILDIGS correlated with season and temperature, reaching a maximum of 11 ha?1 per month in late spring and a minimum of zero in winter. SOILDIGS were attributed to searches for ants and scarab beetle larvae. Approximately half of the SOILDIGS exposed ant nests or galleries, while the remainder were presumed to result from searches for the larvae of pasture dwelling scarab beetles, particularly Sericesthis spp. Scarab beetle larvae were absent from echidna scats collected during winter but occurred in 20% of scats collected during summer, LOGDIGS accounted for 157 digging records (24%) and were attributed to searches for ants and termites, LOGDIGS did not vary with season or climate, but the proportion of LOGDIGS that exposed ant or termite nests or galleries changed from 48% in winter to 5% in summer. The distribution and density of SOILDIGS and LOGDIGS along the transect correlated significantly with the availability of echidna shelter (or refuge) sites, in all seasons Some residual variation in digging activity was explained by the number and biomass of ants active on the soil surface, but not with any other direct or indirect measures of food availability. Seasonal changes in foraging activity by echidnas, and their apparent dependence on shelters, are interpreted in an energetic context as strategies for reducing predation and overcoming a period of increased energy demand and decreased food availability experienced during winter.  相似文献   

13.
The invasive Argentine ant, Linepithema humile (Mayr), has become a worldwide problem capable of inflicting significant ecological and economic injury on urban, agricultural, and natural environments. The mobility of this pest ant has long been noted, rapidly moving nests to new food resources and then away as resources are depleted. This ant, like many pest ant species, has a special affinity for honeydew excreted by phloem-feeding Hemiptera. We investigated the effect of various hemipteran control strategies on terrapin scale densities and measured their indirect effect on local Argentine ant densities and foraging effort. We then determined whether this indirect treatment strategy improved the performance of an ant bait. We predicted that Argentine ants would move nests away from trees treated for Hemiptera and then move nests back when a liquid bait was offered, followed by a decline in ant numbers due to intake of the toxicant. A horticultural oil spray and soil application of the systemic insecticide, imidacloprid, had no effect on terrapin scale numbers. However, trunk-injected dicrotophos caused a reduction in scale and a decline in local Argentine ant nest density and canopy foraging effort. We also recorded a reduction in local Argentine ant ground foraging when large amounts of liquid bait were applied, and we found no evidence that combining dicrotophos with liquid ant bait performed better than each treatment alone. We suggest that a strategy of combined hemipteran control plus application of liquid ant bait can reduce local Argentine ant densities, when both components of this system are highly efficacious.  相似文献   

14.
We determined the relationships between several soil variables and the distribution of leafcutter ant (Atta sexdens) nests on the Colombian shore of the Amazon River. Seven habitats were identified in which nests were consistently present or absent. Soil samples for physiochemical analysis were taken near nest sites in three habitats where nests were present and from randomly selected sites in four other habitats where nests were absent. Percent canopy cover and soil resistance were also measured for each site. Almost all of the 20 identified soil variables were significantly different between habitats with and without A. sexdens nests, and the values of all variables were heterogeneous between the seven habitats. The most important variables correlated with leafcutter ant nest presence were percent canopy cover (positively), percent silt, soil resistance at 0–20 cm, and pH (all negatively). We deduced a binomial and a multinomial logistic regression which showed how each of these variables was related to nest presence and habitat, respectively. We describe how each variable may affect leafcutter ant nest development, especially in its earliest stages, and therefore influences nest distribution. We propose a suitable-soil hypothesis which, complementary to the palatable forage hypothesis, aims to explain patterns in leafcutter ant nest demography based on soil conditions.  相似文献   

15.
The invasive Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae) has been evident in the North Carolina Piedmont, United States for 90 yr but has failed to spread further north. We investigated the mechanisms preventing this expansion. The Argentine ant ceases foraging at temperatures below 5°C and we hypothesized that winter soil temperatures at higher latitudes restricted foraging long enough to cause colony starvation. We tested if the Argentine ant could successfully feed at temperatures below 5°C and found that colonies would starve. We subjected Argentine ant nests to a range of sub- and above-freezing temperatures and measured worker mortality at various time intervals. We found that Argentine ant colonies will collapse after 8.5 d at 5°C. Argentine ants can escape ambient cold temperatures by moving nests into the soil column. We tested how deeply into the soil Argentine ant queens and workers need to move to survive winter in North Carolina. Soil temperatures in the North Carolina Piedmont do not fall below 5°C for longer than nine consecutive days; therefore, Argentine ant colonies need only to retreat a few centimeters into the soil column to escape unsuitable temperatures. Winter soil temperature data from four climate stations situated from latitudes 35°, the current Eastern United States latitudinal limit for Argentine ant population expansion, to 39° were searched for periods where soil temperatures would have led to colony extirpation. North of their current distributions, extended periods of soil temperatures below 5°C regularly occur, preventing Argentine ant colonies from persisting.  相似文献   

16.
The effect of Formica polyctena ant nests on the distribution of soil nutrients, soil pH and the growth of Norway spruce trees was studied in the southern part of the Czech Republic. Soil nutrient content (exchangeable P, N, K and pH) and growth of mature spruce trees were measured at four distances from the nearest ant hill (0–1, 3–5, 10–50 and >200 m). Trees at all distances were visited by ants, except for those >200 m from the nearest nest. Soil pH and of P, K and NO3 concentrations were higher near ant nests (<1 m), and pH and K at distances of 3–5 m, when compared with distances of 10–50 and >200 m from the nests, where no significant differences in these variables were detected. In contrast, tree ring analyses (1974–2004) showed that trees >200 m from the ant nests grew significantly faster than trees at other distances, followed by trees within 1 m of the nests. No growth differences were found between the growth of trees at 3–5 and 10–50 m from ant nests. We postulate that nutrient and carbohydrate removal of honeydew collected by ant‐tended aphids are slowing growth of tree. However, trees may partly compensate for this depletion by having access to a larger supply of soil nutrients near ant nests.  相似文献   

17.
Petr Dostl 《Flora》2005,200(2):148-158
The effect of three ant species (Lasius flavus, Formica spp., Tetramorium caespitum) on soil seed bank formation was studied in temperate mountain grassland. Seed removal experiments, analysis of soil seed content and seed survival experiments were carried out to evaluate the influence of ground ants on the seed fate. In the seed removal experiment seeds of 16 species, including 5 species with elaiosome-bearing seeds (myrmecochores), were exposed and their removal followed for 39 h. On average, ants removed 63.8% of myrmecochorous seeds and 10.9% of seeds without adaptation to ant dispersal. Analysis of soil seed content revealed that myrmecochores, in spite of expectations that they would accumulate in nests of seed dispersing ants, were most abundant in the soil of control plots. Evidence on seed relocation to the ant nests was obtained from a comparison of mounds of seed dispersing and seed non-dispersing ant species, as more seeds were found in the mounds of Formica spp. and Tetramorium caespitum (seed dispersers) in comparison with the mounds of Lasius favus (non-disperser).The soil seed bank of the compared microhabitats (control plots and mounds of 3 ant species) differed in their species composition, seed abundance and vertical distribution. The most distinct qualitative differences were between seed flora of control plots and mounds of Tetramorium caespitum. Control plots had approximately 30,000 propagules per m2, which was double the number of seeds found in the ant mounds. In control plots, abundance and diversity of seeds steeply declined with depth; this trend was not observed in the mounds probably due to bioturbation. In the seed survival experiment, more seeds (2 out of 3 species) survived in control plots, which may also contribute to the higher seed abundance in this microhabitat.This study showed that seed relocation by ants does not contribute significantly to seed bank build-up at this study site. Ants may, however, increase the regeneration success of myrmecochores, mainly by dispersal for distance and placement in a larger spectrum of microsites, in contrast to species not adapted for myrmecochory.  相似文献   

18.
A previously undocumented association between earthworms and red wood ants (Formicaaquilonia Yarr.) was found during an investigation of the influence of wood ants on the distribution and abundance of soil animals in boreal forest soil. Ant nest mounds and the surrounding soil of the ant territories were sampled. The ant nest mound surface (the uppermost 5-cm layer) harboured a much more abundant earthworm community than the surrounding soil; the biomass of the earthworms was about 7 times higher in the nests than in the soil. Dendrodrilusrubidus dominated the earthworm community in the nests, while in soils Dendrobaenaoctaedra was more abundant. Favorable temperature, moisture and pH (Ca content), together with abundant food supply (microbes and decomposing litter) are likely to make a nest mound a preferred habitat for earthworms, provided that they are not preyed upon by the ants. We also conducted laboratory experiments to study antipredation mechanisms of earthworms against ants. The experiments showed that earthworms do not escape predation by avoiding contact with ants in their nests. The earthworm mucus repelled the ants, suggesting a chemical defence against predation. Earthworms probably prevent the nest mounds from becoming overgrown by moulds and fungi, indicating possible mutualistic relationships between the earthworms and the ants. Received: 21 November 1996 / Accepted: 3 April 1997  相似文献   

19.
In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies. We used a split-plot design with natural enemy access as the main plot and ant attendance as the sub plot. We found that natural enemy access negatively affected aphid population density in the presence of tending ants, seen as a three- to four-fold increase in aphid density when natural enemies were excluded. In addition, we found that ant tending positively affected aphid biomass, both when natural enemies were given access to aphids or when natural enemies were excluded, seen by a two-fold increase in aphid biomass when ants tended aphids, both in the presence or absence of natural enemies. Biomass accumulation is seen as an important measurement for assessing aphid performance, and we argue that aphid-tending by ants can have an influence on natural field populations of soybean aphids. Agronomic practices that affect ant abundance in soybeans may influence the performance and hence pest outbreaks for this economically important pest.  相似文献   

20.
ABSTRACT: BACKGROUND: Mutualistic interactions are wide-spread but the mechanisms underlying their evolutionary stability and ecological dynamics remain poorly understood. Cultivation mutualisms in which hosts consume symbionts occur in phylogenetically diverse groups, but often have symbiont monocultures for each host. This is consistent with the prediction that symbionts should avoid coexistence with other strains so that host services continue to benefit relatives, but it is less clear whether hosts should always favor monocultures and what mechanisms they might have to manipulate symbiont diversity. Few mutualisms have been studied in sufficient genetic detail to address these issues, so we decided to characterize symbiont diversity in the complex mutualism between multiple root aphid species and Lasius flavus ants. After showing elsewhere that three of these aphid species have low dispersal and mostly if not exclusively asexual reproduction, we here investigate aphid diversity within and between ant nest mounds. RESULTS: The three focal species (Geoica utricularia, Forda marginata and Tetraneura ulmi) had considerable clonal diversity at the population level. Yet more than half of the ant mounds contained just a single aphid species, a significantly higher percentage than expected from a random distribution. Over 60% of these single-species mounds had a single aphid clone, and clones tended to persist across subsequent years. Whenever multiple species/clones cooccurred in the same mound, they were spatially separated with more than 95% of the aphid chambers containing individuals of a single clone. CONCLUSIONS: L. flavus "husbandry" is characterized by low aphid "livestock" diversity per colony, especially at the nest-chamber level, but it lacks the exclusive monocultures known from other cultivation mutualisms. The ants appear to eat most of the early instar aphids, so that adult aphids are unlikely to face limited phloem resources and scramble competition with other aphids. We suggest that such culling of carbohydrate-providing symbionts for protein ingestion may maintain maximal host yield per aphid while also benefitting the domesticated aphids as long as their clone-mates reproduce successfully. The cost-benefit logic of this type of polyculture husbandry has striking analogies with human farming practices based on slaughtering young animals for meat to maximize milk-production by a carefully regulated adult livestock population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号