首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Southeast Asia was almost entirely covered by rainforest 8,000 years ago. Today, this region is experiencing the highest relative rates of deforestation and forest degradation in the humid tropics. Every year, millions of hectares of tropical forests are destroyed and degraded. Given the rapid rate of deforestation and the high concentration of endemic species in the region, Southeast Asia could lose 13–42% of local populations by the turn of the next century, at least 50% of which could represent global species extinction. In this Special Issue, we discuss the uniqueness of Southeast Asian biodiversity, drivers of forest destruction, threats to the region’s unique ecosystems and taxa, and key conservation challenges to provide a broad-based review of the science, management and policy issues concerning biodiversity conservation. Overall, we highlight the need for an interdisciplinary and multi-pronged strategy requiring all major stakeholders to work together to achieve the ultimate goal of reconciling biodiversity conservation and human well-being in the region.  相似文献   

2.
Southeast Asia is a region of conservation concern due to heavy losses of its native habitats. In this overview, we highlight the conservation importance of Southeast Asia by comparing its degree of species endemism and endangerment, and its rate of deforestation with other tropical regions (i.e., Meso-America, South America, and Sub-Saharan Africa). Southeast Asia contains the highest mean proportion of country-endemic bird (9%) and mammal species (11%). This region also has the highest proportion of threatened vascular plant, reptile, bird, and mammal species. Furthermore, not only is Southeast Asia’s annual deforestation rate the highest in the tropics, but it has also increased between the periods 1990–2000 and 2000–2005. This could result in projected losses of 13–85% of biodiversity in the region by 2100. Secondary habitat restoration, at least in certain countries, would allow for some amelioration of biodiversity loss and thus potentially lower the currently predicted extinction rates. Nonetheless, urgent conservation actions are needed. Conservation initiatives should include public education, sustaining livelihoods, and ways to enhance the sustainability of agriculture and increase the capacity of conservation institutions. Furthermore, these actions should be country-specific and not ignore areas heavily populated by humans, as they can also harbour high numbers of threatened species. We urge that cooperative conservation initiatives be undertaken and support (e.g., capacity-building) be given by more developed countries in the region and beyond.  相似文献   

3.
Deforestation rates in insular Southeast Asia between 2000 and 2010   总被引:1,自引:0,他引:1  
Insular Southeast Asia experienced the highest level of deforestation among all humid tropical regions of the world during the 1990s. Owing to the exceptionally high biodiversity in Southeast Asian forest ecosystems and the immense amount of carbon stored in forested peatlands, deforestation in this region has the potential to cause serious global consequences. In this study, we analysed deforestation rates in insular Southeast Asia between 2000 and 2010 utilizing a pair of 250 m spatial resolution land cover maps produced with regional methodology and classification scheme. The results revealed an overall 1.0% yearly decline in forest cover in insular Southeast Asia (including the Indonesian part of New Guinea) with main change trajectories to plantations and secondary vegetation. Throughout the region, peat swamp forests experienced clearly the highest deforestation rates at an average annual rate of 2.2%, while lowland evergreen forests declined by 1.2%/yr. In addition, the analysis showed remarkable spatial variation in deforestation levels within the region and exposed two extreme concentration areas with over 5.0% annual forest loss: the eastern lowlands of Sumatra and the peatlands of Sarawak, Borneo. Both of these areas lost around half of their year 2000 peat swamp forest cover by 2010. As a whole this study has shown that deforestation has continued to take place on high level in insular Southeast Asia since the turn of the millennium. These on‐going changes not only endanger the existence of numerous forest species endemic to this region, but they further increase the elevated carbon emissions from deforested peatlands of insular Southeast Asia thereby directly contributing to the rising carbon dioxide concentration in the atmosphere.  相似文献   

4.
South and Southeast Asia (SSEA) has been a hotspot for land use and land cover change (LULCC) in the past few decades. The identification and quantification of the drivers of LULCC are crucial for improving our understanding of LULCC trends. So far, the biophysical and socioeconomic drivers of forest change have not been quantified at the regional scale, particularly for SSEA. In this study, we quantify the biophysical and socioeconomic drivers of forest change on a country‐by‐country basis in SSEA using an integrated quantitative methodology, which systematically accounts for previously published driver information and regional datasets. We synthesize more than 200 publications to identify the drivers of the forest change at different spatial scales in SSEA. Subsequently, we collect spatially explicit proxy data to represent the identified drivers. We quantify the dynamics of forest and agricultural land from 1992 to 2015 using the Climate Change Initiative (CCI) land cover data developed by the European Space Agency (ESA). A geographically weighted regression method is employed to quantify the spatially heterogeneous drivers of forest change. Our results show that socioeconomic drivers are more important than biophysical drivers for the conversion of forest to agricultural land in South Asia and maritime Southeast Asia. In contrast, biophysical drivers are more important than socioeconomic drivers for the conversion of agricultural land to forest in maritime Southeast Asia and less important in South Asia. Both biophysical and socioeconomic drivers contribute approximately equally to both changes in the mainland Southeast Asia region. By quantifying the dynamics of forest and agricultural land and the spatially explicit drivers of their changes in SSEA, this study provides a solid foundation for LULCC modeling and projection.  相似文献   

5.
Viewed within a historical context, Asia has experienced dramatic land transformations, and currently more than 50% of Asian land area is under agriculture. The consequences of this transformation are manifold. Southeast Asia has the highest deforestation rate of any major tropical region. Many of the world’s large rivers and lakes in Asia have been heavily degraded. About 11 of 19 world megacities with more than 10 million inhabitants are in Asia. These land use activities have resulted in substantial negative ecological consequences, including increased anthropogenic CO2 emissions, deteriorated air and water quality, alteration of regional climate, an increase of disease and a loss of biodiversity. Although land use occurs at the local level, it has the potential to cause ecological impact across local, regional and global scales. Reducing the negative environmental impacts of land use change while maintaining economic viability and social acceptability is an major challenge for most developing countries in Asia.  相似文献   

6.
This review deals with alien species invasion in Southeast Asia, an important conservation and management concern in the region. I report on the current and potential future impacts of biological invasions on biodiversity in Southeast Asia. Current knowledge of the invasive species in Southeast Asia is mostly based on anecdotal observations. Nevertheless, I attempt to compile existing empirical evidence on the negative effects of the biological invaders found in the region. These impacts include displacement of native biota, modification of ecosystems, hybridization, environmental disturbance, and economic loss. Any effective counter-measure will need to involve a multi-national strategy, yet such measure is challenging due to a broad spectrum of political and economic development models among the Southeast Asian countries. An overview of the taxonomic structure of the invasive species in Southeast Asia shows that the invasive plant and fish are the most represented taxonomic groups in all countries. The current research effort in invasion ecology from Southeast Asia is not being up to international standard in comparison to other regions, and the absence of recent international journal articles on invasive plant species reveals the biases in biological invasion-related research. The lack of research capacity and financial support from governments, and the inability to disseminate scholarly data in international journals are the possible reasons for the dearth of research literature on biological invasions from the region. Finally, a forward-looking agenda for the region should include improving the quality and quantity of biological invasion research; adopting a tough approach to the illegal release of wildlife; and applying multi-national strategies that integrate data sharing, prioritization, public awareness, policy work, capacity building, conservation actions and surveillance.  相似文献   

7.
The region of Tropical Southeast Asia and the Malay Archipelago is a very appealing area for research due to its outstanding biodiversity, being one of the most species-rich areas in the world with high levels of endemism, and due to its complex geological history. The high number of species in tribe Dissochaeteae (Melastomataceae) and their tendency to narrow endemism makethe tribe an ideal group for examining biogeographic patterns. We sampled 58 accessions spread over 42 accepted and two undescribed species of the Dissochaeteae. Two nuclear (ETS, ITS) and four chloroplast regions (ndhF, psbK-psbL, rbcL, rpl16) were used for divergence time estimation and ancestral area reconstruction. Results from the molecular dating analysis suggest that the diversity of Dissochaeteae in the Southeast Asian region resulted from a South American ancestor in the late Eocene. The ancestor of the Dissochaeteae might have migrated from South America to Southeast Asia via North America and then entered Eurasia over the North Atlantic land bridge during the Eocene. The origin and early diversification of the Dissochaeteae in Southeast Asia dates back to the middle Oligocene, and most of the genera originated during the Miocene. Indochina and Borneo are most likely the area of origin for the most recent common ancestor of the Dissochaeteae and for many of the early diverging clades of some genera within Southeast Asia.  相似文献   

8.
A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685-1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (ND1, ND2, and COI) are combined with sequences from eight intervening tRNA genes for samples of 70 acrodont taxa and two outgroups. Parsimony analysis of nucleotide sequences identifies eight major clades in the Acrodonta. Most agamid lizards are placed into three distinct clades. One clade is composed of all taxa occurring in Australia and New Guinea; Physignathus cocincinus from Southeast Asia is the sister taxon to the Australia-New Guinea clade. A second clade is composed of taxa occurring from Tibet and the Indian Subcontinent east through South and East Asia. A third clade is composed of taxa occurring from Africa east through Arabia and West Asia to Tibet and the Indian Subcontinent. These three clades contain all agamid lizards except Uromastyx, Leiolepis, and Hydrosaurus, which represent three additional clades of the Agamidae. The Chamaeleonidae forms another clade weakly supported as the sister taxon to the Agamidae. All eight clades of the Acrodonta contain members occurring on land masses derived from Gondwanaland. A hypothesis of agamid lizards rafting with Gondwanan plates is examined statistically. This hypothesis suggests that the African/West Asian clade is of African or Indian origin, and the South Asian clade is either of Indian or Southeast Asian origin. The shortest tree suggests a possible African origin for the former and an Indian origin for the latter, but this result is not statistically robust. The Australia-New Guinea clade rafted with the Australia-New Guinea plate and forms the sister group to a Southeast Asian taxon that occurs on plates that broke from northern Australia-New Guinea. Other acrodont taxa are inferred to be associated with the plates of Afro-Arabia and Madagascar (Chameleonidae), India (Uromastyx), or southeast Asia (Hydrosaurus and Leiolepis). Introduction of different biotic elements to Asia by way of separate Gondwanan plates may be a major theme of Asian biogeography. Three historical events may be responsible for the sharp faunal barrier between Southeast Asia and Australia-New Guinea, known as Wallace's line: (1) primary vicariance caused by plate separations; (2) secondary contact of Southeast Asian plates with Eurasia, leading to dispersal from Eurasia into Southeast Asia, and (3) dispersal of the Indian fauna (after collision of that subcontinent) to Southeast Asia. Acrodont lizards show the first and third of these biogeographic patterns and anguid lizards exhibit the second pattern. Modern faunal diversity may be influenced primarily by historical events such as tectonic collisions and land bridge connections, which are expected to promote episodic turnover of continental faunas by introducing new faunal elements into an area. Repeated tectonic collisions may be one of the most important phenomena promoting continental biodiversity. Phylogenetics is a powerful method for investigating these processes.  相似文献   

9.
How will oil palm expansion affect biodiversity?   总被引:5,自引:0,他引:5  
Oil palm is one of the world's most rapidly increasing crops. We assess its contribution to tropical deforestation and review its biodiversity value. Oil palm has replaced large areas of forest in Southeast Asia, but land-cover change statistics alone do not allow an assessment of where it has driven forest clearance and where it has simply followed it. Oil palm plantations support much fewer species than do forests and often also fewer than other tree crops. Further negative impacts include habitat fragmentation and pollution, including greenhouse gas emissions. With rising demand for vegetable oils and biofuels, and strong overlap between areas suitable for oil palm and those of most importance for biodiversity, substantial biodiversity losses will only be averted if future oil palm expansion is managed to avoid deforestation.  相似文献   

10.
Northeast India, the only region which currently forms a land bridge between the Indian subcontinent and Southeast Asia, has been proposed as an important corridor for the initial peopling of East Asia. Given that the Austro-Asiatic linguistic family is considered to be the oldest and spoken by certain tribes in India, Northeast India and entire Southeast Asia, we expect that populations of this family from Northeast India should provide the signatures of genetic link between Indian and Southeast Asian populations. In order to test this hypothesis, we analyzed mtDNA and Y-Chromosome SNP and STR data of the eight groups of the Austro-Asiatic Khasi from Northeast India and the neighboring Garo and compared with that of other relevant Asian populations. The results suggest that the Austro-Asiatic Khasi tribes of Northeast India represent a genetic continuity between the populations of South and Southeast Asia, thereby advocating that northeast India could have been a major corridor for the movement of populations from India to East/Southeast Asia.  相似文献   

11.
Oil-palm agriculture is the greatest immediate threat to biodiversity in Southeast Asia. Despite the efforts of environmentalists, oil palm continues to expand across the tropics. Those concerned about the impacts of oil palm on biodiversity must face some harsh social, economic, and ecological realities: (i) oil palm has been a very profitable crop; (ii) palm oil is used in so many products that simple, direct actions, such as boycotts, are unlikely to succeed; (iii) there is currently insufficient demand for certified sustainable palm oil and inadequate political clout from environmental groups in two of the biggest markets for palm oil—China and India—to slow the rate of forest conversion; and (iv) oil-palm agriculture has improved the lives of poor rural communities in Southeast Asia (although it has also disenfranchised some indigenous communities). To address the threats posed by oil-palm agriculture to biodiversity, environmentalists must change the behavior of the palm oil business through: (i) regulations to curb undesirable activities (e.g., a ban on converting forests to oil palm); (ii) financial incentives to promote desirable behavior (e.g., production of certified, sustainable oil palm); (iii) financial disincentives designed to discourage undesirable behavior (e.g., consumer pressure on major manufacturers and retailers to use palm oil that does not come from plantations created at the expense of forests); and (iv) the promotion of alternative, more biodiversity-friendly uses of forested land that might otherwise be converted to oil palm. There is no single best approach for dealing with the oil-palm crisis in Southeast Asia; a mixture of regulations, incentives, and disincentives targeted at all sectors of the oil-palm industry is necessary to protect the region’s rapidly disappearing forests.  相似文献   

12.

Background  

The faunal and floral relationship of northward-drifting India with its neighboring continents is of general biogeographic interest as an important driver of regional biodiversity. However, direct biogeographic connectivity of India and Southeast Asia during the Cenozoic remains largely unexplored. We investigate timing, direction and mechanisms of faunal exchange between India and Southeast Asia, based on a molecular phylogeny, molecular clock-derived time estimates and biogeographic reconstructions of the Asian freshwater crab family Gecarcinucidae.  相似文献   

13.
Root-associated fungi, including ectomycorrhizal and root-endophytic fungi, are among the most diverse and important belowground plant symbionts in dipterocarp rainforests. Our study aimed to reveal the biodiversity, host association, and community structure of ectomycorrhizal Basidiomycota and root-associated Ascomycota (including root-endophytic Ascomycota) in a lowland dipterocarp rainforest in Southeast Asia. The host plant chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) region and fungal internal transcribed spacer 2 (ITS2) region were sequenced using tag-encoded, massively parallel 454 pyrosequencing to identify host plant and root-associated fungal taxa in root samples. In total, 1245 ascomycetous and 127 putative ectomycorrhizal basidiomycetous taxa were detected from 442 root samples. The putative ectomycorrhizal Basidiomycota were likely to be associated with closely related dipterocarp taxa to greater or lesser extents, whereas host association patterns of the root-associated Ascomycota were much less distinct. The community structure of the putative ectomycorrhizal Basidiomycota was possibly more influenced by host genetic distances than was that of the root-associated Ascomycota. This study also indicated that in dipterocarp rainforests, root-associated Ascomycota were characterized by high biodiversity and indistinct host association patterns, whereas ectomycorrhizal Basidiomycota showed less biodiversity and a strong host phylogenetic preference for dipterocarp trees. Our findings lead to the working hypothesis that root-associated Ascomycota, which might be mainly represented by root-endophytic fungi, have biodiversity hotspots in the tropics, whereas biodiversity of ectomycorrhizal Basidiomycota increases with host genetic diversity.  相似文献   

14.
The lowland dipterocarp forests of Southeast Asia support a substantial proportion of the world’s biodiversity. They are of considerable environmental and economic value at the local, regional and global scale, providing many goods and services to a growing population. The forests of this region are among the fastest disappearing in the world and restoration is urgently required. This paper provides a review of the ecological constraints to restoration of lowland dipterocarp forest in Southeast Asia. It focuses on the production of planting stock, the significance of site-species matching and post-planting site maintenance. It identifies gaps in our knowledge and highlights priority areas of research. Adopting a long-term view is essential for restoring as well as conserving the dipterocarp forests of Southeast Asia. An immediate strategy for the conservation and management of dwindling genetic resources of these important timber species is essential. This will provide the foundations for sourcing seed and production of planting material for longer term restoration. The importance of species-site matching, mycorrhizal fungi and post-planting maintenance for restoration are apparent. Financing is a major limiting factor to dipterocarp forest restoration. Trading in carbon, private finance and environmental markets afford considerable opportunities for restoring these forests providing their total value is recognised. Despite the wealth of ecological knowledge we already have for scientifically-informed forest restoration, without the backing of governments and corporate stakeholders, forest restoration will not gain the urgently required momentum.  相似文献   

15.
Mitochondrial DNA D-loop (control) region (426-bp) was used to infer the genetic structure of Spanish mackerel (Scomberomorus commerson) from populations in Southeast Asia (Brunei, East and West Malaysia, Philippines, Thailand, Singapore, and China) and northern Australia (including western Timor). An east–west division along Wallace’s Line was strongly supported by a significant AMOVA, with 43% of the total sequence variation partitioned among groups of populations. Phylogenetic and network analyses supported two clades: clade A and clade B. Members of clade A were found in Southeast Asia and northern Australia, but not in locations to the west (Gulf of Thailand) or north (China). Clade B was found exclusively in Southeast Asia. Genetic division along Wallace’s Line suggests that co-management of S. commerson populations for future sustainability may not be necessary between Southeast Asian nations and Australia, however all countries should share the task of management of the species in Southeast Asia equally. More detailed genetic studies of S. commerson populations in the region are warranted.  相似文献   

16.
The relationship between the areas of Southeast Asia and the West Pacific region is still debated because of their complex historical geology and the enormous diversity of taxa. Cladistic methods have previously been used to reconstruct the relationships between areas in the region but never with such a high number of unrelated taxa (35). We use a compilation of phylogenies to investigate area relationships among Southeast Asia and the West Pacific region, run the comparative analysis with LisBeth [based on three‐item analyses (3ia)] and compare the results with recently published geological reconstructions of the region. We discuss the relevance of such an approach to the interpretation of general pattern. The two questions addressed are: (1) is there an emerging common pattern; and (2) how to explain actual distributions of taxa in Southeast Asia and the West Pacific region. Three‐item analysis found 27 optimal trees. An intersection tree reconstructed from the common three‐area statements had an overall retention index of 84.8% and retrieved 13 nodes with two major branches compatible with a separation between Southeast Asia and the West Pacific region (i.e. congruent with some geological reconstructions). Any congruent patterns revealed by the combination of unrelated taxa should reflect a common cause. The extraction of information on area relationships contained in phylogenetic analyses of taxa consists of testing for area homologues. We obtained the tree from this region based on an empirical dataset which we hope will contribute to new insights into area classification in the region.  相似文献   

17.
中国滇南-东南亚跨境动物多样性监测平台由中国科学院西双版纳热带植物园“动物行为与环境变化研究组”和中国科学院东南亚生物多样性研究中心“动物多样性与保护研究组”共建共管。平台始建于2012年6月, 覆盖的区域包括中国滇南和东南亚邻国, 致力于完善滇南和东南亚地区生物多样性本底资料, 了解重点保护动物的分布、种群大小、保护现状, 提出保护建议并制定保护方案。截至2019年9月, 在国内外22个监测点(包括保护区内、外)共布设了1,493个红外相机位点, 收回了国内外部分监测点照片。现已鉴定国内纳板河(2012-2016)、勐腊(2014-2019)、勐仑(2015-2019)和尚勇(2018-2019) 289个有效位点的718,995张照片, 调查工作量97,444个相机日, 记录到兽类48种, 鸟类80种。国外收回红外相机照片的鉴定工作正在推进。基于平台, 我们取得了一些重要成果, 例如: 报道了中国西南地区野猪(Sus scrofa)的种群生态, 发现了纳板河北豚尾猴(Macaca leonina)和猕猴(M. mulatta)的时空生态位分化, 结合分子生物学证据对麂属(Muntiacus)、斑羚属(Naemorhedus)、比氏鼯鼠属(Biswamoyopterus)进行了分类修订等。后续将在现有基础上扩大监测范围, 在国内与更多滇南保护区开展合作, 国外与更多东南亚国家合作。  相似文献   

18.
The Asian scimitar babblers, including the genus Pomatorhinus and Xiphirhynchus, are a small group of babblers characterized by long down-curved bills and a distribution throughout East and Southeast Asia. To infer the molecular phylogeny of this group and their divergence time, we examined sequences of multiple fragments including two entire mitochondrial genes and four nuclear introns (4352 bp in total) from multiple samples of eight of the nine recognized species of Asian scimitar babblers. The phylogeny resulting from the concatenated multi-locus dataset suggests that Pomatorhinus is paraphyletic. Due to its paraphyly, we propose dividing the traditional genus Pomatorhinus into two morphologically and genetically diagnosable genera: Pomatorhinus and Erythrogenys. Results of the molecular dating based on the conventional mitochondrial DNA divergence rate indicates that the diversification of these babblers is likely congruent with the historical climatic events. Our findings shed light on the diversification of avian species in southern Asia, a poorly studied biodiversity hotspot.  相似文献   

19.
Pollutants, originating from both land and sea, are responsible for significant lethal and sub-lethal effects on marine life. Pollution impacts all trophic levels, from primary producers to apex predators, and thus interferes with the structure of marine communities and consequently ecosystem functioning. Here we review the effects of sediments, eutrophication, toxics and marine litter. All are presently major concerns in Southeast Asia (SE Asia) and there is little indication that the situation is improving. Approximately 70% of SE Asia’s human population lives in coastal areas and intensive farming and aquaculture, rapid urbanization and industrialisation, greater shipping traffic and fishing effort, as well as widespread deforestation and nearshore development, are contributing towards the pollution problem. As SE Asia encompasses approximately 34% of the world’s reefs and between a quarter and a third of the world’s mangroves, as well as the global biodiversity triangle formed by the Malay Peninsular, the Philippines, and New Guinea, the need to reduce the impacts of marine pollution in this region is all the more critical.  相似文献   

20.
张哲  任明迅  向文倩  宋希强 《广西植物》2021,41(10):1683-1698
兰科(Orchidaceae)植物广布于除两极和极端沙漠地区外的各种陆地生态系统,包括5个亚科800多属28 000多种。东南亚地区兰科植物种数约占世界的1/3,是兰科植物生物多样性热点区域之一。通过查阅文献及书籍等资料,该文系统整理了东南亚兰科植物物种种类及其扩散演化历史,并对其生活习性和传粉系统进行了归类。结果表明:(1)东南亚兰科植物8 855种,分属5亚科17族26亚族240属;(2)主要生活型为附生的有127属6 000种以上,地生97属2 000种以上,腐生13属约100种,藤本4属40余种;(3)根据整理出的东南亚79个属的兰科植物传粉系统发现,有44个属含有自动自交的物种,具报酬物的传粉系统有花粉(仅见于拟兰亚科)、芳香类物质(仅见于香荚兰亚科)和花蜜(5个亚科均有)等报酬物类型。欺骗性传粉系统广泛存在于各个亚科,包括食源性欺骗、性拟态、繁殖地拟态和信息素拟态等类型。东南亚兰科植物在物种、生活习性及传粉系统都展现出极高的多样性,对这些生物学特点的总结将为兰科植物的保育提供一定的理论基础和本底资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号