首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of K+, Na+, Mg2+ and ATP on the p-nitrophenylphosphatase activity was investigated. As an enzyme preparation a microsomal fraction of sheep lymphocytes was used. Low concentrations of Mg2+, K+ and Na+ increased, whereas high concentrations decreased the enzyme activity. There was an inhibition of activity by ATP without Na+ in the incubation medium and an increase of enzyme activity at low K:Na-ratio. By concanavalin A in a concentration of 15 mug/ml the p-nitrophenylphosphatase activity was increased in intact cells and the microsomal fraction for 30-40%. The activation was not Na+, K+, Mg2+, p-nitrophenylphosphate or ATP dependent.  相似文献   

2.
The (Na+ +K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble form depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na+ +K+)-ATPase in its pH optimum being around 7.0, showing optimal activity at Mg2+:ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM. Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 degrees C, with activation energy (Ea) values of 13-15 kcal/mol above this temperature and 30-35 kcal below it. A further discontinuity was also found at 8.0 degrees C and the Ea below this was very high (greater than 100 kcal/mol). Increased Mg2+ concentrations at Mg2+:ATP ratios in excess of 1:1 inhibited the (Na+ +K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots. The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na+ +K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20 degrees C and Ea values of 22 and 68 kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 degrees C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km values for ATP. Since both cholesterol and Mg2+ are known to alter the effects of temperature on the fluidity of phospholipids, the above results are discussed in this context.  相似文献   

3.
The effect of pH and of ATP on the Na : K selectivity of the (Na+ + K+)-ATPase has been tested under equilibrium conditions. The Na+ : K+-induced change in intrinsic tryptophan fluorescence and in fluorescence of eosin maleimide bound to the system has been used as a tool. 1 mol of eosin maleimide per mol of enzyme gives no loss in either ATPase or phosphatase activity and the fluorescence in the presence of Na+ is about 30% higher than in the presence of K+. Choline, protonated Tris, protonated histidine and Mg2+ have an 'Na+' effect on the extrinsic fluorescence, while Rb+, Cs+ and NH4+ have a 'K+' effect. Choline and protonated Tris have an Na+ effect on intrinsic fluorescence. A close correlation between the effect of Na+ compared to K+ on the fluorescence change and on Na+ activation of hydrolysis indicates that the observed changes in fluorescence are due to an effect of Na+ and of K+ on the internal sites of the system. The equilibrium between the two conformations, which are reflected by the difference in fluorescence with Na+ and K+, respectively, is highly influenced by the concentration of protons. At a given Na+ : K+ ratio, an increase in the proton concentration shifts the equilibrium towards the 'K+' fluorescence form while a decrease shifts the equilibrium towards the 'Na+' fluorescence form, i.e., protons increase the apparent affinity for K+ and vice versa, K+ increases pK values of importance for the Na+ : K+ selectivity. Conversely, a decrease in protons increases the apparent affinity for Na+ and vice versa, Na+ decreases the pK. ATP decreases the apparent pK for the protonation-deprotonation, i.e., ATP facilitates the deprotonation which accompanies Na+ binding. The results suggest two effects of ATP for the hydrolysis in the presence of Na+ and K+ : (i) at low ATP concentrations (K0.5 < 10 microM) on the K+-Na+ exchange on the internal sites and (ii) at higher, substrate, concentrations on the activation by K+ on the external sites.  相似文献   

4.
Decreasing the K+ concentration of the medium from 5 mM to 0.59 mM decreased the K+ content of chick embryo fibroblasts to 22% of control values and increased the Na+ content to 820% of control values. The alteration of monovalent cation content occurred within two hours but had no effect on the rate of DNA synthesis, as measured by 3H-thymidine incorporation, for at least 16 hours. By decreasing the Na+ concentration in the medium, a 50% reduction in cellular Na+ could be obtained with no effect on thymidine incorporation. Since these changes in cellular Na+ or K+ are much larger than any known to occur under physiological conditions but have no effect on thymidine incorporation, we conclude that Na+ and K+ do not play a critical role in determining multiplication rate. Addition of 1.8 mEGTA to cells in media containing 1.7 mM Ca2+ and 0.8 mM Mg2+ inhibited thymidine incorporation and sharply decreased cellular K+ and increased cellular Na+ content. However, there was no reduction in total cellular Ca2+ levels. Likewise, decreasing the Ca2+ concentration of the medium below 0.01 mM inhibited thymidine incorporation, decreased cellular K+ and Mg2+, and increased cellular Na+ but did not affect total cellular Ca2+ levels. Inhibition of DNA synthesis, therefore, could not be correlated with changes in cellular Ca2+ levels.  相似文献   

5.
L C Cantley  L Josephson 《Biochemistry》1976,15(24):5280-5287
We have examined slow changes in the rate of ATP hydrolysis for purified dog kidney Na+ and K+ stimulated adenosine triphosphatase [(Na-K)ATPase] at various concentrations of free Mg2+, Mg-ATP, K+, and Na+. The effect of these ligands on the rate of ATP hydrolysis is explained by a rapid binding step determining the initial rate of turnover followed by a slow conformational change. Inactivation of enzyme stored in the presence of ethylenediaminetetraacetic acid occurs upon adding free Mg2+, Mg-ATP, and K+; reactivation may be achieved if the concentration of these ligands is reduced. Because of the slow conformational change, the affinities for ligands affecting inactivation are time dependent. A model is presented to explain the effects of free Mg2+ and Ma-ATP on (Na-K)ATPase activity.  相似文献   

6.
The plasma membrane/mitochondrial fractions of Penaeus indicus postlarvae contain Mg2+-dependent ATPase, Na+,K+-stimulated ATPase, Na+-stimulated ATPase and K+-stimulated ATPase. The Na+,K+-activated, Mg2+-dependent ATPase was investigated further in relation to different pH and temperature conditions, and at various concentrations of protein, ouabain, ATP and ions in the incubation medium. In vitro and in vivo effects of lead were studied on the enzyme activity. In vitro lead inhibited the enzyme activity in a concentration-dependent manner with an IC50 value of 204.4 microM. In correlation with in vitro studies, in vivo investigations (both concentration and time dependent) of lead also indicated a gradual inhibition in enzyme activity. A maximum decrease of 85.3% was observed at LC50 (7.2 ppm) of lead for concentration-dependent experiments. In time-dependent studies, the decrease was maximal (81.7%) at 30 days of sublethal exposure (1.44 ppm). In addition, the substrate- and ion-dependent kinetics of Na+,K+-ATPase was studied in relation to in vitro exposure of lead; these studies suggest a non-competitive type of inhibition.  相似文献   

7.
The relation between the rates of ATP-dependent Ca2+ uptake and ATP hydrolysis was studied in homogenates of eggshell gland mucosa and its subcellular fractions from the domestic fowl and duck. The Ca2+-Mg2+-ATPase activity was 5-10% of that of the "basal" Mg2+-ATPase at an optimal Ca2+ concentration in the subfractions. The presence of K+ and/or Na+ increased the rate of Ca2+ uptake and the Ca2+-Mg2+-ATPase activity; the effects of K+-Na+ were not inhibited by ouabain. The Ca/P ratio varied with the experimental conditions. At 10(-4) M Ca2+ and in the absence of K+ Na+ it was 0.8, and in their presence 0.4.  相似文献   

8.
The hydrolysis of ATP catalyzed by purified (Na,K)-ATPase from pig kidney was more sensitive to Mg2+ inhibition when measured in the presence of saturating Na+ and K+ concentrations [(Na,K)-ATPase] than in the presence of Na+ alone, either at saturating [(Na,Na)-ATPase] or limiting [(Na,0)-ATPase] Na+ concentrations. This was observed at two extreme concentrations of ATP (3 mM where the low-affinity site is involved and 3 microM where only the catalytic site is relevant), although Mg2+ inhibition was higher at low ATP concentration. In the case of (Na,Na)-ATPase activity, inhibition was barely observed even at 10 mM free Mg2+ when ATP was 3 mM. When (Na,K)-ATPase activity was measured at different fixed K+ concentrations the apparent Ki for Mg2+ inhibition was lower at higher monovalent cation concentration. When K+ was replaced by its congeners (Rb+, NH+4, Li+), Mg2+ inhibition was more pronounced in those cases in which the dephosphorylating cation forms a tighter enzyme-cation complex after dephosphorylation. This effect was independent of the ATP concentration, although inhibition was more marked at lower ATP for all the dephosphorylating cations. The K0.5 for ATP activation at its low-affinity site, when measured in the presence of different dephosphorylating cations, increased following the sequence Rb+ greater than K+ greater than NH+4 greater than Li+ greater than none. The K0.5 values were lower with 0.05 mM than with 10 mM free Mg2+ but the order was not modified. The trypsin inactivation pattern of (Na,K)-ATPase indicated that Mg2+ kept the enzyme in an E1 state. Addition of K+ changed the inactivation into that observed with the E2 enzyme form. On the other hand, K+ kept the enzyme in an E2 state and addition of Mg2+ changed it to an E1 form. The K0.5 for KCl-induced E1-to-E2 transformation (observed by trypsin inactivation profile) in the presence of 3 mM MgCl2 was about 0.9 mM. These results concur with two mechanisms for free Mg2+ inhibition of (Na,K)-ATPase: "product" and dead-end. The first would result from Mg2+ interaction with the enzyme in the E2(K) occluded state whereas the second would be brought about by a Mg2+-enzyme complex with the enzyme in an E1 state.  相似文献   

9.
A detailed steady-state kinetic investigation of the hydrolysis of ATP catalyzed by (Na+ + K+)-ATPase is reported. The activity was studied in the presence of (i) Na+ (130 mM), K+ (20 mM) and micromolar ATP concentrations and Na+ (150 mM) the ('Na+-enzyme'). The data obtained lead to the following results: 1. The action of each enzyme may be described by a simple kinetic mechanism with one (Na+-enzyme) or two ((Na+ + K+)-enzyme) dead-end Mg complexes. 2. For both enzymes, both MgATP and free ATP are substrates, with Mg2+, in the latter case, as the second substrate. 3. For each enzyme, the complete set of kinetic constants (seven for the Na+-enzyme, eight for the (Na+ + K+)-enzyme) are determined from the data. 4. For each enzyme it is shown that, in the alternate substrate mechanism obtained, the ratio of net steady-state flux along the 'MgATP pathway' to that of the 'ATP-Mg pathway' increases linearly with the concentration of free Mg2+. The parameters of this function are determined from the data. As a result of this, at high (greater than 3 mM) free Mg2+ concentrations the alternate substrate mechanism degenerates into a 'limiting' kinetic mechanism, with MgATP as the (essentially) sole substrate, and Mg2+ as an uncompetitive (Na+-enzyme) or non-competitive ((Na+ + K+)-enzyme) inhibitor.  相似文献   

10.
A gradual increase in the concentration of Ca2+ from anterior to the posterior region was observed when mono- and divalent cations were estimated in different segments of the epididymis in wall lizard. Na+ and K+ levels increased from anterior to middle segment but declined significantly in the posterior segment. However, no significant difference in the levels of Mg2+ was observed in various segments. To study the influence of mono- and divalent cations on sperm motility in vitro, the spermatozoa from posterior region of the epididymis were incubated in medium with varying concentrations of Na+, K+, Ca2+ and Mg2+. Spermatozoa were non-motile when suspended in Na+-free medium. Addition of NaCl induced the acquisition of sperm motility in a concentration-dependent manner. Further, amiloride, a Na+-influx blocker, markedly reduced the Na+-induced forward progressive motility. Unlike Na+, the presence of K+ or Ca2+ in the incubation medium reduced the motility of spermatozoa even at very low concentrations. The inhibitory effect of Ca2+ decreased when nifedipine, a Ca2+-influx blocker, was added to the medium. Mg2+ at high concentrations only was able to reduce the forward progressive motility.  相似文献   

11.
Passive redistributions of Mg2+ and K+ ions across the thylakoid membranes, occurring in association with the light-driven electrogenic influx of hydrogen ions have been examined in suspensions of broken spinach chloroplasts under a variety of conditions. (i) In accord with results of Hind el al. (Proc. Natl. Acad. Sci. U.S. (1974) 71, 1484), it was found that at a low K/Mg concentration ratio in the medium, the K-efflux is negligibly small, whereas a substantial Mg-efflux is observed. The converse is true when the K/Mg concentration ratio in the medium is high. (ii) In the presence of A23187, which was found to cause approximately a 60% inhibition of the light-induced pH-gradient, a significant influx of Mg2+ was observed in the light at a high K/Mg concentration ratio. Conversely the Mg-influx was small in the presence of A23187 when the K/Mg concentration ratio in the medium was low. Under these conditions, the Mg-influx was considerably increased upon the addition of valinomycin. A23187 was found not to affect the K-efflux in the light. (iii) The light-induced K-influx observed in the presence of nigericin also was found to be dependent on the concentration ratio of the monovalent and divalent cation. Its magnitude increased upon an increase in the K/Mg ratio. The results are interpreted in terms of a simplified model in which the total passive efflux of cations, driven by the potential set by the electrogenic proton pump, is considered to be a constant fraction of the proton influx. According to this, an increase in the flux of an ion species, induced either by raising its concentration, or by increasing its permeability through the membrane, will cause a decrease in the flux of the other cations. The relevance of the results is discussed with respect to conclusions about the involvement and relative magnitudes of the passive K and Mg effluxes across the thylakoid membrane during energization of intact chloroplasts and chloroplasts in situ.  相似文献   

12.
The ATP hydrolysis rate and the ADP-ATP exchange rate of (Na+ + K+)-ATPase from ox brain were measured at 10 microM Mg2+free and at micromolar concentrations of free ATP and ADP. (1) In the absence of K+, substrate inhibition of the hydrolysis rate was observed. It disappeared at low Na+ and diminished at increasing concentrations of ADP. This was interpreted in terms of free ATP binding to E1P. In support of this interpretation, free ATP was found to competitively inhibit ADP-ATP exchange. (2) In the presence of K+, substrate activation of the hydrolysis rate was observed. Increasing (microM) concentrations of ADP did not give rise to competitive inhibition in contrast to the situation in the absence of K+ (cf. 1, above). This was interpreted to show that at micromolar substrate, some low-affinity, high-turnover Na+ + K+ activity is possible, provided the Mg2+ concentration is low. (3) While small concentrations of K+ increased the hydrolysis rate (cf. 2) they decreased the rate of ADP-ATP exchange. To elucidate this phenomenon, parallel measurements of exchange and hydrolysis rates were performed over a wide range of ATP and ADP concentrations, with and without K+. If, in the presence and absence of K+, ADP (and ATP competing) are binding to the same phosphorylated intermediate for the backward reaction, it places quantitative restrictions on the ratio of rate constants with and without K+. The results did not conform to these restrictions, and the discrepancy is taken as evidence for the necessity for a bicyclic scheme for the action of the (Na+ + K+)-ATPase. (4) An earlier statement concerning the nature of the phosphoenzyme obtained in the presence of Na+ and K+ is amended.  相似文献   

13.
为探讨藻细胞复苏过程中环境因子的作用及其细胞生理特性的变化,在连续升高温度条件下,比较了在不同N:P值的培养基中复苏藻细胞的丰度、藻群落组成动态、藻光合活性变化,同时检测了这一过程中藻细胞中Na+K+-ATPase和Ca2+Mg2+-ATPase活性的变化。结果表明:实验期间共检测到7门,62种藻,表明太湖的底泥可以作为"种源",为藻细胞的复苏提供"种子"。6℃时蓝藻就能够萌发复苏,16℃左右是最适宜藻细胞复苏的温度。在设定的温度范围内,底泥中复苏蓝藻的光合效率随着温度的升高一直增加,表明温度越高越有利于蓝藻从底泥中的萌发和复苏;但是复苏的绿藻和硅藻的光合活性一直处在被抑制状态。低N:P值培养基中复苏的藻细胞丰度远远大于其他2种培养基中复苏的藻细胞丰度,低N:P值能够显著性的激发藻细胞从底泥中的复苏。同时,低N:P比培养液中复苏藻细胞的Na+K+-ATPase和Ca2+Mg2+-ATPase活性都显著高于其他培养液中复苏藻细胞的ATPase活性;16℃时2种ATPase活性的骤然升高与最适宜藻细胞复苏的温度相吻合,而且这个温度提前于复苏藻细胞显著增加的温度(21℃)。此外,复苏藻细胞的比生长速率与Na+K+-ATPase和Ca2+Mg2+-ATPase活性都呈现显著性的线性相关(*P<0.05)。因而,藻细胞中Na+K+-ATPase和Ca2+Mg2+-ATPase活性的恢复和升高,对推动藻细胞从底泥迁移到水柱中的萌发和复苏过程具有重要的意义。  相似文献   

14.
This study was designed to establish the properties of liver plasma membranes (LPM) Na+,K+-ATPase in the hamster and to determine whether a similar assay may be used to measure enzyme activity in the hamster and in the rat. Maximal Na+,K+-ATPase activity was obtained when the assay medium contained 5 mM Mg APT2- with or without 1 mM free Mg2+, 120 mM Na+, 12,5 mM K+. The incubation must be performed at 37 degrees C, pH 7.4. In the absence of free Mg2+, the saturation curve with respect to the substrate Mg ATP2- resulted in biphasic complex kinetics with a maximal activity at a substrate concentration of 5 mM. In the presence of 1 mM free Mg2+ activation of Na+,K+-ATPase and modification of the kinetics were observed: the biphasic curve tended to disappear and to become of the Michaelis-Menten type. The apparent Km for Mg APT2- was 0.36 mM and the Vmax 34.5 mumol.h-1.mg protein-1. In the presence of 10 mM free Mg2+ a decrease in the Vmax was observed without any effect on the apparent Km for Mg APT2-. It is concluded that the same incubation medium may be used to assay LPM N+,K+-ATPase from hamster and rat and that the addition of 1 mM free Mg2+ to the incubation medium is recommended to obtain Michaelis-Menten kinetics in order to eliminate complex kinetics due to the absence of free Mg2+.  相似文献   

15.
1. The ATP sites. Homotropic interactions between ATP sites have been studied in a very large range of Na+ and K+ concentrations. The ( Na+, K+)-activated ATPase displays Michaelis-Menten kinetics for ATP under standard concentration conditions of Na+ (100 mM) and K+ (10 mM). The steady-state kinetics behavior changes at very low concentrations of K+ where negative cooperativity is observed. The existence of a high affinity and a low affinity site for ATP was clearly demonstrated from the study of the ATP stimulated hydrolysis of p-nitrophenylphosphate in the presence of Na+ and K+. The ratio of apparent affinities of high and low affinity sites for ATP is 86 at pH 7.5. 2. The Na+ sites. The binding of Na+ to its specific stimulatory sites (internal sites) is characterized by positive cooperativity with a Hill coefficient n(H(Na+))=2.0. Homotropic interactions between Na+ sites are unaffected by variations of the K+ concentration. 3. The K+ sites. (a) Binding of K+ to the (external) stimulatory site of the ATPase has been analyzed by following the (Na+, K+)-ATPase activity as well as the p-nitrophenylphosphatase activity in the presence of Na+ and K+ (with or without ATP). Binding is characterized by a Hill coefficient of 1.0 and a K(0.5(K+))=0.1 to 0.8 mM. The absence of positive or negative cooperativity persists between 5 mM and 100 mM Na+. (b) The analysis of the p-nitrophenylphosphatase or of the 2, 4 dinitrophenylphosphatase activity in the presence of K+ alone indicates the existence of low affinity sites for K+ with positive homotropic interactions. The characteristics of stimulation in that case are, K(0.5)=5 mM, n(H)=1.9. The properties of this family of site(s) are the following: firstly, saturation of the low affinity site(s) by K+ prevents ATP binding to its high affinity internal site. Secondly, saturation of the low affinity sites for K+ prevents binding of Na+ to its internal sites. Thirdly, this family of sites disappears in the presence of ATP, p-nitrophenylphosphate or of both substrates, when Na+ binds to its internal sites. Na+ binding to its specific stimulatory sites provokes the formation of the high affinity type of site for K+. 4. Mg2+ stimulation of the (Na+, K+)-ATPase is characterized by a Hill coefficient n(H(Mg2+))=1.0 and a K(0.5(Mg2+))=1 mM stimulation is essentially a V effect. Heterotropic effects between binding of Mg2+ and substrate to their respective sites are small. Heterotropic interactions between the Ms2+, Na+ and K+ sites are also small. 5. The fluidity of membrane lipids also controls the (Na+, K+)-ATPase activity. Phase transitions or separations in the membrane hardly affect recognition properties of substrates, Na+, K+ and Mg2+ for their respective sites on both sides of the membrane. Only the rate of the catalytic transformation is affected.  相似文献   

16.
Inhibition by vanadate of the K+-dependent p-nitrophenylphosphatase activity catalyzed by the (Na+ + K+)-ATPase partially purified from pig kidney showed competitive behavior with the substrate, K+ and Mg2+ acted as cofactors in promoting that inhibition. Ligands which inhibited the K+-dependent p-nitrophenyl phosphate hydrolysis (Na+, nucleotide polyphosphates, inorganic phosphate) protected against inhibition by vanadate. The magnitude of that protection was proportional to the inhibition produced in the absence of vanadate. In the presence of only p-nitrophenyl phosphate and Mg2+, or when the protective ligands were tested alone, the activation of p-nitrophenyl phosphate hydrolysis by K+ followed a sigmoid curve in the presence as well in the absence of vanadate. However, the combination of 100 mM NaCl and 3 mM ATP resulted in a biphasic effect of K+ on the p-nitrophenyl phosphate hydrolysis in the presence of vanadate. After an initial rise at low K+ concentration, the p-nitrophenylphosphatase activity declined at high K+ concentrations; this decline became more pronounced as the vanadate concentration was increased. This biphasic response was not seen when a nonphosphorylating ATP analog was combined with Na+ (which favors the nucleotide binding) or with inorganic phosphate (a requirement for K+ - K+ exchange). Experiments with inside-out resealed vesicles from human red cells showed that in the absence of Na+ plus ATP, K+ promoted vanadate inhibition of p-nitrophenylphosphatase activity in a nonbiphasic manner, acting at cytoplasmic sites. On the other hand, in the presence of Na+ plus ATP, the biphasic response of p-nitrophenyl phosphate hydrolysis is due to K+ acting on extracellular sites. In vanadate-poisoned intact red blood cells, the biphasic response of the ouabain-sensitive Rb+ influx as a function of the external Rb+ concentration failed to develop when there was no Na+ in the extracellular media. In addition, in the absence of extracellular Na+, external Rb+ did not influence the magnitude of inhibition. The present findings indicate that external K+ favors vanadate inhibition by displacing Na+ from unspecified extracellular membrane sites.  相似文献   

17.
The effect of the hydrolysis product Pi and the artificial substrate p-nitrophenyl phosphate (p-nitrophenyl-P) on ouabain binding to (Na+ + K+)-activated ATPase was investigated. The hypothesis that (Mg2+ + p-nitrophenyl-P)-supported ouabain binding might be due to Pi release and thus (Mg2+ + Pi)-supported could not be confirmed. The enzyme . ouabain complexes obtained with different substrates were characterized according to their dissociation rates after removal of the ligands facilitating binding. The character of the enzyme . ouabain complex is determined primarily by the monovalent ion present during ouabain binding, but, qualitatively at least, it is immaterial whether binding was obtained with p-nitrophenyl phosphate or Pi. The presence or absence of Na+ during binding has a special influence upon the character of the enzyme . ouabian complex. Without Na+ and in the presence of Tris ions the complex obtained with (Mg2+ + Pi) and that obtained with (Mg2+ + p-nitrophenyl-P) behaved in a nearly identical manner, both exhibiting a slow decay. High Na+ concentration diminished the level of Pi-supported ouabain binding, having almost no effect on p-nitrophenyl phosphate-supported binding. Both enzyme . ouabain complexes, however, now resembled the form obtained with (Na+ + ATP), as judged from their dissociation rates and the K+ sensitivity of their decay. The complexes obtained at a high Na+ concentration underwent a very fast decay which could be slowed considerably after adding a low concentration of K+ to the resuspension medium. The most stable enzyme . ouabain complex was obtained in the presence of Tris ions only, irrespective of whether p-nitrophenyl phosphate of Pi facilitated complex formation. The presence of K+ gave rise to a complex whose dissociation rate was intermediate between those of the complexes obtained in the presence of Tris and a high Na+ concentration. It is proposed that the different ouabain dissociation rates reflect different reactive states of the enzyme. The resemblance between the observations obtained in phosphorylation and ouabain binding experiments is pointed out.  相似文献   

18.
The regulation of ATP hydrolysis and Pi-ATP exchange reactions by ATP, ADP, Mg2+, and phosphate was studied in liposomes containing F0-F1 obtained from bovine heart submitochondrial particles by solubilization with lauryl dimethylamino oxide as described previously (Dreyfus, G., Celis, H., and Ramirez, J. (1984) Anal. Biochem. 142, 215-220). A simultaneous analysis of ATP hydrolysis and the Pi-ATP exchange reactions showed that the ratio of hydrolysis/exchange is close to one when the ATP concentration is in the lower micromolar range. In this preparation ADP stimulates the Pi-ATP exchange reaction and depresses ATP hydrolysis. The exchange reaction is almost abolished when ADP is removed from the medium by an ATP-regenerating system. Mg2+ in millimolar concentrations stimulates Pi-ATP exchange, and at the same time decreases ATP hydrolysis; accordingly, the hydrolysis/exchange ratio depends on the concentration of Mg2+. Inorganic phosphate also controls this ratio, a lower ratio being observed at high phosphate concentrations. The Pi-ATP exchange reaction, but not ATP hydrolysis, depends on the concentration of medium phosphate. These results indicate that the kinetic characteristics of this F0-F1 preparation are modified by Mg2+, ATP, and phosphate.  相似文献   

19.
Adding 15 mM free Mg2+ decreased Vmax of the Na+/K(+)-ATPase reaction. Mg2+ also decreased the K0.5 for K+ activation, as a mixed inhibitor, but the increased inhibition at higher K+ concentrations diminished as the Na+ concentration was raised. Inhibition was greater with Rb+ but less with Li+ when these cations substituted for K+ at pH 7.5, while at pH 8.5 inhibition was generally less and essentially the same with all three cations: implying an association between inhibition and ion occlusion. On the other hand, Mg2+ increased the K0.5 for Na(+)-activation of the Na+/K(+)-ATPase and Na(+)-ATPase reactions, as a mixed inhibitor. Changing incubation pH or temperature, or adding dimethylsulfoxide affected inhibition by Mg2+ and K0.5 for Na+ diversely. Presteady-state kinetic studies on enzyme phosphorylation, however, showed competition between Mg2+ and Na+. In the K(+)-phosphatase reaction catalyzed by this enzyme Mg2+ was a (near) competitor toward K+. Adding Na+ with K+ inhibited phosphatase activity, but under these conditions 15 mM Mg2+ stimulated rather than inhibited; still higher Mg2+ concentrations then inhibited with K+ plus Na+. Similar stimulation and inhibition occurred when Mn2+ was substituted for Mg2+, although the concentrations required were an order of magnitude less. In all these experiments no ionic substitutions were made to maintain ionic strength, since alternative cations, such as choline, produced various specific effects themselves. Kinetic analyses, in terms of product inhibition by Mg2+, require Mg2+ release at multiple steps. The data are accommodated by a scheme for the Na+/K(+)-ATPase with three alternative points for release: before MgATP binding, before K+ release and before Na+ binding. The latter alternatives necessitate two Mg2+ ions bound simultaneously to the enzyme, presumably to divalent cation-sites associated with the phosphate and the nucleotide domains of the active site.  相似文献   

20.
Free Mg2+ is studied for its effect on the activation kinetics of pig kidney Na+, K+-ATPase by monovalent cations (nH and K0.5 for Na+ and K+ are determined). It is established that at the saturating concentration of complementary ion-activator an increase of free Mg2+ concentration up to 12 mM is accompanied by a rise of nH and K0.5 for Na+ and a fall of K0.5 for K+ without nH changes for this cation. The analysis of inhibition kinetics shows that free Mg2+ is a competitive inhibitor as to Na+ and noncompetitive as to K+. It is concluded that inhibition of Na+, K+-ATPase by free Mg2+ is a complex process including competition with Na+ at its binding sites and the "occluding" of enzyme at the stage, preceding dissociation of cation and also the weakening of subunit interactions in the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号