首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous research showed that increasing membrane sphingomyelin (SPH) levels in rat pheochromocytoma (PC12) cells to the same extent as that seen in some brain regions with aging dramatically increases the vulnerability to oxidative stress (OS). These increases in vulnerability were determined by assessing deficits in the ability of these cells to extrude and/or sequester Ca2+ following 30 mM KCl-induced depolarization (recovery). The purpose of the present experiments was to discern whether increasing the levels of particular SPH metabolite(s), i.e., ceramide (Cer), sphingosine (Ssine), or sphingosine-1-phosphate (SPP), or indirectly increasing the concentrations of these metabolites with sphingomylinase (Sase), would interact with the cell's sensitivity to OS induced by low (5 microM) or high (nonlethal, 300 microM) H2O2. In addition, the OS vulnerability was examined as above under decreased SPH levels by exposing the cells to L-cycloserine (Lcc), which prevents SPH synthesis. Both Sase and SPP significantly decreased Ca2+ recovery of PC12 cells after H2O2 exposure. Conversely, Lcc-treated cells showed no further OS-induced decrements in recovery below those seen in controls. SPP significantly decreased glutathione levels (GSH) in the absence of OS. Repletion of GSH with 20 mM N-acetylcysteine significantly attenuated the effect of 5 microM H2O2 on recovery in SPP-treated cells and decreased sensitivity of SPP-treated cells to low doses of OS. Overall, our results suggest a critical role for GSH and SPP in the regulation of OS vulnerability, especially as it relates to Ca2+ homeostasis.  相似文献   

2.
Abstract: Previous research has suggested that the initial effects of cellular free radical neurotoxic insult involve large increases in intracellular Ca2+. However, the exact role of oxidative stress on the various parameters involved in these increases has not been specified. The present experiments were performed to examine these parameters in PC12 cells exposed to 5, 25, or 300 µM H2O2 for 30 min in growth medium alone or containing either nifedipine (L-type Ca2+ antagonist), conotoxin (N-type antagonist), Trolox (vitamin E analogue), or α-phenyl-n-tert-butylnitrone (nitrone trapping agent; PBN). The concentrations of H2O2 were chosen by examining the degree of cell killing induced by exposure to graded concentrations of H2O2. The 5 and 25 µM concentrations of H2O2 produced no significant cell killing at either 30 min or 24 h after treatment, whereas the 300 µM concentration produced a moderate degree of cell killing that did not increase between the two times. Fluorescent imaging was used to visualize intracellular Ca2+ changes in fura-2-loaded cells. Baseline (pre-30 mM KCI) Ca2+ levels were increased significantly by H2O2 treatment (e.g., 300 µM, 200%), but the rise in the level of free intracellular Ca2+ after KCI stimulation (i.e., peak) was decreased (e.g., 300 µM, 50%) and the cell's ability to sequester or extrude the excess Ca2+ (i.e., Ca2+ recovery time) after depolarization was decreased significantly. All compounds prevented baseline Ca2+ increases and, with the exception of conotoxin, antagonized the peak decreases in Ca2+. It is interesting that after 300 µM H2O2 exposure, only Trolox was partially effective in preventing these deficits in recovery. Conotoxin increased the decrement recovery in the absence of H2O2. However, in cells exposed to 5 or 25 µM H2O2, conotoxin as well as the other agents were effective in preventing the deficits in recovery.  相似文献   

3.
It has been observed experimentally that cells from failing hearts exhibit elevated levels of reactive oxygen species (ROS) upon increases in energetic workload. One proposed mechanism for this behavior is mitochondrial Ca2+ mismanagement that leads to depletion of ROS scavengers. Here, we present a computational model to test this hypothesis. Previously published models of ROS production and scavenging were combined and reparameterized to describe ROS regulation in the cellular environment. Extramitochondrial Ca2+ pulses were applied to simulate frequency-dependent changes in cytosolic Ca2+. Model results show that decreased mitochondrial Ca2+uptake due to mitochondrial Ca2+ uniporter inhibition (simulating Ru360) or elevated cytosolic Na+, as in heart failure, leads to a decreased supply of NADH and NADPH upon increasing cellular workload. Oxidation of NADPH leads to oxidation of glutathione (GSH) and increased mitochondrial ROS levels, validating the Ca2+ mismanagement hypothesis. The model goes on to predict that the ratio of steady-state [H2O2]m during 3Hz pacing to [H2O2]m at rest is highly sensitive to the size of the GSH pool. The largest relative increase in [H2O2]m in response to pacing is shown to occur when the total GSH and GSSG is close to 1 mM, whereas pool sizes below 0.9 mM result in high resting H2O2 levels, a quantitative prediction only possible with a computational model.  相似文献   

4.
Intracellular calcium concentration ([Ca2+]i) plays an important role in regulating most cellular processes, including apoptosis and survival, but its alterations are different and complicated under diverse conditions. In this study, we focused on the [Ca2+]i and its control mechanisms in process of hydrogen peroxide (H2O2)-induced apoptosis of primary cultured Sprague-Dawley (SD) rat retinal cells and 17β-estradiol (βE2) anti-apoptosis. Fluo-3AM was used as a Ca2+ indicator to detect [Ca2+]i through fluorescence-activated cell sorting (FACS), cell viability was assayed using MTT assay, and apoptosis was marked by Hoechst 33342 and annexin V/Propidium Iodide staining. Besides, PI3K activity was detected by Western blotting. Results showed: a) 100 μM H2O2-induced retinal cell apoptosis occurred at 4 h after H2O2 stress and increased in a time-dependent manner, but [Ca2+]i increased earlier at 2 h, sustained to 12 h, and then recovered at 24 h after H2O2 stress; b) 10 μM βE2 treatment for 0.5-24 hrs increased cell viability by transiently increasing [Ca2+]i, which appeared only at 0.5 h after βE2 application; c) increased [Ca2+]i under 100 µM H2O2 treatment for 2 hrs or 10 µM βE2 treatment for 0.5 hrs was, at least partly, due to extracellular Ca2+ stores; d) importantly, the transiently increased [Ca2+]i induced by 10 µM βE2 treatment for 0.5 hrs was mediated by the phosphatidylinositol-3-kinase (PI3K) and gated by the L-type voltage-gated Ca2+ channels (L-VGCC), but the increased [Ca2+]i induced by 100 µM H2O2 treatment for 2 hrs was not affected; and e) pretreatment with 10 µM βE2 for 0.5 hrs effectively protected retinal cells from apoptosis induced by 100 µM H2O2, which was also associated with its transient [Ca2+]i increase through L-VGCC and PI3K pathway. These findings will lead to better understanding of the mechanisms of βE2-mediated retinal protection and to exploration of the novel therapeutic strategies for retina degeneration.  相似文献   

5.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+]o) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas. (Mol Cell Biochem 269: 165–173, 2005)  相似文献   

6.
It has been observed experimentally that cells from failing hearts exhibit elevated levels of reactive oxygen species (ROS) upon increases in energetic workload. One proposed mechanism for this behavior is mitochondrial Ca2+ mismanagement that leads to depletion of ROS scavengers. Here, we present a computational model to test this hypothesis. Previously published models of ROS production and scavenging were combined and reparameterized to describe ROS regulation in the cellular environment. Extramitochondrial Ca2+ pulses were applied to simulate frequency-dependent changes in cytosolic Ca2+. Model results show that decreased mitochondrial Ca2+uptake due to mitochondrial Ca2+ uniporter inhibition (simulating Ru360) or elevated cytosolic Na+, as in heart failure, leads to a decreased supply of NADH and NADPH upon increasing cellular workload. Oxidation of NADPH leads to oxidation of glutathione (GSH) and increased mitochondrial ROS levels, validating the Ca2+ mismanagement hypothesis. The model goes on to predict that the ratio of steady-state [H2O2]m during 3Hz pacing to [H2O2]m at rest is highly sensitive to the size of the GSH pool. The largest relative increase in [H2O2]m in response to pacing is shown to occur when the total GSH and GSSG is close to 1 mM, whereas pool sizes below 0.9 mM result in high resting H2O2 levels, a quantitative prediction only possible with a computational model.  相似文献   

7.
Glutathione (GSH) is the most abundant thiol antioxidant in mammalian cells and maintains thiol redox in the cells. GSH depletion has been implicated in the neurobiology of sensory neurons. Because the mechanisms that lead to melastatin-like transient receptor potential 2 (TRPM2) channel activation/inhibition in response to glutathione depletion and 2-aminoethyldiphenyl borinate (2-APB) administration are not understood, we tested the effects of 2-APB and GSH on oxidative stress and buthionine sulfoximine (BSO)-induced TRPM2 cation channel currents in dorsal root ganglion (DRG) neurons of rats. DRG neurons were freshly isolated from rats and the neurons were incubated for 24 h with BSO. In whole-cell patch clamp experiments, TRPM2 currents in the rat were consistently induced by H2O2 or BSO. TRPM2 channels current densities and cytosolic free Ca2+ content of the neurons were higher in BSO and H2O2 groups than in control. However, the current densities and cytosolic Ca2+ release were also higher in the BSO + H2O2 group than in the H2O2 alone. When intracellular GSH is introduced by pipette TRPM2 channel currents were not activated by BSO, H2O2 or rotenone. BSO and H2O2-induced Ca2+ gates were blocked by the 2-APB. Glutathione peroxidase activity, lipid peroxidation and GSH levels in the DRG neurons were also modulated by GSH and 2-APB inhibition. In conclusion, we observed the protective role of 2-APB and GSH on Ca2+ influx through a TRPM2 channel in intracellular GSH depleted DRG neurons. Since cytosolic glutathione depletion is a common feature of neuropathic pain and diseases of sensory neuron, our findings are relevant to the etiology of neuropathology in DRG neurons.  相似文献   

8.
Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable cation channel involved in physiological and pathophysiological processes linked to oxidative stress. TRPM2 channels are co-activated by intracellular Ca2+ and ADP-ribose (ADPR) but also modulated in intact cells by several additional factors. Superfusion of TRPM2-expressing cells with H2O2 or intracellular dialysis of cyclic ADPR (cADPR) or nicotinic acid adenine dinucleotide phosphate (NAADP) activates, whereas dialysis of AMP inhibits, TRPM2 whole-cell currents. Additionally, H2O2, cADPR, and NAADP enhance ADPR sensitivity of TRPM2 currents in intact cells. Because in whole-cell recordings the entire cellular machinery for nucleotide and Ca2+ homeostasis is intact, modulators might affect TRPM2 activity either directly, by binding to TRPM2, or indirectly, by altering the local concentrations of the primary ligands ADPR and Ca2+. To identify direct modulators of TRPM2, we have studied the effects of H2O2, AMP, cADPR, NAADP, and nicotinic acid adenine dinucleotide in inside-out patches from Xenopus oocytes expressing human TRPM2, by directly exposing the cytosolic faces of the patches to these compounds. H2O2 (1 mm) and enzymatically purified cADPR (10 μm) failed to activate, whereas AMP (200 μm) failed to inhibit TRPM2 currents. NAADP was a partial agonist (maximal efficacy, ∼50%), and nicotinic acid adenine dinucleotide was a full agonist, but both had very low affinities (K0.5 = 104 and 35 μm). H2O2, cADPR, and NAADP did not enhance activation by ADPR. Considering intracellular concentrations of these compounds, none of them are likely to directly affect the TRPM2 channel protein in a physiological context.  相似文献   

9.
Our previous results have demonstrated that both nitric oxide (NO) and hydrogen peroxide (H2O2) are involved in the promotion of adventitious root development in marigold (Tagetes erecta L.). However, not much is known about the intricate molecular network of adventitious root development triggered by NO and H2O2. In this study, the involvement of calcium (Ca2+) and calmodulin (CaM) in NO- and H2O2-induced adventitious rooting in marigold was investigated. Exogenous Ca2+ was capable of promoting adventitious rooting, with a maximal biological response at 50 μM CaCl2. Ca2+ chelators and CaM antagonists prevented NO- and H2O2-induced adventitious rooting, indicating that both endogenous Ca2+ and CaM may play crucial roles in the adventitious rooting induced by NO and H2O2. NO and H2O2 treatments increased the endogenous content of Ca2+ and CaM, suggesting that NO and H2O2 enhanced adventitious rooting by stimulating the endogenous Ca2+ and CaM levels. Moreover, treatment with Ca2+ enhanced the endogenous levels of NO and H2O2. Additionally, Ca2+ might be involved as an upstream signaling molecule for CaM during NO- and H2O2-induced rooting. Altogether, the results suggest that both Ca2+ and CaM are two downstream signaling molecules in adventitious rooting induced by NO and H2O2.  相似文献   

10.
Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems and mediates various physiological and biochemical processes in plants. In the present study, we present a signaling network involving H2O2, nitric oxide (NO), calcium (Ca2+), cyclic guanosine monophosphate (cGMP), and the mitogen-activated protein kinase (MAPK) cascade during adventitious rooting in mung bean seedlings. Both exogenous H2O2 and the NO donor sodium nitroprussiate were capable of promoting the formation and development of adventitious roots. H2O2 and NO signaling pathways were elicited in parallel in auxin-induced adventitious rooting. Cytosolic Ca2+ was required for adventitious rooting, and Ca2+ served as a downstream component of H2O2, as well as cGMP or MAPK, signaling cascades. cGMP and MAPK cascades function downstream of H2O2 signaling and depend on auxin responses in adventitious root signaling processes.  相似文献   

11.
Lange I  Penner R  Fleig A  Beck A 《Cell calcium》2008,44(6):604-615
The Ca2+-permeable TRPM2 channel is a dual function protein that is activated by intracellular ADPR through its enzymatic pyrophosphatase domain with Ca2+ acting as a co-factor. Other TRPM2 regulators include cADPR, NAADP and H2O2, which synergize with ADPR to potentiate TRPM2 activation. Although TRPM2 has been thoroughly characterized in overexpression or cell-line systems, little is known about the features of TRPM2 in primary cells. We here characterize the regulation of TRPM2 activation in human neutrophils and report that ADPR activates TRPM2 with an effective half-maximal concentration (EC50) of 1 μM. Potentiation by Ca2+ is dose-dependent with an EC50 of 300 nM. Both cADPR and NAADP activate TRPM2, albeit with lower efficacy than in the presence of subthreshold levels of ADPR (100 nM), which significantly shifts the EC50 for cADPR from 44 to 3 μM and for NAADP from 95 to 1 μM. TRPM2 activation by ADPR can be suppressed by AMP with an IC50 of 10 μM and cADPR-induced activation can be blocked by 8-Bromo-cADPR. We further show that 100 μM H2O2 enables subthreshold concentrations of ADPR (100 nM) to activate TRPM2. We conclude that agonistic and antagonistic characteristics of TRPM2 as seen in overexpression systems are largely compatible with the functional properties of TRPM2 currents measured in human neutrophils, but the potencies of agonists in primary cells are significantly higher.  相似文献   

12.
Rosebush (Rosa “Radrazz”) plants are an excellent model to study light control of bud outgrowth since bud outgrowth only arises in the presence of light and never occurs in darkness. Recently, we demonstrated high levels of hydrogen peroxide (H2O2) present in the quiescent axillary buds strongly repress the outgrowth process. In light, the outgrowing process occurred after H2O2 scavenging through the promotion of Ascorbic acid–Glutathione (AsA–GSH)-dependent pathways and the continuous decrease in H2O2 production. Here we showed Respiratory Burst Oxidase Homologs expression decreased in buds during the outgrowth process in light. In continuous darkness, the same decrease was observed although H2O2 remained at high levels in axillary buds, as a consequence of the strong inhibition of AsA–GSH cycle and GSH synthesis preventing the outgrowth process. Cytokinin (CK) application can evoke bud outgrowth in light as well as in continuous darkness. Furthermore, CKs are the initial targets of light in the photocontrol process. We showed CK application to cultured buds in darkness decreases bud H2O2 to a level that is similar to that observed in light. Furthermore, this treatment restores GSH levels and engages bud burst. We treated plants with buthionine sulfoximine, an inhibitor of GSH synthesis, to solve the sequence of events involving H2O2/GSH metabolisms in the photocontrol process. This treatment prevented bud burst, even in the presence of CK, suggesting the sequence of actions starts with the positive CK effect on GSH that in turn stimulates H2O2 scavenging, resulting in initiation of bud outgrowth.

Light-induced bud outgrowth in rosebush results from cytokinin-mediated peroxide scavenging and glutathione metabolism stimulation.  相似文献   

13.
The aim of the present investigation was to verify the effect of H2O2-induced oxidative stress on SO4= uptake through Band 3 protein, responsible for Cl-/HCO3- as well as for cell membrane deformability, due to its cross link with cytoskeletal proteins. The role of cytoplasmic proteins binding to Band 3 protein has been also considered by assaying H2O2 effects on hemoglobin-free resealed ghosts of erythrocytes. Oxidative conditions were induced by 30 min exposure of human erythrocytes to different H2O2 concentrations (10 to 300 μM), with or without GSH (glutathione, 2 mM) or curcumin (10 μM), compounds with proved antioxidant properties. Since SO4= influx through Band 3 protein is slower and better controllable than Cl- or HCO3- exchange, the rate constant for SO4= uptake was measured to prove anion transport efficiency, while MDA (malondialdehyde) levels and –SH groups were estimated to quantify the effect of oxidative stress. H2O2 induced a significant decrease in rate constant for SO4= uptake at both 100 and 300 μM H2O2. This reduction, observed in erythrocytes but not in resealed ghosts and associated to increase in neither MDA levels nor in –SH groups, was impaired by both curcumin and GSH, whereas only curcumin effectively restored H2O2-induced changes in erythrocytes shape. Our results show that: i) 30 min exposure to 300 μM H2O2 reduced SO4= uptake in human erythrocytes; ii) oxidative damage was revealed by the reduction in rate constant for SO4= uptake, but not by MDA or –SH groups levels; iii) the damage was produced via cytoplasmic components which cross link with Band 3 protein; iv) the natural antioxidant curcumin may be useful in protecting erythrocytes from oxidative injury; v) SO4= uptake through Band 3 protein may be reasonably suggested as a tool to monitor erythrocytes function under oxidative conditions possibly deriving from alcohol consumption, use of drugs, radiographic contrast media administration, hyperglicemia or neurodegenerative diseases.  相似文献   

14.
This work was designed in order to gain an insight on the mechanisms by which antioxidants prevent pancreatic disorders. We have examined the properties of cinnamtannin B-1, which belongs to the class of polyphenols, against the effect of hydrogen peroxide (H2O2) in mouse pancreatic acinar cells. We have studied Ca2+ mobilization, oxidative state, amylase secretion, and cell viability of cells treated with cinnamtannin B-1 in the presence of various concentrations of H2O2. We found that H2O2 (0.1–100 μM) increased CM-H2DCFDA-derived fluorescence, reflecting an increase in oxidation. Cinnamtannin B-1 (10 μM) reduced H2O2-induced oxidation of CM-H2DCFDA. CCK-8 induced oxidation of CM-H2DCFDA in a similar way to low micromolar concentrations of H2O2, and cinnamtannin B-1 reduced the oxidant effect of CCK-8. In addition, H2O2 induced a slow and progressive increase in intracellular free Ca2+ concentration ([Ca2+]c). Cinnamtannin B-1 reduced the effect of H2O2 on [Ca2+]c, but only at the lower concentrations of the oxidant. H2O2 inhibited amylase secretion in response to cholecystokinin, and cinnamtannin B-1 reduced the inhibitory action of H2O2 on enzyme secretion. Finally, H2O2 reduced cell viability, and the antioxidant protected acinar cells against H2O2. In conclusion, the beneficial effects of cinnamtannin B-1 appear to be mediated by reducing the intracellular Ca2+ overload and intracellular accumulation of digestive enzymes evoked by ROS, which is a common pathological precursor that mediates pancreatitis. Our results support the beneficial effect of natural antioxidants in the therapy against oxidative stress-derived deleterious effects on cellular physiology.  相似文献   

15.
Clostridium acetobutylicum, an obligate anaerobe, grows normally under continuous-O2-flow culture conditions, where the cells consume O2 proficiently. An O2-responsive NADH:rubredoxin oxidoreductase operon composed of three genes (nror, fprA2, and dsr), encoding NROR, functionally uncharacterized flavoprotein A2 (FprA2), and the predicted superoxide reductase desulfoferrodoxin (Dsr), has been proposed to participate in defense against O2 stress. To functionally characterize these proteins, native NROR from C. acetobutylicum, recombinant NROR (rNROR), FprA2, Dsr, and rubredoxin (Rd) expressed in Escherichia coli were purified. Purified native NROR and rNROR both exhibited weak H2O2-forming NADH oxidase activity that was slightly activated by Rd. A mixture of NROR, Rd, and FprA2 functions as an efficient H2O-forming NADH oxidase with a high affinity for O2 (the Km for O2 is 2.9 ± 0.4 μM). A mixture of NROR, Rd, and Dsr functions as an NADH-dependent O2 reductase. A mixture of NROR, Rd, and rubperoxin (Rpr, a rubrerythrin homologue) functions as an inefficient H2O-forming NADH oxidase but an efficient NADH peroxidase with a low affinity for O2 and a high affinity for H2O2 (the Kms for O2 and H2O2 are 303 ± 39 μM and ≤1 μM, respectively). A gene encoding Rd is dicistronically transcribed with a gene encoding a glutaredoxin (Gd) homologue, and the expression levels of the genes encoding Gd and Rd were highly upregulated upon exposure to O2. Therefore, nror operon enzymes, together with Rpr, efficiently function to scavenge O2, O2, and H2O2 by using an O2-responsive rubredoxin as a common electron carrier protein.  相似文献   

16.
Exogenous hydrogen peroxide (H2O2) induces oxidative stress and apoptosis in cancer cells. This study evaluated the antiapoptotic effects of pan-caspase and caspase-3, -8, or -9 inhibitors on H2O2-treated Calu-6 and A549 lung cancer cells in relation to reactive oxygen species (ROS) and glutathione (GSH). Treatment with 50–500 μM H2O2 inhibited the growth of Calu-6 and A549 cells at 24 h and induced apoptosis in these cells. All the tested caspase inhibitors significantly prevented cell death in H2O2-treated lung cancer cells. H2O2 increased intracellular ROS levels, including that of O 2 ·? , at 1 and 24 h. It also increased the activity of catalase but decreased the activity of SOD. In addition, H2O2 triggered GSH deletion in Calu-6 and A549 cells at 24 h. It reduced GSH levels in Calu-6 cells at 1 h but increased them at 24 h. Caspase inhibitors decreased O 2 ·? levels in H2O2-treated Calu-6 cells at 1 h and these inhibitors decreased ROS levels, including that of O 2 ·? , in H2O2-treated A549 cells at 24 h. Caspase inhibitors partially attenuated GSH depletion in H2O2-treated A549 cells and increased GSH levels in these cells at 24 h. However, the inhibitors did not affect GSH deletion and levels in Calu-6 cells at 24 h. In conclusion, H2O2 induced caspase-dependent apoptosis in Calu-6 and A549 cells, which was accompanied by increases in ROS and GSH depletion. The antiapoptotic effects of caspase inhibitors were somewhat related to the suppression of H2O2-induced oxidative stress and GSH depletion.  相似文献   

17.
Single smooth muscle cells from guinea pig urinary bladder were voltage clamped with patch electrodes containing 1 mM Indo-1. As Indo-1 entered the cell, Δ[Ca2+]i in response to Ca2+, influx with ICa (1 s steps to -10 mV) was progressively decreased. ΔF410 was used as a measure of the Ca2+ amount bound to Indo-1. Within less than 2 min after establishment of the whole-cell configuration, the fraction of Ca2+ entering the cell with ICa which binds to Indo-1 became constant, suggesting that Indo-1 completely overrides the endogenous Ca2+ buffers. Under these conditions, ΔF410 was satisfactorily fitted with the time integral of ICa during 1 s long steps. Acetylcholine (ACh, 50 μM) was rapidly applied to Indo-1 loaded cells to induce IP3-induced Ca2+ release (IICR), which peaked within about 1 s. From ΔF410 in response to ICa and ACh and from the time integral of ICa the amount of Ca2+ released during IICR was estimated to be 680 attomole (680 × 10−18 mole), corresponding to 230 μM for 3 pl of accessible cytoplasmic volume.  相似文献   

18.
Oxidative stress is a critical route of damage in various psychological disorders such as schizophrenia, although fish oil and risperidone (RISP) induce antioxidant effects in the human body. However, the mechanisms behind these effects remain elusive. We investigated the effects of fish oil and RISP in the PC12 cell line by evaluating Ca2+ mobilization, lipid peroxidation (LP) and antioxidant levels. PC12 cells were divided into eight flasks: control, fish oil, RISP, H2O2, fish oil + H2O2, RISP + H2O2, fish oil + RISP and fish oil + RISP + H2O2. Cells were incubated with fish oil and RISP for 24 and 48 h, respectively. Then, cells were exposed to H2O2 for 15 min before analysis. Ca2+ release and LP levels were higher in the H2O2 group than in the control, RISP and fish oil groups, although their levels were decreased by incubation of cells in fish oil and RISP. Glutathione peroxidase activity, reduced glutathione and vitamin C levels in the cells were lower in the H2O2 group than in the control, RISP and fish oil groups, although levels were higher in cells incubated with fish oil and RISP than in those in the H2O2 groups. In conclusion, these results indicate that RISP and fish oil induced protective effects on oxidative stress in PC12 cells by modulating cytosolic Ca2+ release and antioxidant levels.  相似文献   

19.
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91phox (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca2+ channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca2+-dependent NADPH oxidase.  相似文献   

20.
It has been widely suggested that selenium (Se) deficiency play an important role in the pathophysiology of epilepsy. It has been reported that Se provides protection against the neuronal damage in patients and animals with epilepsy by restoring the antioxidant defense mechanism. The neuroprotective effects of topiramate (TPM) have been reported in several studies but the putative mechanism of action remains elusive. We investigated effects of Se and TPM in neuronal PC12 cell by evaluating Ca2+ mobilization, lipid peroxidation and antioxidant levels. PC12 cells were divided into eight groups namely control, TPM, Se, H2O2, TPM + H2O2, Se + H2O2, Se + TPM and Se + TPM + H2O2. The toxic doses and times of H2O2, TPM and Se were determined by cell viability assay which is used to evaluate cell viability. Cells were incubated with 0.01 mM TPM for 5 h and 500 nM Se for 10 h. Then, the cells were exposed to 0.1 mM H2O2 for 10 h before analysis. The cells in all groups except control, TPM and Se were exposed to H2O2 for 15 min before analysis. Cytosolic Ca2+ release and lipid peroxidation levels were higher in H2O2 group than in control, Se and TPM combination groups although their levels were decreased by incubation of Se and TPM combination. However, there is no difference on Ca2+ release in TPM group. Glutathione peroxidase activity, reduced glutathione and vitamin C levels in the cells were lower in H2O2 group than in control, Se and TPM groups although their values were higher in the cells incubated with Se and TPM groups than in H2O2 groups. In conclusion, these results indicate that Se induced protective effects on oxidative stress in PC12 cells by modulating cytosolic Ca2+ influx and antioxidant levels. TPM modulated also lipid peroxidation and glutathione and vitamin C concentrations in the cell system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号