首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA microarrays for functional plant genomics   总被引:16,自引:0,他引:16  
DNA microarray technology is a key element in today's functional genomics toolbox. The power of the method lies in miniaturization, automation and parallelism permitting large-scale and genome-wide acquisition of quantitative biological information from multiple samples. DNA microarrays are currently fabricated and assayed by two main approaches involving either in situ synthesis of oligonucleotides (`oligonucleotide microarrays') or deposition of pre-synthesized DNA fragments (`cDNA microarrays') on solid surfaces. To date, the main applications of microarrays are in comprehensive, simultaneous gene expression monitoring and in DNA variation analyses for the identification and genotyping of mutations and polymorphisms. Already at a relatively early stage of its application in plant science, microarrays are being utilized to examine a range of biological issues including the circadian clock, plant defence, environmental stress responses, fruit ripening, phytochrome A signalling, seed development and nitrate assimilation. Novel insights are obtained into the molecular mechanisms co-ordinating metabolic pathways, regulatory and signalling networks. Exciting new information will be gained in the years to come not only from genome-wide expression analyses on a few model plant species, but also from extensive studies of less thoroughly studied species on a more limited scale. The value of microarray technology to our understanding of living processes will depend both on the amount of data to be generated and on its clever exploration and integration with other biological knowledge arising from complementary functional genomics tools for `profiling' the genome, proteome, metabolome and phenome.  相似文献   

2.
The low costs of array‐synthesized oligonucleotide libraries are empowering rapid advances in quantitative and synthetic biology. However, high synthesis error rates, uneven representation, and lack of access to individual oligonucleotides limit the true potential of these libraries. We have developed a cost‐effective method called Recombinase Directed Indexing (REDI), which involves integration of a complex library into yeast, site‐specific recombination to index library DNA, and next‐generation sequencing to identify desired clones. We used REDI to generate a library of ~3,300 DNA probes that exhibited > 96% purity and remarkable uniformity (> 95% of probes within twofold of the median abundance). Additionally, we created a collection of ~9,000 individually accessible CRISPR interference yeast strains for > 99% of genes required for either fermentative or respiratory growth, demonstrating the utility of REDI for rapid and cost‐effective creation of strain collections from oligonucleotide pools. Our approach is adaptable to any complex DNA library, and fundamentally changes how these libraries can be parsed, maintained, propagated, and characterized.  相似文献   

3.
4.
Telomerase is a key component of the telomere length maintenance system in the majority of eukaryotes. Telomerase displays maximal activity in stem and cancer cells with high proliferative potential. In humans, telomerase activity is regulated by various mechanisms, including the interaction with telomere ssDNA overhangs that contain a repetitive G‐rich sequence, and with noncoding RNA, Telomeric repeat‐containing RNA (TERRA), that contains the same sequence. So these nucleic acids can compete for telomerase RNA templates in the cell. In this study, we have investigated the ability of different model substrates mimicking telomere DNA overhangs and TERRA RNA to compete for telomerase in vitro through a previously developed telomerase inhibitor assay. We have shown in this study that RNA oligonucleotides are better competitors for telomerase that DNA ones as RNA also use an alternative binding site on telomerase, and the presence of 2′‐OH groups is significant in these interactions. In contrast to DNA, the possibility of forming intramolecular G‐quadruplex structures has a minor effect for RNA binding to telomerase. Taking together our data, we propose that TERRA RNA binds better to telomerase compared with its native substrate – the 3′‐end of telomere DNA overhang. As a result, some specific factor may exist that participates in switching telomerase from TERRA to the 3′‐end of DNA for telomere elongation at the distinct period of a cell cycle in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
BACKGROUND: Targeted gene repair is an attractive method to correct point-mutated genes at their natural chromosomal sites, but it is still rather inefficient. As revealed by earlier studies, successful gene correction requires a productive interaction of the repair molecule with the target locus. The work here set out to investigate whether DNA repair, e.g., mismatch repair, or a direct incorporation of the correction molecule follows as the step upon the initial interaction. METHODS: Single-stranded 21mer oligodeoxynucleotides (ODNs) of sense orientation were directed towards point-mutated enhanced green fluorescence protein transgene loci in HEK-293-derived cell clones. First gene repair assays compared ODNs carrying the canonical termini 5'-phosphate and 3'-OH with their respective variants harbouring non-canonical termini (5'-OH, 3'-H). Second, a protocol was established to allow efficient recovery of integrated short biotin-labelled ODNs from the genomes of gene-corrected cells using streptavidin-coated beads in order to test directly whether transfected ODNs become bona fide parts of the target locus DNA. RESULTS: Oligodeoxynucleotides with canonical termini were about 34-fold more efficient than their counterparts carrying non-canonical termini in a phosphorothioate-modified backbone. Furthermore, biotinylated fragments were successfully recovered from genomic DNAs of gene-corrected cells. CONCLUSIONS: The experiment showed that ODNs are incorporated into a mammalian genome. This unravels one early repair step and also sets an unexpected example of genome dynamics possibly relevant to other ODN-based cell techniques.  相似文献   

6.
Wilson A  Pitt B  Li S 《Bioscience reports》2002,22(2):309-322
Unmethylated CpG in bacterial DNA has recently been recognized as a danger signal to the mammalian immune system. This CpG signal can be greatly amplified when DNA is delivered via a lipidic vector. The CpG effects are affected by the administration route, and can be either beneficial or harmful. In this review, we will summarize our current understanding about the mechanism of action of the immunostimulatory motifs. Emphasis will be placed on the discussion of the complicated roles of CpG when CpG DNA or oligonucleotides are administered in vivo using liposomes as a delivery vehicle.  相似文献   

7.
Oligonucleotide probes specific for simple tandem repeat sequences produce individual specific DNA fingerprints in man and all animal species tested so far. Here 11 different synthetic probes were hybridized to bovine genomic DNAs which had been digested with the restriction endonucleases HinfI, AluI and HaeIII. Two of these probes gave DNA fingerprint patterns which were analysed for three German breeds. Different parameters were calculated, such as the average number of bands per individual or the probability of finding identical fingerprints in two unrelated individuals. The number of polymorphic bands varies from 11 to 23 in the different breeds and the probability of finding the same banding pattern in two unrelated individuals ranges from 1.5 x 10(-7) to 2.4 x 10(-7). Hence this DNA fingerprinting procedure allows precise identification of individuals. It is also a useful additional method for paternity testing in cattle.  相似文献   

8.
9.
Enzymatic labeling of nucleic acids is a fundamental tool in molecular biology with virtually every aspect of nucleic acid hybridization technique involving the use of labeled probes. Different methods for enzymatic labeling of DNA, RNA and oligonucleotide probes are available today. In this review, we will describe both radioactive and nonradioactive labeling methods, yet the choice of system for labeling the probe depends on the application under study.  相似文献   

10.
11.
Abstract

Design of chemically modified oligonucleotides for regulation of gene expression has attracted considerable attention over the past decades. One actively pursued approach involves antisense or antigene oligonucleotide constructs carrying reactive groups, many of these based on transition metal complexes. The complexes of Fe(II) and Co(II) with phthalocyanines are extremely good catalysts of oxidation of organic compounds with molecular oxygen and hydrogen peroxide. The binding of positively charged Fe(II) and Co(II) phthalocyanines with single- and double-stranded DNA was investigated. It was shown that these phthalocyanines interact with nucleic acids through an outside binding mode. The site-directed modification of single-stranded DNA by O2 and H2O2 in the presence of dimeric complexes of negatively and positively charged Fe(II) and Co(II) phthalocyanines was investigated. These complexes were formed directly on single-stranded DNA through interaction between negatively charged phthalocyanine in conjugate and positively charged phthalocyanine in solution. The resulting oppositely charged phthalocyanine complexes showed significant increase of catalytic activity compared with monomeric forms of phthalocyanines Fe(II) and Co(II). These complexes catalyzed the DNA oxidation with high efficacy and led to direct DNA strand cleavage. It was determined that oxidation of DNA by molecular oxygen catalyzed by complex of Fe(II)-phthalocyanines proceeds with higher rate than in the case of Co(II)-phthalocyanines but the latter led to a greater extent of target DNA modification.  相似文献   

12.
Normal replication of Moloney murine leukemia virus (MoMLV) requires the integration of a DNA copy of the viral RNA genome into a chromosome of the host. In this work, we characterize the DNA sequences at the ends of the linear proviral precursor that are required for integration in the presence of MoMLV integration protein in vitro. We found that nine bases of MoMLV DNA at each end of a linear model substrate were sufficient for near-maximal levels of integration and that four bases of MoMLV DNA at each end were sufficient for low levels of correct integration. We also found that a 3'-terminal A residue was preferred for integration. We infer from the limited DNA sequence requirements for integration that factors in addition to DNA sequence direct integration protein to act at the ends of the viral DNA.  相似文献   

13.
To mimic large numbers of nicked DNA duplexes we used a technique that produces nicked duplex DNA substrates by hybridization of complementary oligonucleotides, adjacent to an initiating primer, which are ligated together by a thermostable DNA ligase. Sequential ligation of nonanucleotides to this primary duplex results in the formation of polymers that can be analyzed by gel electrophoresis. The extent of polymerization is a measure of the efficiency of ligation. We determined the efficiency of ligation of nonanucleotides, using various length initiating primers, with three thermostable DNA ligases: Thermus thermophilus (Tth), Thermus scotoductus (Ts), and Rhodothermus marinus (Rm). Analysis of the effect of temperature for each ligase, and for each directing primer length, revealed that at 37 and 41 degrees C there was variation between ligase efficiency in the order Rm > or = Ts > or = Tth. The higher temperature of 46 degrees C was optimal for polymerization with each of the ligases and Rm ligase was the most efficient. Analysis of directionality of the ligations reactions suggests that for each of the Thermus ligases we tested, there was a bias to polymerization of nonanucleotides in a 5'-3' direction.  相似文献   

14.
15.
For the determination of methylation levels in genomic regulatory DNA sequences a high-sensitive assay for detecting 5'methyl-cytosines (5'mC) in non-bisulfite-treated DNA has been established. The system is designed for the application of immunofluorescence using a monoclonal antibody that specifically recognizes 5'mC in single-stranded DNA hybridized to oligonucleotide microarrays. For assay readout an ultra-sensitive fluorescence scanner with submicrometer resolution was used. To minimize autofluorescence 150-microm thin glass slides with an aldehyde-functionalized surface were developed. These methodological improvements allowed the detection of 5'mC in synthetic oligonucleotides hybridized to microarrays with atto molar analytical sensitivity. Using enzymatic fragmented genomic DNA from myeloid leukemia tumor cell lines differences in the methylation status of gene regulatory sequences for E-cadherin, p15/CDKN2b and p16/CDKN2a were demonstrated. Thus, this novel technique can potentially be used for DNA methylation analysis in various scientific fields.  相似文献   

16.
对 6株成团肠杆菌 (Enterobacteragglomerans)接合子的分子生物学进行了分析 .6株菌与nifHDK基因有杂交 .菌株总DNA经BamHⅠ酶切后与pEA9 DNA进行Southern杂交 ,只有 2株菌具有完整的质粒DNA ,其余菌株质粒DNA发生了 15 3~ 137 7kb不同程度的缺失 .用切割位点较少的限制性内切酶XbaⅠ酶切 6株菌的总DNA ,经脉冲场凝胶电泳 (PFGE)后用pEA9 DNA为探针进行Southern杂交 ,每株菌的pEA9 DNA明显大于用BamHⅠ酶切后的杂交结果 ,表明质粒与染色体发生了整合 .转座子Tn5或插入序列IS 12 2 2和IS 12 71可能参与质粒与染色体的整合过程 .  相似文献   

17.
18.
Correct integration of retroviral DNA in vitro   总被引:100,自引:0,他引:100  
P O Brown  B Bowerman  H E Varmus  J M Bishop 《Cell》1987,49(3):347-356
  相似文献   

19.
寡核苷酸芯片技术是一种高通量发掘和采集生物信息的强大技术平台,目前已广泛应用于生物科学领域 . 为改善寡核苷酸芯片的分析性能,对影响芯片杂交结果的因素,如片基表面的化学处理、探针的长度、间隔臂的长度、杂交条件等,进行了深入的研究和优化 . 对寡核苷酸芯片而言,仍有待解决的问题是如何产生更强的荧光信号来改善其检测灵敏度 . 利用两种类型的多个荧光分子标记的引物,来增强二维寡核苷酸芯片平面上的荧光信号强度 . 两种引物分别命名为:多标记线性引物和多标记分支引物 . 通过增加标记在目标 DNA 片段上的荧光分子数,可以显著增强寡核苷酸芯片上相应捕获探针的信号强度 . 实验表明,使用多标记引物能将所用的寡核苷酸微阵列的检测限 ( 以能够检测的最低模板量计算 ) 降低至单荧光标记引物的 1/100 以下,多重标记技术是一种有效增强微型化探针矩阵检测灵敏度的信号放大方法 .  相似文献   

20.
BACKGROUND: A number of genetic defects in humans are due to point mutations in a single, often tightly regulated gene. Genetic treatment of such defects is preferably done by correcting only the altered base pair at the endogenous locus rather than by a gene replacement strategy involving viral vectors. Promisingly high repair rates have been achieved in some systems with the non-viral approach of transfecting chimeric RNA/DNA oligonucleotides (chimeraplasts). However, since this technique does not yet perform robustly, several parameters thought to be important in oligonucleotide-mediated gene repair were examined. METHODS: A series of transgenic HEK-293 cell clones has been established harboring high or low copy numbers of a point-mutated 'enhanced green fluorescent protein' (EGFP) gene as the target. At the level of single living cells, repair efficiencies were measured by fluorescence-activated cell sorting (FACS) regarding topology (single-stranded, double-stranded), exonuclease protection (four phosphorothioate linkages at both ends), polarity (sense, antisense), and length (13mer, 19mer, 35mer, 69mer) of the oligonucleotide. RESULTS: When targeting chromosomal loci, up to 0.2% corrected cells were obtained with single-stranded unmodified oligodeoxynucleotides, whereas a chimeraplast, its DNA analogue, and double-stranded DNA fragments were practically non-functional. Correction efficiencies correlated with target gene copy numbers. Modifying exonuclease resistance, polarity or length of single-stranded oligodeoxynucleotides did not enhance repair efficacy above the sub-percentage range. CONCLUSIONS: Successful chromosomal reporter gene repair in HEK-293 cells required an oligodeoxynucleotide to be single-stranded. In concert with the gene copy number correlation, functional interaction between the repair molecule and the target site seems to be one bottleneck in targeted gene repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号