首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proton nuclear magnetic resonance signal of the His57-Asp102 hydrogen bonded proton in the charge relay system of chymotrypsinogen A and chymotrypsin Aδ has been monitored to determine the influence of substrate analogues and competitive inhibitors on the electronic state of the active site regions. Borate ion, benzene boronic acid and 2-phenylethylboronic acid, when bound to chymotrypsin at pH 9.5 shift the resonance position of the His-Asp hydrogen bonded proton to ?15.9, ?16.3 and ?17.2 parts per million, respectively. These positions are intermediate between the low pH position in the free enzyme of ?18.0 parts per million and the high pH position of ?14.9 parts per million. The presence of these analogues prevents the His-Asp proton resonance from titrating in the region of pH 6 to 9.5. Similar low field shifts are observed for the hydrogen bonded proton resonance of subtilisin BPN′ when complexed with these boronic acids. The results support the chemical and crystallographic data which show that negatively charged tetrahedral adducts of the boronic acid substrate analogues are formed at the active sites of these enzymes. When combined with similar nuclear magnetic resonance data for the binding of N-acetyl-l-tryptophan to chymotrypsin Aδ, they suggest that a direct interaction occurs between the active site histidine and the atom occupying the leaving group position of the substrate, presumably a hydrogen bond.The His-Asp proton resonance was also monitored in complexes of chymotrypsin Aδ with bovine pancreatic trypsin inhibitor over the pH range 4 to 9. In the complex the low field proton resonance had a field position of ?14.9 parts per million over the pH range 4 to 9 indicating that His57 is in the neutral form, similar to the active enzyme at high pH.  相似文献   

2.
A high resolution proton nuclear magnetic resonance study of chymotrypsin Aδ and Chymotrypsinogen A in water has shown a single resonance at very low magnetic fields (− 18 to − 15 p.p.m. relative to dimethyl-silapentane-sulfonate). From its pH dependence (pK = 7·2) and response to chemical modification the resonance has been assigned to the hydrogen-bonded proton between His-57 and Asp-102.  相似文献   

3.
The crystal structure of the extracellular bacterial serine protease α-lytic protease (αLP) has been solved at 0.83 Å resolution at pH 8. This ultra-high resolution structure allows accurate analysis of structural elements not possible with previous structures. Hydrogen atoms are visible, and confirm active-site hydrogen-bonding interactions expected for the apo enzyme. In particular, His57 Nδ1 participates in a normal hydrogen bond with Asp102 in the catalytic triad, with a hydrogen atom visible 0.83(±0.06) Å from the His Nδ1. The catalytic Ser195 occupies two conformations, one corresponding to a population of His57 that is doubly protonated, the other to the singly protonated His57. Based on the occupancy of these conformations, the pKa of His57 is calculated to be ∼8.8 when a sulfate ion occupies the active site. This 0.83 Å structure has allowed critical analysis of geometric distortions within the structure. Interestingly, Phe228 is significantly distorted from planarity. The distortion of Phe228, buried in the core of the C-terminal domain, occurs at an estimated energetic cost of 4.1 kcal/mol. The conformational space for Phe228 is severely limited by the presence of Trp199, which prevents Phe228 from adopting the rotamer observed in many other chymotrypsin family members. In αLP, the only allowed rotamer leads to the deformation of Phe228 due to steric interactions with Thr181. We hypothesize that tight packing of co-evolved residues in this region, and the subsequent deformation of Phe228, contributes to the high cooperativity and large energetic barriers for folding and unfolding of αLP. The kinetic stability imparted by the large, cooperative unfolding barrier plays a critical role in extending the lifetime of the protease in its harsh environment.  相似文献   

4.
The α-lytic protease was isolated from an extracellular filtrate of the soil microorganism Myxobacter 495. Trigonal crystals (space group, P3221) of this serine enzyme were grown from 1·3 m-Li2SO4 at pH 7·2. X-ray reflections from crystals of the native enzyme, comprising the 2·8 Å limiting sphere, were phased by the multiple isomorphous replacement technique. Five heavy-atom derivatives were used and the overall mean figure of merit 〈m?〉 is 0·83. The resulting native electron density map of α-lytic protease has been interpreted in conjunction with the published sequence (Olson et al., 1970) of 198 amino-acid residues.α-Lytic protease has a structural core similar to that of the pancreatic serine proteases (108 α-carbon atom positions are topologically equivalent (within 2·0 Å) to residues of porcine elastase) and its tertiary structure is even more closely related to the two other bacterial serine protease structures previously determined (James et al., 1978; Brayer et al., 1978b; Delbaere et al., 1979a). α-Lytic protease has the following distinctive features in common with the bacterial serine enzymes, Streptomyces griseus proteases A and B: an amino terminus that is exposed to solvent on the enzyme surface, a considerably shortened uranyl loop (residues 65 to 84), a major segment of polypeptide chain from the autolysis loop deleted (residues 144 to 155), a buried guanidinium group of Arg138 in an ion-pair bond with Asp194, and an altered conformation of the methionine loop (residues 168 to 182) relative to the pancreatic enzymes.At the present resolution, the members of the catalytic quartet (Ser214, Asp102, His57 and Ser195) adopt the conformation found in all members of the Gly-Asp-Ser-Gly-Gly serine protease family. The carboxylate of Asp102 is in a highly polar environment, as it is the recipient of four hydrogen bonds. The interaction between the Nε2 atom of the imidazole ring in His57 and Oγ atom of Ser195 is very weak (3·3 Å) and supports the concept that there is little, if any, enhanced nucleophilicity of the side-chain of Ser195 in the native enzyme.The molecular basis for the observed substrate specificity of α-lytic protease is clear from the distribution of amino acid side-chains in the neighborhood of the active site. An insertion of five residues at position 217, and the conformation of the side-chain of Met192 account for the fact that the specificity pocket can bind only small residues, such as Ala, Ser or Val.  相似文献   

5.
Using the X-ray structure of the complex of bovine β-trypsin with the basic pancreatic trypsin inhibitor, the hydrogen-bond structure consisting of Ser195, His57 and Asp102 is clarified in relation to the mechanism of the enzymatic reaction from an ab initio quantum chemical point of view. Under the influence of the inhibitor, of the three hydrogen bonds involving Ser214, His57 and Ala56 around Asp102, and of the other ionic amino acid residues, Asp102 plays a significant role in lowering the barrier height of the proton transfer from Ser195 to His57 without accepting a proton from His57. The principal cause of the barrier height lowering is the electrostatic interaction.  相似文献   

6.
Described herein are proton nmr experiments on chemically modified derivatives of ribonuclease A designed to elucidate the origin of an exchangeable resonance, assigned previously to a histidine ring N proton that titrates between 11 to 13 ppm with a pKa of 6.1 in H2O solution. Histidines 48 and 105, which are distant from the active site, are eliminated as candidates for this resonance from inhibitor binding studies on the enzyme in acetate–water solutions. This exchangeable resonance titrates with modified pKa's and constant area over the above pH range in His-119-N1-carboxymethylated-RNase A and des-(121–124)-RNase A, thus eliminating the imidazole N3 proton in the His 119-Asp 121 hydrogen bond. In His-12-N1-carboxymethylated-RNase A, this resonance is also observable, but broadens on raising the pH above 7 and at elevated temperatures above neutrality. It exhibits a pH-independent chemical shift characteristic of the protonated state of histidine. On the basis of these findings, this exchangeable resonance, designated a, is assigned to the imidazole N1 proton of His 12, which is hydrogen-bonded to the carbonyl oxygen of Thr 45 in the crystal.  相似文献   

7.
The participation of a low-barrier hydrogen bond (LBHB) in the mechanism of action of chymotrypsin introduces a new role for Asp 102 and His 57 in catalysis [C. S. Cassidy, J. Lin, and P. A. Frey (1997) Biochemistry 36, 4576-4584]. It is postulated that the LBHB increases the basicity of His 57-N(epsilon2) in the transition state, thereby facilitating the abstraction of a proton from Ser 195, and stabilizes the tetrahedral intermediate in the acylation step. Evidence for this mechanism includes the downfield chemical shift of the proton bridging His 57 and Asp 102 in transition-state analog complexes and the low deuterium fractionation factors for this proton in the same complexes. We present additional spectroscopic evidence supporting the assignment of an LBHB between His 57 and Asp 102. The tetrahedral addition complex between Ser 195 of chymotrypsin and N-acetyl-l-leucyl-l-phenylalanyl trifluoromethylketone is regarded as a close structural analog of a tetrahedral intermediate. The deuterium NMR signal for the downfield deuteron bridging His 57 and Asp 102 in D(2)O has now been observed as a broad band centered at 17.8 +/- 0.5 ppm. The proton NMR signal in H(2)O is centered at 18.9 +/- 0.05 ppm. The two signals are clearly separated corresponding to a deuterium isotope effect of Delta[delta(H) - delta(D)] = 1.1 +/- 0.5 ppm. Deuterium isotope effects in this range are characteristic of LBHBs, and this observation provides further support for the assignment of the proton bridging His 57 and Asp 102 in transition-state analog complexes as an LBHB.  相似文献   

8.
9.
We have determined by (15)N, (1)H, and (13)C NMR, the chemical behavior of the six histidines in subtilisin BPN' and their PMSF and peptide boronic acid complexes in aqueous solution as a function of pH in the range of from 5 to 11, and have assigned every (15)N, (1)H, C(epsilon 1), and C(delta2) resonance of all His side chains in resting enzyme. Four of the six histidine residues (17, 39, 67, and 226) are neutrally charged and do not titrate. One histidine (238), located on the protein surface, titrates with pK(a) = 7.30 +/- 0.03 at 25 degrees C, having rapid proton exchange, but restricted mobility. The active site histidine (64) in mutant N155A titrates with a pK(a) value of 7.9 +/- 0.3 and sluggish proton exchange behavior, as shown by two-site exchange computer lineshape simulation. His 64 in resting enzyme contains an extremely high C(epsilon 1)-H proton chemical shift of 9.30 parts per million (ppm) owing to a conserved C(epsilon 1)-H(.)O=C H-bond from the active site imidazole to a backbone carbonyl group, which is found in all known serine proteases representing all four superfamilies. Only His 226, and His 64 at high pH, exist as the rare N(delta1)-H tautomer, exhibiting (13)C(delta1) chemical shifts approximately 9 ppm higher than those for N(epsilon 2)-H tautomers. His 64 in the PMSF complex, unlike that in the resting enzyme, is highly mobile in its low pH form, as shown by (15)N-(1)H NOE effects, and titrates with rapid proton exchange kinetics linked to a pK(a) value of 7.47 +/- 0.02.  相似文献   

10.
Peaks corresponding to the C(2)-protons of all four histidine residues of porcine β-trypsin were resolved in 250 MHz nuclear magnetic resonance spectra after deuteration of the slowly exchangeable N-H groups (whose resonances obscure the histidine peaks) by reversible unfolding of the protein in D2O. One of the four peaks was assigned to the charge-relay histidine in the active site of trypsin (His(57) in the bovine chymotrypsinogen numbering system). Whereas the three other histidine C(2)-peaks exhibited normal titration curves with single pK′ values of 7.20, 6.71 and 6.67, the peak assigned to His(57) had an abnormal titration curve showing two protonation steps in the pH range from 1 to 9. The first protonation with a pH′mid of 5.0 is rapid on the nuclear magnetic resonance time-scale; the second with a pH′mid of 4.5 is slow and apparently involves conformational transitions between two states having lifetimes of approximately 18 ms.In the complex between porcine β-trypsin and bovine pancreatic trypsin inhibitor (Kunitz) His(57) was found to be insensitive to pH over the range from 4 to 9 and its chemical shift resembles that of His(57) in the singly protonated charge relay of free trypsin. This result provides direct evidence that the trypsin charge relay acts as a proton acceptor in the initial catalytic step which leads to the formation of a tetrahedral complex. In the presence of equimolar bovine pancreatic trypsin inhibitor (Kunitz) the pH'mid of the conformational transition that affects the charge-relay histidine is lowered from 4.5 to approximately 3.5.  相似文献   

11.
The bacterial serine protease, SGPB, was inhibited by two specific tripeptide chloromethyl ketones, N-t-butyloxycarbonyl-l-alanylglycyl-l-phenylalanine chloromethyl ketone (BocAGFCK) and N-t-butyloxycarbonyl-glycyl-l-leucyl-l-phenylalanine chloromethyl ketone (BocGLFCK). Crystals of the inhibited complexes were grown and examined by X-ray crystallographic methods. The peptide backbone of each inhibitor is bound by three hydrogen bonds to the main chain of residues Ser214 to Gly216. There are two well-characterized hydrophobic pockets, S1 and S2, on the surface of SGPB which accommodate the P1 and P2 side-chains of the BocGLFCK inhibitor. A conformational change of Tyr171 is induced by the binding of this inhibitor. Both inhibitors make two covalent bonds to the SGPB enzyme. The imidazole ring of His57 is alkylated at the N?2 atom and Oγ of Ser195 forms a hemiketal bond with the carbonyl-carbon atom of the inhibitor. Comparison of the binding modes of the two tripeptides in conjunction with the differences in their inhibition constants (KI) allows one to estimate the binding energy of the leucyl side-chain as ?2.6 kcal mol?1. The importance of an electrophilic component in the serine protease mechanism, which involves the polarization of the susceptible carbonyl bond of a substrate or inhibitor by the peptide NH groups of Gly193 and Ser195 is discussed.  相似文献   

12.
The crystal structure of γ-chymotrypsin, the monomeric form of chymotrypsin, has been determined and refined to a crystallographic R-factor of 0.18 at 1.9 Å resolution. The details of the catalytic triad involving Asp102, His57 and Ser195 agree well with the results found for trypsin (Chambers & Stroud, 1979) and Streptomyces griseus protease A (Sielecki et al., 1979). As in many of the other serine proteases, the Oγ of Ser195 does not appear to be hydrogen-bonded to His57.The three-dimensional structures of γ- and α-chymotrypsin (Birktoft & Blow, 1972) are closely similar. The largest backbone differences occur in the “calcium binding loop” (residues 75 to 78) and in the “autolysis loop” (residues 146, 149 and 150). Ala149 and Asn150 are disordered in γ-chymotrypsin, whereas they are stabilized by intermolecular interactions in α-chymotrypsin. The conformation of Ser218 is also different, presumably the indirect result of the dimeric interactions of α-chymotrypsin. These results are discussed in terms of the slow, pH-dependent interconversion of α- and γ-chymotrypsin.  相似文献   

13.
Neidhart D  Wei Y  Cassidy C  Lin J  Cleland WW  Frey PA 《Biochemistry》2001,40(8):2439-2447
The structures of the hemiketal adducts of Ser 195 in chymotrypsin with N-acetyl-L-leucyl-L-phenylalanyl trifluoromethyl ketone (AcLF-CF3) and N-acetyl-L-phenylalanyl trifluoromethyl ketone (AcF-CF3) were determined to 1.4-1.5 A by X-ray crystallography. The structures confirm those previously reported at 1.8-2.1 A [Brady, K., Wei, A., Ringe, D., and Abeles, R. H. (1990) Biochemistry 29, 7600-7607]. The 2.6 A spacings between Ndelta1 of His 57 and Odelta1 of Asp 102 are confirmed at 1.3 A resolution, consistent with the low-barrier hydrogen bonds (LBHBs) between His 57 and Asp 102 postulated on the basis of spectroscopy and deuterium isotope effects. The X-ray crystal structure of the hemiacetal adduct between Ser 195 of chymotrypsin and N-acetyl-L-leucyl-L-phenylalanal (AcLF-CHO) has also been determined at pH 7.0. The structure is similar to the AcLF-CF3 adduct, except for the presence of two epimeric adducts in the R- and S-configurations at the hemiacetal carbons. In the (R)-hemiacetal, oxygen is hydrogen bonded to His 57, not the oxyanion site. On the basis of the downfield 1H NMR spectrum in solution, His 57 is not protonated at Nepsilon2, and there is no LBHB at pH >7.0. Because addition of AcLF-CHO to chymotrypsin neither releases nor takes up a proton from solution, it is concluded that the hemiacetal oxygen of the chymotrypsin-AcLF-CHO complex is a hydroxyl group and not attracted to the oxyanion site. The protonation states of the hemiacetal and His 57 are explained by the high basicity of the hemiacetal oxygen (pK(a) > 13.5) relative to that of His 57. The 13C NMR signal for the adduct of AcLF-13CHO with chymotrypsin is consistent with a neutral hemiacetal between pH 7 and 13. At pH <7.0, His 57 in the AcLF-CHO-hemiacetal complex of chymotrypsin undergoes protonation at Nepsilon2 of His 57, leading to a transition of the 15.1 ppm downfield signal to 17.8 ppm. The pK(a)s in the active sites of the AcLF-CF3 and AcLF-CHO adducts suggest an energy barrier of 6-7 kcal x mol(-1) against ionizations that change the electrostatic charge at the active site. However, ionizations of neutral His 57 in the AcLF-CHO-chymotrypsin adduct, or in free chymotrypsin, proceed with no apparent barrier. Protonation of His 57 is accompanied by LBHB formation, suggesting that stabilization by the LBHB overcomes the barrier to ionization. On the basis of the hydration constant for AcLF-13CHO and its inhibition constant, its K(d) is 16 microM, 8000-fold larger than the comparable value for AcLF-CF3.  相似文献   

14.
A procedure for synthesizing 14C-labeled N-benzoyl-l-tyrosine ethyl ester with the label in the benzoyl group has been described. Using this substrate, which is specific for chymotrypsin, and employing trypsin activation of chymotrypsinogen in an incubation medium containing radiolabeled BTEE, we have presented a method which permits assay of nanogram quantities of chymotrypsin activity in organ-cultured tissue. The radiolabeled product of enzyme hydrolysis, N-benzoyltyrosine, is readily separated by paper chromatography from the unreacted labeled substrate and measured by radioactivity counting.  相似文献   

15.
In the acylation reaction of serine proteases the effect of amino acid residues on the geometrical change of the catalytic site from Michaelis to tetrahedral state was studied by using ab initio molecular orbital calculations. Amino acid residues in the catalytic site and the peptide substrate were calculated as a quantum mechanical region, and all the other amino acid residues and the calcium ion were included in the calculation as the electrostatic effects. The effects of Asp102, Asp194, N-terminus and the oxyanion binding site are large. The oxyanion binding site directly stabilizes the tetrahedral substrate. Asp102 stabilizes the enzyme intermediate, interacting with the protonated His57 residue. In order to elucidate the roles of Asp102 and the oxyanion binding site, energy decomposition analyses were done for the intermolecular interactions. The contribution of Asp102 and the oxyanion binding site to the decrease of energy in the geometrical change is due to the electrostatic effect. The energies of the proton shuttle from Ser195 Oγ to the leaving group of the substrate were calculated for amide and ester substrate models.  相似文献   

16.
Kostetskiĭ PV 《Biofizika》2004,49(4):595-600
Using the "hard-sphere" atom-atom approximation with consideration of the available X-ray data, the possibility of free rotation of the side chain of His57 residue in the active center of chymotrypsin was studied. It was shown that there is a significant rotational freedom of the imidazole ring on chi1 and chi2 torsional angles. The rotation is accompanied by the movement of the side chains of Tyr94, Ile99 and Ser195 residues. It was assumed that the four residues act as movable parts of the motor of the enzymatic machinery. Amino acid residues that contact the cavity around the His57 imidazole ring were identified.  相似文献   

17.
The two buried carboxyls (Asp-102 and Asp-194) in both chymotrypsin and chymotrypsinogen are ionized at pH values greater than 4.2 and may be ionized even as low as pH 3.This was demonstrated by coupling most of the surface carboxyis of the proteins by a carbodi-imide with glycinamide or semicarbazide to diminish the groups ionizing at low pH and then titrating the proton uptake on denaturation by sodium dodecyl sulphate between pH 3.0 and 4.6. At pH values greater than 4.2 all unblocked carboxyls are ionized. The proton uptake during the conformational change on denaturation was determined by a stopped-flow procedure and found to be about 2H+/mol between pH 3.0 and 3.6. The rate constant for the uptake of protons is the same as that for the exposure of tryptophan and lies in the tens of millisecond region.The buried negative charge at the active site appears to be mainly on Asp-102 rather than on His-57, the pKa of which must be raised by the buried charge. This enhances its efficacy as a base catalyst in the “charge relay system”.The presence of an intact charge relay system in the inactive zymogen illustrates the importance of stereochemical fit between enzyme and substrate. Enzyme catalysis could hardly be mediated by a catalyst which is uniquely reactive in the absence of correct enzyme-substrate orientation as this would be inconsistent with its specificity.  相似文献   

18.
Chymotrypsinogen, chymotrypsin and anhydrochymotrypsin have been covalently spin-labeled by an analog of bromoacetamide, and the latter two proteins have been labeled by an analog of 1-chloro-3-tosylamido-4-phenyl butanone. The electron paramagnetic resonance spectra of the labeled proteins indicate protein conformational changes accompanying (1) activation of the zymogen and (2) the binding of protons and substrates by the native and anhydro enzymes, and tertiary structural differences between these protein forms which are at once informative and predictable. A spin-label linked to the thioether side-chain of methionine 192 in Chymotrypsinogen may be in contact with a hydrophobic surface. This interaction is lost upon zymogen activation with little change in the isotropic rotational freedom of the nitroxide group. The rotational freedom of the group increases sigmoidally with pH; a spectral dependence upon an ionizing group (pKa = 8.9) is demonstrated. The binding of indole to the labeled enzyme raises the pKa of the ionizing group to 10.2. A spin-label linked to histidine 57 in chymotrypsin senses both indole binding and pH changes directly; the same label in anhydrochymotrypsin responds directly only to changes in pH. Neither histidine-labeled derivative exhibits enzymic activity. The electron paramagnetic resonance spectra of these two labeled proteins at high pH indicate a decrease in the motional freedom of the spin label. The spectral data show that the conformational state of the labeled zymogen is not similar to the high-pH conformational state of the labeled enzyme. Furthermore, the pH-dependent conformational transition of labeled chymotrypsin requires neither the serine 195 hydroxyl nor the histidine 57 imidazole, since the transition occurs normally in derivatized and chemically modified protein forms. The chemical reactivity of histidine 57 in anhydrochymotrypsin is evaluated and the catalytic activities of two histidine alkylated enzymes are compared.  相似文献   

19.
Catalysis of the thermostable alcohol dehydrogenase from Bacillus stearothermophilus is performed by a proton release system involving a zinc-bound water molecule, a hydroxyl group of Thr40 (threonine position at 40), and an imidazole ring of His43. Amino acid residues (Thr40 and His43) at the active center were substituted by Ser and Arg, respectively. Thr40Ser had a tendency toward lower activity for primary alcohols than the wild type enzyme. However, the mutant enzyme became more active for substrates with a larger side chain, such as 2-methyl-1-propanol and cyclohexanol. This phenomena might be explained by the fact that the methyl group of Thr40 was eliminated in Ser. His43Arg exhibited higher activity to primary alcohols (except 2-methyl-1-propanol) and acetaldehyde (as a reverse reaction) than the wild type, but little activity for secondary alcohols and ketones. The Km value for ethanol (Km-e) of His43Arg was fifty-fold larger than that of the wild type. The characteristics of these mutant enzymes are also discussed.  相似文献   

20.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号