首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The effects of incubating J774 mouse macrophages with different fatty acids on cholesterol esterification were investigated. In cells incubated with n-3 polyunsaturated fatty acids, the rate of cholesterol esterification was significantly reduced compared with cells incubated with n-6 polyunsaturated fatty acids or with oleic acid. This change in cholesterol esterification appears to be the result of reductions in the activity of acyl-CoA:cholesterol acyltransferase (ACAT) in the endoplasmic reticulum of the macrophages incubated with the n-3 polyunsaturated fatty acids. No differences in microsomal cholesterol were observed among cells incubated with different fatty acids. However, cellular cholesterol levels were lower in cells incubated with n-3 polyunsaturated fatty acids. In microsomes from cells incubated with n-3 polyunsaturated fatty acids, both the Km and the Vmax of ACAT were lower than in microsomes from cells incubated with n-6 fatty acids or oleic acid. These findings may explain some of the reduction in atherosclerotic lesions that are observed with dietary fish oils that contain high levels of n-3 polyunsaturated fatty acids.  相似文献   

2.
Membrane fatty acid composition of CaCo-2 cells was modified by incubating the cells for 8 days in medium containing 100 microM eicosapentaenoic acid or palmitic acid. The effect of membrane fatty acid changes on cholesterol metabolism was then studied. Cells incubated with eicosapentaenoic acid had significant changes in membrane fatty acid composition with an accumulation of 20:5 and 22:5 and a reduction in monoenoic fatty acids compared to cells grown in palmitic acid. Intracellular cholesteryl esters could not be detected in CaCo-2 cells grown in the presence of the n-3 polyunsaturated fatty acid. In contrast, cells incubated with the saturated fatty acid contained 2 micrograms/mg protein of cholesteryl esters. Cells grown in eicosapentaenoic acid, however, accumulated significantly more triglycerides compared to cells modified with palmitic acid. The rate of oleic acid incorporation into triglycerides was significantly increased in cells incubated with eicosapentaenoic acid. CaCo-2 cells modified by eicosapentaenoic acid had lower rates of HMG-CoA reductase and ACAT activities compared to cells modified with palmitic acid. The incorporation of the two fatty acids into cellular lipids also differed. Palmitic acid was predominantly incorporated into cellular triglycerides, whereas eicosapentaenoic acid was preferentially incorporated into phospholipids with 60% of it in the phosphatidylethanolamine fraction. The data indicate that membrane fatty acid composition is significantly altered by growing CaCo-2 cells in eicosapentaenoic acid. These modifications in membrane fatty acid saturation are accompanied by a decrease in the rates of cholesterol synthesis and cholesterol esterification.  相似文献   

3.
ACAT2, the enzyme responsible for the formation of cholesteryl esters incorporated into apolipoprotein B-containing lipoproteins by the small intestine and liver, forms predominantly cholesteryl oleate from acyl-CoA and free cholesterol. The accumulation of cholesteryl oleate in plasma lipoproteins has been found to be predictive of atherosclerosis. Accordingly, a method was developed in which fatty acyl-CoA subspecies could be extracted from mouse liver and quantified. Analyses were performed on liver tissue from mice fed one of four diets enriched with one particular type of dietary fatty acid: saturated, monounsaturated, n-3 polyunsaturated, or n-6 polyunsaturated. We found that the hepatic fatty acyl-CoA pools reflected the fatty acid composition of the diet fed. The highest percentage of fatty acyl-CoAs across all diet groups was in monoacyl-CoAs, and values were 36% and 46% for the n-3 and n-6 polyunsaturated diet groups and 55% and 62% in the saturated and monounsaturated diet groups, respectively. The percentage of hepatic acyl-CoA as oleoyl-CoA was also highly correlated to liver cholesteryl ester, plasma cholesterol, LDL molecular weight, and atherosclerosis extent. These data suggest that replacing monounsaturated with polyunsaturated fat can benefit coronary heart disease by reducing the availability of oleoyl-CoA in the substrate pool of hepatic ACAT2, thereby reducing cholesteryl oleate secretion and accumulation in plasma lipoproteins.  相似文献   

4.
5.
The mechanism through which cholesteryl esters rich in oleic acid accumulate in the cytoplasm was studied. The fatty acid composition of the cholesteryl esters in acetyl-LDL was high in linoleic acid, while that of cholesteryl ester inclusion bodies accumulated in the cytoplasm was high in oleic acid. This compositional change of fatty acids in cholesteryl esters occurred even in the presence of an acyl-CoA: cholesterol acyltransferase (ACAT) inhibitor, Sandoz 58-035. These results suggest that oleate-rich cholesteryl esters accumulated in the cytoplasm, even though the reesterification in microsome was inhibited by an ACAT inhibitor.  相似文献   

6.
7.
Modification of fatty acid composition of Hep-G2 cells was achieved by 7-9 days of supplementation of culture medium with palmitic, oleic or linoleic acid. Cholesterol release into serum-free culture medium during 24 h of incubation was significantly lower in cells supplemented with linoleic acid, when compared to those supplemented with palmitic, oleic or no additional fatty acid. In cells cultured in the presence of linoleic acid, less [3H]cholesterol was esterified to cholesteryl ester and the mass of cholesteryl ester was significantly lower than in cells cultured with palmitic acid or with no additional fatty acid. The reduction in [3H]cholesterol secretion and the impairment in cholesterol esterification in linoleic acid-treated cells was prevented by addition of butylated hydroxytoluene or probucol concurrently with the fatty acid. The antioxidants also increased esterification and [3H]cholesterol release in cells supplemented with the other fatty acids. It is suggested that cholesterol secretion and esterification are sensitive to peroxidation.  相似文献   

8.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

9.
LDL enriched with either saturated, monounsaturated, n-6 polyunsaturated, or n-3 polyunsaturated fatty acids were used to study the effects of dietary fatty acids on macrophage cholesteryl ester (CE) accumulation, physical state, hydrolysis, and cholesterol efflux. Incubation of THP-1 macrophages with acetylated LDL (AcLDL) from each of the four diet groups resulted in both CE and triglyceride (TG) accumulation, in addition to alterations of cellular CE, TG, and phospholipid fatty acyl compositions reflective of the individual LDLs. Incubation with monounsaturated LDL resulted in significantly higher total and CE accumulation when compared with the other groups. After TG depletion, intracellular anisotropic lipid droplets were visible in all four groups, with 71% of the cells incubated with monounsaturated AcLDL containing anisotropic lipid droplets, compared with 30% of cells incubated with n-3 AcLDL. These physical state differences translated into higher rates of both CE hydrolysis and cholesterol efflux in the n-3 group. These data suggest that monounsaturated fatty acids may enhance atherosclerosis by increasing both cholesterol delivery to macrophage foam cells and the percentage of anisotropic lipid droplets, while n-3 PUFAs decrease atherosclerosis by creating more fluid cellular CE droplets that accelerate the rate of CE hydrolysis and the efflux of cholesterol from the cell.  相似文献   

10.
1. The acyl-CoA:cholesterol acyltransferase (ACAT) activity and lipid composition of intestinal microsomal membrane were investigated 6 weeks after both 50 and 75% distal small bowel resection (DSBR). 2. No changes in both microsomal ACAT activity and cholesteryl ester levels were found, while microsomal non-esterified cholesterol content was increased after the surgical operation. 3. The total phospholipid content of the microsomes did not change as a result of DSBR. 4. The microsomal phospholipid fatty acid composition showed a significant increase in saturated fatty acids together with no changes in both total monounsaturated and total polyunsaturated fatty acids after resection. 5. An increase in the levels of linoleic acid accompanied by a decrease in arachidonic acid was found in remnant intestine of resected rats.  相似文献   

11.
The size of low density lipoproteins (LDL) is strongly correlated with LDL cholesteryl ester (CE) content and coronary artery atherosclerosis in monkeys fed cholesterol and saturated fat. African green monkeys fed 11% (weight) fish oil diets have smaller LDL and less CE per LDL particle than lard-fed animals. We hypothesized that this might be due to a lower plasma lecithin:cholesterol acyltransferase (LCAT) activity in fish oil-fed animals. Using recombinant particles made of egg yolk lecithin-[14C]cholesterol-apoA-I as exogenous substrate, we found no difference in plasma LCAT activity (27 versus 28 nmol CE formed per h/ml) of fish oil- versus lard-fed animals, respectively; furthermore, no diet-induced difference in immunodetectable LCAT was found. However, plasma phospholipids from fish oil-fed animals were over 4-fold enriched in n-3 fatty acids in the sn-2 position compared to those of lard-fed animals. Additionally, the proportion of n-3 fatty acid-containing CE products formed by LCAT, relative to the available n-3 fatty acid in the sn-2 position of phospholipids, was less than one-tenth of that for linoleic acid. The overall rate of LCAT-catalyzed CE formation with phospholipid substrates from fish oil-fed animals was lower (5-50%) than with phospholipid substrates from lard-fed animals. These data show that n-3 fatty acids in phospholipids are not readily utilized by LCAT for formation of CE; rather, LCAT preferentially utilizes linoleic acid for CE formation. The amount of linoleic acid in the sn-2 position of plasma phospholipids is reduced and replaced with n-3 fatty acids in fish oil-fed animals. As a result, LCAT-catalyzed plasma CE formation in vivo is likely reduced in fish oil-fed animals contributing to the decreased cholesteryl ester content and smaller size of LDL particles in the animals of this diet group.  相似文献   

12.
Diets rich in polyunsaturated fatty acids lower plasma HDL cholesterol concentrations when compared to diets rich in saturated fatty acids. We investigated the mechanistic basis for this effect in the hamster and sought to determine whether reduced plasma HDL cholesterol concentrations resulting from a high polyunsaturated fat diet are associated with a decrease in reverse cholesterol transport. Animals were fed semisynthetic diets enriched with polyunsaturated or saturated fatty acids for 6 weeks. We then determined the effect of these diets on the following parameters: 1) hepatic scavenger receptor B1 (SR-BI) mRNA and protein levels, 2) the rate of hepatic HDL cholesteryl ester uptake, and 3) the rate of cholesterol acquisition by the extrahepatic tissues (from de novo synthesis, LDL and HDL) as a measure of the rate of reverse cholesterol transport. Compared to saturated fatty acids, dietary polyunsaturated fatty acids up-regulated hepatic SR-BI expression by approximately 50% and increased HDL cholesteryl ester transport to the liver; as a consequence, plasma HDL cholesteryl ester concentrations were reduced. Although dietary polyunsaturated fatty acids increased hepatic HDL cholesteryl ester uptake and lowered plasma HDL cholesterol concentrations, there was no change in the cholesterol content or in the rate of cholesterol acquisition (via de novo synthesis and lipoprotein uptake) by the extrahepatic tissues.These studies indicate that substitution of polyunsaturated for saturated fatty acids in the diet increases SR-BI expression and lowers plasma HDL cholesteryl ester concentrations but does not affect reverse cholesterol transport.  相似文献   

13.
J774 macrophages exposed to medium containing cholesterol-rich phospholipid dispersions accumulate cholesteryl ester. Supplementing this medium with 100 micrograms oleate/ml increased cellular cholesteryl ester contents 3-fold. Cell retinyl ester contents increased 8-fold when medium containing retinol dispersed in dimethyl sulfoxide was supplemented with oleate. These increases were not the result of increases in total lipid uptake by the cells but rather of redistribution of cholesterol and retinol into their respective ester pools. Effective oleate concentration of 15-30 micrograms/ml increased cellular retinyl and cholesteryl ester contents. The effective oleate concentration was reduced to 5 micrograms/ml when the fatty acid/albumin molar ratio was increased. The oleate-stimulated increase in cholesterol esterification was blocked by incubating cells with Sandoz 58-035, a specific inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT), indicating that the effect of fatty acid exposure is mediated through changes in ACAT activity. When cholesterol or retinol was added to cells which had been exposed to oleate for 24 h to provide a triacylglycerol store, the cellular contents of cholesteryl or retinyl ester were also significantly increased compared to cells not previously exposed to oleate. The oleate-stimulated increase in the esterification of cholesterol and/or retinol was also observed in P388D1 macrophages, human (HepG2) and rat (Fu5AH) hepatomas, human fibroblasts, rabbit aortic smooth muscle cells and MCF-7 breast carcinoma cells. In addition to oleate, a number of other fatty acids increased retinol esterification in J774 macrophages; however, cellular cholesterol esterification in these cells was increased only by unsaturated fatty acids and was inhibited in the presence of saturated fatty acids. Although the cellular uptake of radiolabeled oleate and palmitate was similar, a significant difference in the distribution of these fatty acids among the lipid classes was observed. These data demonstrate that exogenous fatty acids are one factor that regulate cellular cholesteryl and retinyl ester contents in cultured cells.  相似文献   

14.
Several studies have suggested that lipoprotein metabolism can be affected by lipoprotein phospholipid composition. We investigated the effect of virgin olive oil (VOO) and high-oleic sunflower oil (HOSO) intake on the distribution of fatty acids in triacylglycerols (TG), cholesteryl esters (CE) and phospholipid (PL) classes of triacylglycerol-rich lipoproteins (TRL) from normolipidemic males throughout a 7 h postprandial metabolism. Particularly, changes in oleic acid (18:1n-9) concentration of PL were used as a marker of in vivo hydrolysis of TRL external monolayer. Both oils equally promoted the incorporation of oleic acid into the TG and CE of postprandial TRL. However, PL was enriched in oleic acid (18:1n-9) and n-3 polyunsaturated fatty acids (PUFA) after VOO meal, whereas in stearic (18:0) and linoleic (18:2n-6) acids after HOSO meal. We also found that VOO produced TRL which PL 18:1n-9 content was dramatically reduced along the postprandial period. We conclude that the fatty acid composition of PL can be a crucial determinant for the clearance of TRL during the postprandial metabolism of fats.  相似文献   

15.
Macrophages which were incubated with acetylated low-density lipoproteins, resulting in cholesteryl ester accumulation, incorporated the monohydroxyeicosatetraenoic acids (5-, 15-, and 12-HETEs) into cholesteryl esters. The esterification of these hydroxy fatty acids to cholesterol by total membrane preparations of cholesterol-rich macrophages was dependent on the synthesis of the fatty acyl-CoA derivative, and was catalysed by acyl-CoA:cholesterol acyltransferase (ACAT). Stimulation of membrane ACAT activity by 25-hydroxycholesterol increased the synthesis of cholesteryl 12-HETE by 40%. In contrast, inhibiting ACAT activity by progesterone and compound 58-035 decreased cholesteryl 12-HETE production by 60% and 90% respectively. Although 5-, 15- and 12-HETE were esterified to cholesterol by ACAT, these monohydroxy fatty acids were less optimal as substrates compared with oleic acid or arachidonic acid. The hydrolysis and release of 12-HETE and the other monohydroxyeicosatetraenoic acids from intracellular cholesteryl esters and phospholipids occurred at a faster rate than for the more conventional fatty acids, oleate and arachidonate. Cholesteryl esters which contain hydroxy fatty acids therefore provide only a transient storage for lipoxygenase products, as these fatty acids are released into the medium as readily as hydroxy fatty acids found in phospholipids and triacylglycerols. The data provide evidence, for the first time, of an ACAT-dependent esterification of the lipoxygenase products 5-, 15- and 12-HETEs to cholesterol in the macrophage-derived foam cell. The channelling of these monohydroxy fatty acids to cholesteryl esters provides a mechanism which can alter the amount of lipoxygenase products incorporated into cellular phospholipids, thus averting deleterious changes to cell membranes. ACAT, by catalysing the esterification of monohydroxyeicosatetraenoic acids to cholesterol, could play a key role in regulating the amount of lipoxygenase products in the pericellular space of the cholesterol-enriched macrophage.  相似文献   

16.
We examined the roles of phospholipase A2 (PLA2) in oxidized LDL (oxLDL)-induced cholesteryl ester formation in macrophages. In [3H]oleic acid-labeled RAW264.7 cells and mouse peritoneal macrophages, oxLDL induced [3H]cholesteryl oleate formation with an increase in free [3H]oleic acid and a decrease in [3H]phosphatidylcholine. The changes in these lipids were suppressed by methyl arachidonyl fluorophosphonate (MAFP), a cytosolic PLA2 (cPLA2) inhibitor. However, MAFP had no effect on the ACAT activity or the binding and/or uptake of oxLDL. Stimulation with oxLDL in the presence of [3H]cholesterol increased [3H]cholesteryl ester bearing fatty acyl chains derived from cellular and/or exogenous (oxLDL) lipids. The formation of cholesteryl ester under this condition was also inhibited by MAFP, and the inhibitory effect was reversed by adding oleic acid. While oxLDL did not affect the activity or amounts of cPLA2, preincubation with oxLDL enhanced the release of oleic acid and arachidonic acid induced by ionomycin in RAW264.7 cells. 13(S)-hydroxyoctadecadienoic acid, but not 7-ketocholesterol, also enhanced ionomycin-induced oleic acid release. These results suggest that oxLDL induces cPLA2 activation, which contributes, at least in part, to the supply of fatty acids required for the cholesteryl esterification, probably through the acceleration by oxidized lipids of the catalytic action of cPLA2 in macrophages.  相似文献   

17.
Summary

The aim of this work was to study the adaptation of enzymatic antioxidant cell defense to the nature of the membrane polyunsaturated fatty acids (PUFA). 3T3 Swiss fibroblasts were grown for 5 days in a medium supplemented with 50 μM linoleic acid (LA) or eicosapentaenoic acid (EPA) and compared t control cells (C). The phospholipid fatty acid content was evaluated: LA were enriched in n-6 PUFA (27.8%) in comparison to C (6.7%) or EPA (5.6%); EPA were enriched in n-3 PUFA (26.2%) in comparison to LA (4.4%) or C (4.6%). The fatty acid double bond index (DBI) increased from C to LA and EPA. The activities of the three key enzymatic antioxidant defenses, SOD, GPx and GST, increased with the degree of unsaturation of the phospholipid fatty acids. In the cells with fatty acids that are very sensitive to oxidative stress, the higher activities of SOD and GPx might act to limit the initiation of lipid peroxidation and the higher activities of GST and GPx to decrease the toxic effects of the various species produced from lipid degradation.  相似文献   

18.
The lipids of Saprolegnia parasitica contain 5,8,11,14,17-eicosapentaenoic acid as major constituent. No other acid having (n-3) structure was detected, but 5,8,11,14-eicosatetraenoic (arachidonic) acid and its common precursors of (n-6) structure are present in significant amounts. During rapid growth of the organism, [1-14C]acetate was efficiently incorporated into fatty acids. Arachidonic acid was labeled after 2 h to nearly the same extent as any precursor acid and 14C in eicosapentaenoic acid reached this level within 6 h. Results of incubations with labeled fatty acids indicated that, in S. parasitica, oleic, linoleic, (6,9,12)-linolenic and arachidonic acids are major intermediates in the pathway to eicosapentaenoic acid. Methyl-directed desaturation of (n-6) to (n-3) acids does not occur with C18 acids but is specific for the polyunsaturated C20 chain length. Arachidonic acid is the direct precursor of eicosapentaenoic acid.  相似文献   

19.
Expression of brain fatty acid-binding protein (B-FABP) is spatially and temporally correlated with neuronal differentiation during brain development. Isothermal titration calorimetry demonstrates that recombinant human B-FABP clearly exhibits high affinity for the polyunsaturated n-3 fatty acids alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, and for monounsaturated n-9 oleic acid (K(d) from 28 to 53 nm) over polyunsaturated n-6 fatty acids, linoleic acid, and arachidonic acid (K(d) from 115 to 206 nm). B-FABP has low binding affinity for saturated long chain fatty acids. The three-dimensional structure of recombinant human B-FABP in complex with oleic acid shows that the oleic acid hydrocarbon tail assumes a "U-shaped" conformation, whereas in the complex with docosahexaenoic acid the hydrocarbon tail adopts a helical conformation. A comparison of the three-dimensional structures and binding properties of human B-FABP with other homologous FABPs, indicates that the binding specificity is in part the result of nonconserved amino acid Phe(104), which interacts with double bonds present in the lipid hydrocarbon tail. In this context, analysis of the primary and tertiary structures of human B-FABP provides a rationale for its high affinity and specificity for polyunsaturated fatty acids. The expression of B-FABP in glial cells and its high affinity for docosahexaenoic acid, which is known to be an important component of neuronal membranes, points toward a role for B-FABP in supplying brain abundant fatty acids to the developing neuron.  相似文献   

20.
The rabbit heart contains a cytosolic enzyme which selectively incorporates polyunsaturated fatty acids into phosphatidylcholine. This unique acyltransferase is selective for fatty acids, thus far tested, that are substrates for cyclooxygenase or lipoxygenase (i.e., arachidonic, eicosapentaenoic, linoleic and dihomo-gamma-linoleic acids) or which reverse the symptoms of essential fatty acid deficiency (columbinic acid). On the other hand, palmitic, oleic, 5,8,11-eicosatrienoic (n-9, Mead acid), and docosatetraenoic acid (n-6, adrenic acid) were not incorporated in phospholipids by the cytosolic acyltransferase. No such fatty acid selectivity was exhibited by the cytosolic acyl-CoA synthetase or by the acyltransferase activities present in cardiac microsomes and mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号