首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The sphingomyelin-derived messenger ceramides provoke neuronal apoptosis through caspase-3 activation, while the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neuronal survival and inhibits caspase-3 activity. However, the mechanisms leading to the opposite regulation of caspase-3 by C2-ceramide and PACAP are currently unknown. Here, we show that PACAP prevents C2-ceramide-induced inhibition of mitochondrial potential and C2-ceramide-evoked cytochrome c release. C2-ceramide stimulated Bax expression, but had no effect on Bcl-2, while PACAP abrogated the action of C2-ceramide on Bax and stimulated Bcl-2 expression. The effects of C2-ceramide and PACAP on Bax and Bcl-2 were blocked, respectively, by the JNK inhibitor L-JNKI1 and the MEK inhibitor U0126. L-JNKI1 prevented the alteration of mitochondria induced by C2-ceramide while U0126 suppressed the protective effect of PACAP against the deleterious action of C2-ceramide on mitochondrial potential. Moreover, L-JNKI1 inhibited the stimulatory effect of C2-ceramide on caspase-9 and -3 and prevented C2-ceramide-induced cell death. U0126 blocked PACAP-induced Bcl-2 expression, abrogated the inhibitory effect of PACAP on ceramide-induced caspase-9 activity, and promoted granule cell death. The present study reveals that C2-ceramide and PACAP exert opposite effects on Bax and Bcl-2 through, respectively, JNK- and ERK-dependent mechanisms. These data indicate that the mitochondrial pathway plays a pivotal role in the pro- and anti-apoptotic effects of C2-ceramide and PACAP.  相似文献   

3.
Identifying the trophic factors for retina photoreceptors and the intracellular pathways activated to promote cell survival is crucial for treating retina neurodegenerative diseases. Docosahexaenoic acid (DHA), the major retinal polyunsaturated fatty acid, prevents photoreceptor apoptosis during early development in vitro , and upon oxidative stress. However, the signaling mechanisms activated by DHA are still unclear. We investigated whether the extracellular signal regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) or the phosphatidylinositol-3-kinase (PI3K) pathway participated in DHA protection. 1,4-Diamino-2,3-dicyano-1,4-bis(2-aminophynyltio) butadiene (U0126), a specific MEK inhibitor, completely blocked the DHA anti-apoptotic effect. DHA rapidly increased ERK phosphorylation in photoreceptors, whereas U0126 blocked this increase. U0126 hindered DHA prevention of mitochondrial depolarization, and blocked the DHA-induced increase in opsin expression. On the contrary, PI3K inhibitors did not diminish the DHA protective effect. DHA promoted the early expression of Bcl-2, decreased Bax expression and reduced caspase-3 activation in photoreceptors. These results suggest that DHA exclusively activates the ERK/MAPK pathway to promote photoreceptor survival during early development in vitro and upon oxidative stress. This leads to the regulation of Bcl-2 and Bax expression, thus preserving mitochondrial membrane potential and inhibiting caspase activation. Hence, DHA, a lipid trophic factor, promotes photoreceptor survival and differentiation by activating the same signaling pathways triggered by peptidic trophic factors.  相似文献   

4.
The cardiotoxicity of cyclosporine A (CsA) limits its clinical application in extensive and long-term therapies. Our group has shown that CsA induces myocardium cell apoptosis in vivo and increases calcium-sensing receptor (CaSR) expression. However, its molecular mechanism remains unknown. The purpose of this study was to determine whether CaSR plays an essential role in CsA-induced apoptosis in H9c2 cells and to investigate the role of the mitogen-activated protein kinase (MAPK) signaling cascade in this process. H9c2 cells were treated with CsA in a dose-dependent manner, and decreased Bcl-2 expression, increased Bax expression, and caspase-3 activation were observed. In a time-dependent manner, CsA increased CaSR expression, activated the extracellularly regulated kinase (ERK) and p38 MAPK pathways, and inactivated the c-Jun N-terminal kinase (JNK) MAPK signaling pathway. When H9c2 cardiomyoblast cells pretreated with gadolinium chloride (GdCl(3)), a CaSR activator, were treated with CsA, decreased phosphorylation of ERK1/2, increased phosphorylation of p38, decreased Bcl-2 expression, increased Bax expression, and activated caspase-3 were observed. Cells pretreated with the CaSR inhibitor NPS2390 inhibited this process. Furthermore, the MEK1/2 inhibitor U0126 and the p38 MAPK inhibitor SB203580 markedly blocked the effect of CsA on cell apoptosis, apoptotic-related protein expression, and caspase-3 activation. These findings showed that CsA induced apoptosis in H9c2 cells in vitro, and CaSR mediated the degradation of ERK MAPK and the upregulation of the p38 MAPK pathway involved in CsA-induced H9c2 cardiomyoblast cell apoptosis.  相似文献   

5.
Bcl-x(S), a pro-apoptotic member of the Bcl-2 protein family, is localized in the mitochondrial outer membrane and induces caspase-dependent and nerve growth factor (NGF)-inhibitable apoptosis in PC12 cells. The mechanism of action of Bcl-x(S) and how NGF inhibits this death are not fully understood. It is still unknown whether Bcl-x(S) induces mitochondrial cytochrome c release, and which apoptotic step NGF inhibits. We show that Bcl-x(S) induces cytochrome c release and caspase-3 activation in several cell types, and that in PC12 cells, these events are inhibited by NGF treatment. The survival effect of NGF was inhibited by inhibitors of protein kinase C (PKC), phosphatidylinositol-3-kinase (PI 3-kinase), and the mitogen-activated protein kinase kinase (MEK) inhibitors GF109203X, LY294002, and U0126. These findings show that cytochrome c release and caspase-3 activation participate in Bcl-x(S)-induced apoptosis, and that NGF inhibits Bcl-x(S)-induced apoptosis at the mitochondrial level via the PKC, PI 3-kinase, and MEK signaling pathways.  相似文献   

6.
Brain-derived neurotrophic factor (BDNF) prevents the loss of striatal neurons caused by excitotoxicity. We examined whether these neuroprotective effects are mediated by changes in the regulation of Bcl-2 family members. We first analyzed the involvement of the phosphatidylinositol 3-kinase/Akt pathway in this regulation, showing a reduction in phosphorylated Akt (p-Akt) levels after both quinolinate (QUIN, an NMDA receptor agonist) and kainate (KA, a non-NMDA receptor agonist) intrastriatal injection. Our results also show that Bcl-2, Bcl-x(L) and Bax protein levels and heterodimerization are selectively regulated by NMDA and non-NMDA receptor stimulation. Striatal cell death induced by QUIN is mediated by an increase in Bax and a decrease in Bcl-2 protein levels, leading to reduced levels of Bax:Bcl-2 heterodimers. In contrast, changes in Bax protein levels are not required for KA-induced apoptotic cell death, but decreased levels of both Bax:Bcl-2 and Bax:Bcl-x(L) heterodimer levels are necessary. Furthermore, QUIN and KA injection activated caspase-3. Intrastriatal grafting of a BDNF-secreting cell line counter-regulated p-AKT, Bcl-2, Bcl-x(L) and Bax protein levels, prevented changes in the heterodimerization between Bax and pro-survival proteins, and blocked caspase-3 activation induced by excitotoxicity. These results provide a possible mechanism to explain the anti-apoptotic effect of BDNF against to excitotoxicity in the striatum through the regulation of Bcl-2 family members, which is probably mediated by Akt activation.  相似文献   

7.
Treatment with 1-4 microM As(2)O(3) slightly induced apoptosis in U-937 human promonocitic leukemia cells. This effect was potentiated by co-treatment with MEK/ERK (PD98059, U0126) and JNK (SP600125, AS601245) inhibitors, but not with p38 (SB203580, SB220025) inhibitors. However, no potentiation was obtained using lonidamine, doxorubicin, or cisplatin instead of As(2)O(3). Apoptosis potentiation by mitogen-activated protein kinase (MAPK) inhibitors involved both the intrinsic and extrinsic executionary pathways, as demonstrated by Bax activation and cytochrome c release from mitochondria, and by caspase-8 activation and Bid cleavage, respectively; and the activation of both pathways was prevented by Bcl-2 over-expression. Treatment with MEK/ERK and JNK inhibitors, but not with p38 inhibitors, caused intracellular glutathione (GSH) depletion, which was differentially regulated. Thus, while it was prevented by N-acetyl-L-cysteine (NAC) in the case of U0126, it behaved as a NAC-insensitive process, regulated at the level of DL-buthionine-(S,R)-sulfoximine (BSO)-sensitive enzyme activity, in the case of SP600125. The MEK/ERK inhibitor also potentiated apoptosis and decreased GSH content in As(2)O(3)-treated NB4 human acute promyelocytic leukemia (APL) cells, but none of these effects were produced by the JNK inhibitor. MEK/ERK and JNK inhibitors did not apparently affect As(2)O(3) transport activity, as measured by intracellular arsenic accumulation. SP600126 greatly induced reactive oxygen species (ROS) accumulation, while BSO and U0126 had little or null effects. These results, which indicate that glutathione is a target of MAP kinases in myeloid leukemia cells, might be exploited to improve the antitumor properties of As(2)O(3), and provide a rationale for the use of kinase inhibitors as therapeutic agents.  相似文献   

8.
Sphingosylphosphorylcholine (SPC) produces reactive oxygen species (ROS) in MS1 pancreatic islet endothelial cells. In the present study, we explored the physiological significance of the SPC-induced ROS generation in endothelial cells. SPC induced cell death of MS1 cells at higher than 10 microM concentration through a caspase-3-dependent pathway. SPC treatment induced sustained activation of an extracellular signal-regulated kinase (ERK), in contrast to transient activation of ERK in response to platelet-derived growth factor (PDGF)-BB, which stimulated proliferation of MS1 cells. Both the SPC-induced cell death and ERK activation were abolished by pretreatment of the cells with the MEK inhibitor U0126 or by overexpression of a dominant negative mutant of MEK1 (DN-MEK1). Pretreatment of the cells with N-acetylcysteine, an antioxidant, completely prevented the SPC-induced ROS generation, apoptosis, and ERK activation, whereas the ROS generation was not abrogated by treatment with U0126. Consistent with these results, SPC induced cell death of human umbilical vein endothelial cells (HUVECs) through ROS-mediated activation of ERK. These results suggest that the SPC-induced generation of ROS plays a crucial role in the cell death of endothelial cells through ERK-dependent pathway.  相似文献   

9.
The cardiotoxic effects of doxorubicin, a potent chemotherapeutic agent, have been linked to DNA damage, oxidative mitochondrial damage, and nuclear translocation of p53, but the exact molecular mechanisms causing p53 transactivation and doxorubicin-induced cardiomyopathy are not clear. The present study was carried out to determine whether extracellular signal-regulated kinases (ERKs), which are known to be activated by DNA damaging agents, are responsible for doxorubicin-induced p53 activation and oxidative mitochondrial damage in H9c2 cells. Cell death was measured by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling, annexin V-fluorescein isothiocyanate, activation of caspase-9 and -3, and cleavage of poly(ADP-ribose) polymerase (PARP). We found that doxorubicin produced cell death in H9c2 cells in a time-dependent manner, beginning at 6 h, and these changes are associated decreased expression of Bcl-2, increases in Bax and p53 upregulated modulator of apoptosis-alpha expression, and collapse of mitochondria membrane potential. The changes in cell death and Bcl-2 family proteins, however, were preceded by earlier activation and nuclear translocation of ERKs, followed by increased phosphorylation at Ser15 and nuclear translocation of the phosphorylated p53. The functional importance of ERK1/2 and p53 in doxorubicin-induced toxicity was further demonstrated by the specific ERK inhibitor U-0126 and p53 inhibitor pifithrin (PFT)-alpha, which abrogated the changes in Bcl-2 family proteins and cell death produced by doxorubicin. U-0126 blocked the phosphorylation and nuclear translocation of both ERK1/2 and p53, whereas PFT-alpha blocked only the changes in p53. Doxorubicin and ERK inhibitors produced similar changes in ERK1/2-p53, PARP, and caspase-3 in neonatal rat cultured cardiomyocytes. Thus we conclude that ERK1/2 are functionally linked to p53 and that the ERK1/2-p53 cascade is the upstream signaling pathway responsible for doxorubicin-induced cardiac cell apoptosis. ERKs and p53 may be considered as novel therapeutic targets for the treatment of doxorubicin-induced cardiotoxicity.  相似文献   

10.
Hepatocyte growth factor (HGF), an endogenous tissue repair factor, attenuates apoptosis in many primary cell types, but the mechanism is not completely understood. Our laboratory demonstrated that angiotensin (Ang) II activates the intrinsic apoptotic pathway in primary endothelial cells (ECs) via reduction of the antiapoptotic protein Bcl-x(L). Ang II decreased Bcl-x(L) mRNA half-life by reducing its binding to nucleolin, a protein that normally binds a 3' AU-rich region and stabilizes Bcl-x(L) mRNA. We hypothesized HGF may block apoptosis induced by Ang II. We used primary EC and ex vivo cultures of rat lung tissue to investigate HGF inhibition of Ang II-induced apoptosis. Our data indicated HGF abrogated Ang II-induced apoptosis by inhibiting cytochrome c release, caspase-3 activation, and DNA fragmentation. RNA-immunoprecipitation experiments demonstrated that HGF stabilized Bcl-x(L) mRNA by increasing nucleolin binding to the 3'-untranslated region that was associated with cytoplasmic localization of nucleolin. Cytoplasmic localization of nucleolin and Bcl-x(L) mRNA stabilization required HGF activation of extracellular signal-regulated kinase (ERK)1/2, but not phosphatidylinositol 3-kinase. HGF also blocked Ang II-induced caspase-3 activation and lactate dehydrogenase release in tissue explants in an ERK-dependent manner.  相似文献   

11.
Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignant tumor and is refractory to conventional chemotherapy. The aim of this study is therefore to elucidate the mechanism of chemoresistance in ICC which is not fully understood. We generated cisplatin resistant ICC cells via long term exposure to cisplatin and found that these cells are also resistant to 5-fluorouracil (5-FU) and gemcitabine. The chemoresistant cells showed enhanced Bcl-2 expression and reduced Bax expression compared to parental ICC cells. In addition, the resistant cells showed enhanced activation of AKT and extracellular signal-regulated kinase (ERK) 1/2. Inhibition of AKT activation by phosphoinocitide 3-kinase (PI3K) inhibitor LY294002 resulted in reduced Bcl-2 expression and enhanced Bax expression and thus induced apoptosis in the resistant cells, whereas inhibition of ERK1/2 activation by mitogen-activated protein kinase (MEK) inhibitor U0126 did not induce apoptosis without affecting the expression of Bcl-2 and Bax but decreased cell growth. Moreover, the inhibition of AKT or ERK1/2 sensitized the resistant cells to cisplatin and therefore resulted in greatly enhanced cisplatin-induced apoptosis and growth inhibition in the cells. The results indicate that AKT and ERK1/2 signaling mediate chemoresistance in the cells and could be important therapeutic targets for overcoming chemoresistance in ICC.  相似文献   

12.
Hispidin, a phenolic compound from Phellinus linteus (a medicinal mushroom), has been shown to possess strong anti-oxidant, anti-cancer, anti-diabetic, and anti-dementia properties. However, the cardioprotective efficacy of hispidin has not yet been investigated. In the present study, we investigated the protective effect of hispidin against oxidative stress-induced apoptosis in H9c2 cardiomyoblast cells and neonatal rat ventricular myocytes. While the treatment of H9c2 cardiomyoblast cells with hydrogen peroxide caused a loss of cell viability and an increase in the number of apoptotic cells, hispidin significantly protected the cells against hydrogen peroxide-induced cell death without any cytotoxicity as determined by XTT assay, LDH release assay, Hoechst 33342 assay, and Western blotting of apoptosis proteins such as caspase-3, Bax, and Bcl-2. Our data also shows that hispidin significantly scavenged intracellular ROS, and markedly enhanced the expression of antioxidant enzymes such as heme oxygenase-1 and catalase, which was accompanied by the concomitant activation of Akt/GSK-3β and ERK1/2 phosphorylation in H9c2 cardiomyoblast cells. The effects of hispidin on Akt and ERK phosphorylation were abrogated by LY294002 (a PI3K/Akt inhibitor) and U0126 (an ERK1/2 inhibitor). The effect of hispidin on GSK-3b activities was also blocked by LY294002. Furthermore, inhibiting the Akt/GSK-3β and ERK1/2 pathway by these inhibitors significantly reversed the hispidin-induced Bax and Bcl-2 expression, apoptosis induction, and ROS production. These findings indicate that hispidin protects against apoptosis in H9c2 cardiomyoblast cells exposed to hydrogen peroxide through reducing intracellular ROS production, regulating apoptosis-related proteins, and the activation of the Akt/GSK-3β and ERK1/2 signaling pathways.  相似文献   

13.
Basic fibroblast growth factor (FGF2) stimulates photoreceptor survival in vivo and in vitro, but the molecular signaling mechanism(s) involved are unknown. Immunohistochemical and immunoblotting analyses of pure photoreceptors, inner retinal neurons, and Müller glial cells (MGC) in vitro revealed differential expression of the high affinity FGF receptors (FGFR1-4), as well as many cytoplasmic signaling intermediates known to mediate the extracellular signal-regulated kinase (ERK1/2) pathway. FGF2-induced tyrosine phosphorylation in vitro exhibited distinct profiles for each culture type, and FGF2-induced ERK1/2 activation was observed for all three preparations. Whereas U0126, a specific inhibitor of ERK kinase (MEK), completely abolished FGF2-induced ERK1/2 tyrosine phosphorylation and survival in cultured photoreceptors, persistent ERK1/2 phosphorylation was observed in cultured inner retinal cells and MGC. Furthermore U0126 treatment entirely blocked nerve growth factor-induced ERK1/2 activation in MGC, as well as FGF2-induced ERK1/2 activation in cerebral glial cells. Taken together, these data indicate that FGF2-induced ERK1/2 activation is entirely mediated by MEK within photoreceptors, which is responsible for FGF2-stimulated photoreceptor survival. In contrast, inner retina/glia possess alternative, cell type, and growth factor-specific MEK-independent ERK1/2 activation pathways. Hence signaling and biological effects elicited by FGF2 within retina are mediated by cell type-specific pathways.  相似文献   

14.
15.
Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disorder characterized by the extracellular deposition of transthyretin (TTR), especially in the PNS. Given the invasiveness of nerve biopsy, salivary glands (SG) from FAP patients were used previously in microarray analysis; mitogen-activated protein (MAP) kinase phosphatase 1 (MKP-1) was down-regulated in FAP. Results were validated by RT-PCR and immunohistochemistry both in SG and in nerve biopsies of different stages of disease progression. MKP-3 was also down-regulated in FAP SG biopsies. Given the relationship between MKPs and MAPKs, the latter were investigated. Only extracellular signal-regulated kinases 1/2 (ERK1/2) displayed increased activation in FAP SG and nerves. ERK1/2 kinase (MEK1/2) activation was also up-regulated in FAP nerves. In addition, an FAP transgenic mouse model revealed increased ERK1/2 activation in peripheral nerve affected with TTR deposition when compared to control animals. Cultured rat Schwannoma cell line treatment with TTR aggregates stimulated ERK1/2 activation, which was partially mediated by the receptor for advanced glycation end-products (RAGE). Moreover, caspase-3 activation triggered by TTR aggregates was abrogated by U0126, a MEK1/2 inhibitor, indicating that ERK1/2 activation is essential for TTR aggregates-induced cytotoxicity. Taken together, these data suggest that abnormally sustained activation of ERK in FAP may represent an early signaling cascade leading to neurodegeneration.  相似文献   

16.
We demonstrate that exposure of post-confluent 3T3-L1 preadipocytes to insulin, isobutylmethylxanthine (MIX), dexamethasone (DEX), and fetal bovine serum induces a rapid but transient activation of MEK1 as indicated by extensive phosphorylation of ERK1 and ERK2 during the initial 2 h of adipogenesis. Inhibition of this activity by treating the cells with a MEK1-specific inhibitor (U0126 or PD98059) prior to the induction of differentiation significantly attenuated the expression of peroxisome proliferator-activated receptor (PPAR) gamma, CCAAT/enhancer-binding protein (C/EBP) alpha, perilipin, and adipocyte-specific fatty acid-binding protein (aP2). Treating the preadipocytes with troglitazone, a potent PPARgamma ligand, could circumvent the inhibition of adipogenic gene expression by U0126. Fibroblast growth factor-2 (FGF-2), in the presence of dexamethasone, isobutylmethylxanthine, and insulin, induces a prolonged activation of the MEK/ERK signaling pathway, which lasts for at least 12 h post-induction, and this activity is less sensitive to the MEK inhibitors. Consequently, preadipocytes treated with U0126 in the presence of fibroblast growth factor-2 (FGF-2) express normal post-induction levels of MEK activity, and, in so doing, are capable of undergoing adipogenesis. We further show that activation of MEK1 significantly enhances the transactivation of the C/EBPalpha minimal promoter during the early phase of the differentiation process. Our results suggest that activation of the MEK/ERK signaling pathway during the initial 12 h of adipogenesis enhances the activity of factors that regulate both C/EBPalpha and PPARgamma expression.  相似文献   

17.
Bak but not Bax is essential for Bcl-xS-induced apoptosis   总被引:2,自引:0,他引:2  
Bcl-x(S), a proapoptotic member of the Bcl-2 protein family, is localized in the mitochondria and induces apoptosis in a caspase- and BH3-dependent manner by a mechanism involving cytochrome c release. The way in which Bcl-x(S) induces caspase activation and cytochrome c release, as well as the relationship between Bcl-x(S) and other proapoptotic members of the Bcl-2 family, is not known. Here we used embryonic fibroblasts derived from mice deficient in the multidomain proapoptotic members of the Bcl-2 family (Bax and Bak) and the apoptotic components of the apoptosome (Apaf-1 and caspase-9) to unravel the cascade of events by which Bcl-x(S) promotes apoptosis. Our results show that Bak but not Bax is essential for Bcl-x(S)-induced apoptosis. Bcl-x(S) induced activation of Bak, which in turn promoted apoptosis by apoptosome-dependent and -independent pathways. These findings provide the first evidence that a proapoptotic Bcl-2 family protein induces apoptosis exclusively via Bak.  相似文献   

18.
19.
Park D  Pandey SK  Maksimova E  Kole S  Bernier M 《Biochemistry》2000,39(41):12513-12521
CHO cells expressing the human insulin receptors (IR) were used to evaluate the effect of the potent farnesyltransferase inhibitor, manumycin, on insulin antiapoptotic function. Cell treatment with manumycin blocked insulin's ability to suppress pro-apoptotic caspase-3 activity which led to time-dependent proteolytic cleavage of two nuclear target proteins. The Raf-1/MEK/ERK cascade and the serine/threonine protein kinase Akt are two survival pathways that may be activated in response to insulin. We tested the hypothesis that inhibition of farnesylated Ras was causally related to manumycin-induced apoptosis and showed that the response to manumycin was found to be independent of K-Ras function because membrane association and activation of endogenous K-Ras proteins in terms of GTP loading and ERK activation were unabated following treatment with manumycin. Moreover, blocking p21Ras/Raf-1/MEK/ERK cascade by the expression of a transdominant inhibitory mSOS1 mutant in CHO-IR cells kept cells sensitive to the antiapoptotic action of insulin. Insulin-dependent activation of Akt was blocked by 4 h treatment with manumycin (P < 0.01), a kinetic too rapid to be explained by Ras inhibition. This study suggests that the depletion of short-lived farnesylated proteins by manumycin suppresses the antiapoptotic action of insulin at least in part by disrupting Akt activation but not that of the K-Ras/Raf-1/ERK-dependent cascade.  相似文献   

20.
In a previously published report (Kurland, J. F., Kodym, R., Story, M. D., Spurgers, K. B., McDonnell, T. J., and Meyn, R. E. (2001) J. Biol. Chem. 276, 45380-45386), we described the NF kappa B status for two murine B-cell lymphoma cell lines, LY-as (apoptosis-sensitive) and LY-ar (apoptosis-refractory) and provided evidence that NF kappa B1 (p50) homodimers contribute to the expression of Bcl-2 in the LY-ar line. In the present study, we investigated the upstream signals leading to p50 homodimer activation and Bcl-2 expression. We found that in LY-ar cells, ERK1 and ERK2 were constitutively phosphorylated, whereas LY-as cells had no detectable ERK1 or ERK2 phosphorylation. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK1 and ERK2, a reversal of nuclear p50 homodimer DNA binding, and a decrease in Bcl-2 protein expression. Similarly, activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with tumor necrosis factor-alpha, an I kappa B kinase activator, did not alter the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an I kappa B kinase-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. We conclude that the MEK/ERK pathway acts upstream of p50 homodimer activity and Bcl-2 expression in this B-cell lymphoma cell system and suggest that the use of MEK inhibitors could be useful clinically in combination with ionizing radiation to treat lymphoid malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号