首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The amino (N) terminus of the human papillomavirus (HPV) minor capsid protein L2 can induce low-titer, cross-neutralizing antibodies. The aim of this study was to improve immunogenicity of L2 peptides by surface display on highly ordered, self-assembled virus-like particles (VLP) of major capsid protein L1, and to more completely characterize neutralization epitopes of L2. Overlapping peptides comprising amino acids (aa) 2 to 22 (hereafter, chimera or peptide 2-22), 13 to 107, 18 to 31, 17 to 36, 35 to 75, 75 to 112, 115 to 154, 149 to 175, and 172 to 200 of HPV type 16 (HPV16) L2 were genetically engineered into the DE surface loop of bovine papillomavirus type 1 L1 VLP. Except for chimeras 35-75 and 13-107, recombinant fusion proteins assembled into VLP. Vaccination of rabbits with Freund''s adjuvanted native VLP induced higher L2-specific antibody titers than vaccination with corresponding sodium dodecyl sulfate-denatured proteins. Immune sera to epitopes within residues 13 to 154 neutralized HPV16 in pseudovirion neutralization assays, whereas chimera 17-36 induced additional cross-neutralization to divergent high-risk HPV18, -31, -45, -52, and -58; low-risk HPV11; and beta-type HPV5 (titers of 50 to 10,000). Aluminum hydroxide-monophosphoryl lipid A (Alum-MPL)-adjuvanted VLP induced similar patterns of neutralization in both rabbits and mice, albeit with 100-fold-lower titers than Freund''s adjuvant. Importantly, Alum-MPL-adjuvanted immunization with chimeric HPV16L1-HPV16L2 (peptide 17-36) VLP induced neutralization or cross-neutralization of HPV16, -18, -31, -45, -52, and -58; HPV6 and -11; and HPV5 (titers of 50 to 100,000). Immunization with HPV16 L1-HPV16 L2 (chimera 17-36) VLP in adjuvant applicable for human use induces broad-spectrum neutralizing antibodies against HPV types evolutionarily divergent to HPV16 and thus may protect against infection with mucosal high-risk, low-risk, and beta HPV types and associated disease.The more than 100 types of human papillomaviruses (HPV) identified to date (14) are the etiological agents of skin and mucosal papillomas or warts. Persistent infection with high-risk mucosal types, most often HPV type 16 (HPV16) and HPV18, causes cervical cancer, which constitutes the second leading fatal cancer in women worldwide, causing 274,000 deaths per year. Substantial morbidity results from other noncervical HPV-related conditions, such as anogenital warts or anal cancer (23).The development of current prophylactic papillomavirus vaccines was launched by observations that recombinantly expressed major capsid protein L1 self-assembles into virus-like particles (VLP). These empty viral capsids are composed of 360 L1 molecules and resemble native virions in both structure and immunogenicity, yet are nononcogenic and noninfectious. Moreover, VLP cannot replicate because the cells in which VLP are made contain only L1 and no other papillomavirus genes. Subunit VLP vaccines induce high-titer and type-restricted antibody responses to conformational L1 epitopes (12, 26, 39, 44). When applied to women prior to infection, available vaccines targeting the most prevalent high-risk types, HPV16 and HPV18, have demonstrated up to 100% efficacy against persistent infection and associated disease caused by the included types and thus are potentially able to prevent ∼70% of cervical high-grade dysplasias and probably cancers (22, 46). Therefore, use of currently licensed L1 vaccines necessitates continuation of cytological cervical screening of women. The prevention of 96% of cervical cancer would require immunity to seven high-risk HPV types (HPV16, -18, -31, -33, -45, -52, and -58) (32) and the development of more highly multivalent (and presumably costly) L1 VLP vaccines.The search for alternative broader-spectrum immunogens drew attention to the minor capsid protein L2, which is immunogenically subdominant in the context of coexpressed L1-L2 capsids (38). Immunization of animals with the amino (N)-terminal peptide of L2 demonstrated its ability to elicit low-titer neutralizing antibodies that protect against challenge with cognate papillomavirus types in vivo (16, 19), cross-neutralize heterologous types in vitro (25, 33, 38), and confer cross-protection in vivo (17).This study addresses two major issues that may further the development of L2-based broader-spectrum vaccines. First, the N terminus of L2 is more closely examined for potential neutralization epitopes, by incorporating peptides into papillomavirus VLP as peptide-presenting platforms (7, 21, 42). Moreover, we take advantage of the immunogenic characteristics of virion surfaces, such as the dense repetitive surface array of VLP, to induce strong and enduring immune responses to displayed L2 epitopes.  相似文献   

2.
人乳头瘤病毒16型病毒样颗粒的制备及其免疫原性研究   总被引:1,自引:0,他引:1  
利用PCR技术从HPV16阳性阴道分泌物标本中获得HPV16 L1基因片段,并将其插入表达载体pTO-T7中,构建重组表达质粒pTO-T7-HPV16-L1;以该重组质粒转化大肠杆菌ER2566并表达HPV16 L1蛋白;所表达的HPV16 L1蛋白经过硫酸铵沉淀、离子交换层析和疏水相互作用层析等纯化步骤后,HPV16 L1纯度达到98%以上,并可在体外装配为直径50nm的病毒样颗粒;动物免疫原性研究结果显示,该病毒样颗粒可诱导高滴度的针对HPV16的中和抗体。上述研究结果表明通过大肠杆菌表达系统制备的HPV16病毒样颗粒具有纯度高,与天然病毒颗粒形态高度相似的特点,并具有高度免疫原性,可以应用于HPV16病毒样颗粒的结构功能研究及HPV16疫苗研发等领域。  相似文献   

3.
To specifically induce a mucosal antibody response to purified human papillomavirus type 16 (HPV16) virus-like particles (VLP), we immunized female BALB/c mice orally, intranasally, and/or parenterally and evaluated cholera toxin (CT) as a mucosal adjuvant. Anti-HPV16 VLP immunoglobulin G (IgG) and IgA titers in serum, saliva, and genital secretions were measured by enzyme-linked immunosorbent assay (ELISA). Systemic immunizations alone induced HPV16 VLP-specific IgG in serum and, to a lesser extent, in genital secretions but no secretory IgA. Oral immunization, even in the presence of CT, was inefficient. However, three nasal immunizations with 5 μg of VLP given at weekly intervals to anesthetized mice induced high (>104) and long-lasting (>15 weeks) titers of anti-HPV16 VLP antibodies in all samples, including IgA and IgG in saliva and genital secretions. CT enhanced the VLP-specific antibody response 10-fold in serum and to a lesser extent in saliva and genital secretions. Nasal immunization of conscious mice compared to anesthetized mice was inefficient and correlated with the absence of uptake of a marker into the lung. However, a 1-μg VLP systemic priming followed by two 5-μg VLP intranasal boosts in conscious mice induced both HPV16 VLP-specific IgG and IgA in secretions, although the titers were lower than in anesthetized mice given three intranasal immunizations. Antibodies in serum, saliva, and genital secretions of immunized mice were strongly neutralizing in vitro (50% neutralization with ELISA titers of 65 to 125). The mucosal and systemic/mucosal HPV16 VLP immunization protocols that induced significant titers of neutralizing IgG and secretory IgA in mucosal secretions in mice may be relevant to genital HPV VLP-based human vaccine trials.  相似文献   

4.
Cervical cancer is caused by high-risk, cancer-causing human papillomaviruses (HPV) and is the second highest cause of cancer deaths in women globally. The majority of cervical cancers express well-characterized HPV oncogenes, which are potential targets for immunotherapeutic vaccination. Here we develop a rabbit haemorrhagic disease virus (RHDV) virus-like particle (VLP)-based vaccine designed for immunotherapy against HPV16 positive tumours. An RHDV-VLP, modified to contain the universal helper T cell epitope PADRE and decorated with an MHC I-restricted peptide (aa 48–57) from the HPV16 E6, was tested for its immunotherapeutic efficacy against the TC-1 HPV16 E6 and E7-expressing tumour in mice. The E6-RHDV-VLP-PADRE was administered therapeutically for the treatment of a pre-existing TC-1 tumour and was delivered with antibodies either to deplete regulatory T cells (anti-CD25) or to block T cell suppression mediated through CTLA-4. As a result, the tumour burden was reduced by around 50% and the median survival time of mice to the humane endpoint was almost doubled the compared to controls. The incorporation of PADRE into the RHDV-VLP was necessary for an E6-specific enhancement of the anti-tumour response and the co-administration of the immune modifying antibodies contributed to the overall efficacy of the immunotherapy. The E6-RHDV-VLP-PADRE shows immunotherapeutic efficacy, prolonging survival for HPV tumour-bearing mice. This was enhanced by the systemic administration of immune-modifying antibodies that are commercially available for use in humans. There is potential to further modify these particles for even greater efficacy in the path to development of an immunotherapeutic treatment for HPV precancerous and cancer stages.  相似文献   

5.
重组人乳头瘤病毒6型病毒样颗粒诱导中和抗体   总被引:3,自引:0,他引:3  
为研究重组病毒样颗粒(virus-like particle,VLP)免疫血清的抗感染作用,用重组杆状病毒在昆虫细胞中表达制备的人乳头瘤病毒6型(human papillomavirus type 6,HPV-6)L1 VLP的HPV-6L1+L2 VLP免疫BALB/c小鼠,获得抗血清,ELISA法测定抗体滴度,在细胞水平和裸鼠异源组织移植模型中评价了免疫血清的中和病毒抗感染作用。VLP诱导了高滴度(>1:10000)的血清抗体,抗血清可以特异地阻断人胚上皮细胞对VLP的摄入,并且能抑制从尖锐湿疣活检标本提取的HPV对人上皮细胞的感染。重组HPV-6VLP免疫小鼠诱导的血清抗体具有中和病毒、抑制感染的作用。提示重组VLP可以用于研制HVP预防性疫苗。  相似文献   

6.
The human papillomavirus type 11 (HPV-11) L1 major capsid protein can be trypsinized to generate recombinant capsomeres that retain HPV genotype-restricted capsid antigenicity (M. Li, T. P. Cripe, P. A. Estes, M. K. Lyon, R. C. Rose, and R. L. Garcea, J. Virol. 71:2988–2995, 1997). In the present study, HPV-11 virion-neutralizing monoclonal antibodies H11.F1 and H11.H3, previously characterized as recognizing two distinct HPV-11 capsid-neutralizing antigenic domains (S. W. Ludmerer, D. Benincasa, and G. E. Mark III, J. Virol. 70:4791–4794, 1996), were each found to be highly immunoreactive with trypsin-generated capsomeres in an enzyme-linked immunosorbent assay (ELISA). Capsomeres were used to generate high-titer polyclonal immune sera that demonstrated HPV genotype-restricted reactivity by ELISA. The capsomere antisera were then tested in an in vitro infectivity assay and found to neutralize HPV-11 virions. In this assay, HPV-11 capsomere polyclonal antisera exhibited neutralization titers (10−5 to 10−6) comparable to those obtained with a virion-neutralizing antiserum raised previously against intact HPV-11 VLPs (R. C. Rose, R. C. Reichman, and W. Bonnez, J. Gen. Virol. 75:2075–2079, 1994). These results indicate that highly immunogenic, genotype-restricted HPV capsid-neutralizing antigenic domains are contained entirely within capsomeres. Thus, capsomeres may be viable vaccine candidates for the prevention of HPV disease.  相似文献   

7.
Infections with human papillomavirus type 16 (HPV-16) are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, the most promising vaccine against HPV-16 infection is based on the L1 major capsid protein, which self-assembles in virus-like particles (VLPs). In this work, we used a lactose-inducible system based on the Lactobacillus casei lactose operon promoter (plac) for expression of the HPV-16 L1 protein in L. casei. Expression was confirmed by Western blotting, and an electron microscopy analysis of L. casei expressing L1 showed that the protein was able to self-assemble into VLPs intracellularly. The presence of conformational epitopes on the L. casei-produced VLPs was confirmed by immunofluorescence using the anti-HPV-16 VLP conformational antibody H16.V5. Moreover, sera from mice that were subcutaneously immunized with L. casei expressing L1 reacted with Spodoptera frugiperda-produced HPV-16 L1 VLPs, as determined by an enzyme-linked immunosorbent assay. The production of L1 VLPs by Lactobacillus opens the possibility for development of new live mucosal prophylactic vaccines.  相似文献   

8.
Human papillomavirus type 16 (HPV-16) infects the genital tract and is closely associated with the development of cervical cancer. HPV-16 initiates infection at the genital mucosal surface; thus, mucosal immune responses are likely to contribute to defense against HPV-16 infection. However, little information is available regarding the induction of immune responses in the genital tract mucosa. In this study, we evaluated the potential of intranasally administered papillomavirus vaccines to elicit both systemic and vaginal immune responses. HPV-16 virus-like particles (VLPs) produced by self-assembly of L1 protein and the HPV-16 L1 gene cloned into a mammalian expression vector were used as vaccines. Intranasally administered VLPs induced serum immunoglobulin G (IgG) and vaginal IgA secretory antibodies. Very weak serum IgG and vaginal IgA responses were found after DNA immunization. Both splenic and vaginal lymphocytes could be activated by intranasal immunization with VLPs and the HPV-16 L1 gene. Activated CD4(+) Th1-like T cells were shown to synthesize gamma interferon, and activated CD8(+) T cells were demonstrated to be cytotoxic.  相似文献   

9.
目的:提高16型人乳头瘤病毒(HPV16)L1基因在杆状病毒昆虫细胞中的表达水平,为研制预防性HPV疫苗奠定基础。方法:根据昆虫细胞密码子偏性对野生型HPV16L1基因进行改造,利用Bac-to-Bac表达系统获得重组杆状病毒,感染昆虫细胞Sf9和High Five。Western blot鉴定表达产物;电镜下观察病毒样颗粒形成。利用ELISA法评价HPV16L1基因的优化效果,探讨L1蛋白表达的最佳条件。结果:在相对分子质量56kDa处出现HPV16L1的特异性条带;电镜下可见病毒样颗粒在昆虫细胞的核内形成;优化型HPV16L1基因的表达水平显著高于野生型。High Five细胞表达的最佳条件为MOI=10,表达时相72h,其L1蛋白表达量至少比Sf9细胞高3倍。结论:密码子优化技术确实能够促进HPV16L1蛋白的高效表达,而High Five细胞表现出的显著优势尤其值得关注。  相似文献   

10.
We have recently shown that nasal immunization of anesthetized mice with human papillomavirus type 16 (HPV16) virus-like particles (VLPs) is highly effective at inducing both neutralizing immunoglobulin A (IgA) and IgG in genital secretions, while parenteral immunization induced only neutralizing IgG. Our data also demonstrated that both isotypes are similarly neutralizing according to an in vitro pseudotyped neutralization assay. However, it is known that various amounts of IgA and IgG are produced in genital secretions along the estrous cycle. Therefore, we have investigated how this variation influences the amount of HPV16 neutralizing antibodies induced after immunization with VLPs. We have compared parenteral and nasal protocols of vaccination with daily samplings of genital secretions of mice. Enzyme-linked immunosorbent assay analysis showed that total IgA and IgG inversely varied along the estrous cycle, with the largest amounts of IgA in proestrus-estrus and the largest amount of IgG in diestrus. This resulted in HPV16 neutralizing titers of IgG only being achieved during diestrus upon parenteral immunization. In contrast, nasal vaccination induced neutralizing titers of IgA plus IgG throughout the estrous cycle, as confirmed by in vitro pseudotyped neutralization assays. Our data suggest that mucosal immunization might be more efficient than parenteral immunization at inducing continuous protection of the female genital tract.  相似文献   

11.
目的:采用大肠杆菌表达系统制备人乳头瘤病毒58型(human papillomavirus type 58,HPV58)病毒样颗粒(virus-like particle,VLP)疫苗。方法:合成法获得HPV58 L1大肠杆菌密码子优化基因,构建HPV58 L1重组原核表达质粒mpET22b/HPV58 L1,检测其在BL21(DE3)中表达水平,饱和硫酸铵沉淀加阳离子交换层析法纯化蛋白后进行动态光散射(dynamic light scatter,DLS)分析。小鼠免疫后,检测免疫血清针对HPV58假病毒的中和抗体水平。结果:HPV58 L1蛋白在BL21(DE3)细胞中大部分以可溶形式表达,纯化获得的HPV58 L1蛋白可组装成水动力学直径约为74 nm的VLP。0.5μg的HPV58 L1 VLP可诱发小鼠产生高滴度的HPV58特异性中和抗体,可维持至少20周。结论:原核表达系统制备的HPV58 L1 VLP可诱发高滴度且持久的中和抗体,可用于成本低的HPV58疫苗的研究。  相似文献   

12.
为确定丹毒丝菌表面保护性抗原A的N-末端(SpaA-N)优势抗原表位,研发新型表位DNA嵌合疫苗,利用生物信息学软件对丹毒丝菌SpaA-N的优势B细胞抗原表位进行预测,以重叠PCR将优势表位插入人乳头瘤病毒16型的主要衣壳蛋白( HPV-16 LI) HI环结构的编码序列中,构建获得重组嵌合质粒pcDNA3-HPV-LI -△spaA.该重组质粒经体内、外瞬时特染后,RT-PCR均扩增获得了1 500 bp左右的目的片段.免疫印迹试验显示,体外转染嵌合质粒的细胞总蛋白能够与GST-SpaA-N重组蛋白免疫血清在56 kD处产生特异性结合.ELISA分析显示嵌合质粒可在小鼠体内产生差异显著的特异性抗体(P<0.01),抗体滴度为1:1 000.此外,pcDNA3-HPV-L1-△spaA制备的抗血清至少可在1∶10稀释度条件下,介导外源补体对半数以上的菌体进行杀伤.该研究表明,获得的SpaA-N表位DNA嵌合疫苗具有免疫活性,为研发安全有效的丹毒丝菌新型DNA疫苗提供了一个新思路.  相似文献   

13.
L1 capsomeres purified from Escherichia coli represent an economic alternative to the recently launched virus-like particle (VLP)-based prophylactic vaccines against infection with human papillomavirus types 16 and 18 (HPV-16 and HPV-18), which are causative agents of cervical cancer. It was recently reported that capsomeres are much less immunogenic than VLPs. Numerous modifications of the L1 protein leading to the formation of capsomeres but preventing capsid assembly have been described, such as the replacement of the cysteine residues that form capsid-stabilizing disulfide bonds or the deletion of helix 4. So far, the influence of these modifications on immunogenicity has not been thoroughly investigated. Here, we describe the purification of eight different HPV-16 L1 proteins as capsomeres from Escherichia coli. We compared them for yield, structure, and immunogenicity in mice. All L1 proteins formed almost identical pentameric structures yet differed strongly in their immunogenicity, especially regarding the humoral immune responses. Immunization of TLR4−/− mice and DNA immunization by the same constructs confirmed that immunogenicity was independent of different degrees of contamination with copurifying immune-stimulatory molecules from E. coli. We hypothesize that immunogenicity correlates with the intrinsic ability of the capsomeres to assemble into larger particles, as only assembly-competent L1 proteins induced high antibody responses. One of the proteins (L1ΔN10) proved to be the most immunogenic, inducing antibody titers equivalent to those generated in response to VLPs. However, preassembly prior to injection did not increase immunogenicity. Our data suggest that certain L1 constructs can be used to produce highly immunogenic capsomeres in bacteria as economic alternatives to VLP-based formulations.Certain types of human papillomavirus (HPV) are the cause of cervical cancer, most frequently HPV types 16 and 18 (HPV-16 and HPV-18), which are responsible for about 50% and 20% of cases, respectively (8, 15, 16). Recently, two vaccines that prevent infection with HPV-16 and HPV-18 have been introduced to the market. These vaccines are based on the viral major structural protein L1, which can spontaneously self-assemble in vitro into empty virus-like particles (VLPs) that resemble the native virions in size and shape. VLPs have been shown to be highly immunogenic, as they can induce high titers of neutralizing antibodies (29, 30). HPV virions and VLPs consist of 72 L1 pentamers, also called capsomeres, which are arranged in an icosahedral T=7 particle lattice with a diameter of 55 nm. Cryo-electron microscopic analysis has revealed the presence of 60 hexavalent and 12 pentavalent capsomeres (4).Capsid assembly has been reported to be optimal at low pH (pH 5.4) and high ionic strength, whereas both high pH (pH 8.2) and the presence of reducing agents favor disassembly into capsomeres, the latter because the viral particles are stabilized by intercapsomeric disulfide bonds between two conserved cysteine residues at positions 175 and 428 (11, 35, 44). VLP formation is not affected by deletions of up to 9 amino acids (aa) from the N terminus and up to 34 aa from the C terminus of the L1 protein (11, 36). An N-terminally truncated L1 protein lacking 10 aa has been shown to assemble into particles consisting of 12 L1-pentamers with a T=1 lattice referred to as small VLPs (11, 12). Crystallographic analysis of the T=1 particles revealed that interpentameric contacts are established by hydrophobic interactions between the α-helices 2 and 3 of one capsomere and α-helix 4 of a neighboring capsomere (12). Consequently, a mutant L1 with helix 4 deleted formed homogenous capsomeres but failed in T=1 and T=7 particle assembly (7). Deletion of helices 2 and 3 impeded even pentamer formation, as a large fraction of the L1 protein was found to be insoluble, which suggests an essential role for these regions in L1 folding (7, 11).VLP-based prophylactic vaccines have been shown to induce high titers of neutralizing antibodies, which protect against virus challenge and associated diseases in humans (24, 31). However, due to the relatively high production and distribution costs of the vaccines—they are expressed in and purified from eukaryotic cells and require a cold chain for storage—they will probably be largely unavailable to developing countries, where more than 80% of all cervical cancer cases occur (1, 38, 46).L1 capsomeres represent a potentially lower cost alternative to VLPs, as they can be produced in large amounts from Escherichia coli and are considered more stable at room temperature (11, 34, 35). Capsomeres have been shown to induce high titers of neutralizing antibodies and T-cell responses upon oral, intranasal, and subcutaneous immunization and have also protected against viral challenge in the canine oral papillomavirus model (18, 19, 37, 42, 48, 53). Most of the immunization data for HPV capsomeres have been obtained from administration of full-length or N-terminally deleted (10 aa) wild-type L1 proteins (18, 37, 53). A recent report in which the L1 pentamers were derived from an L1 protein in which the conserved cysteines (aa 175 and 428) were replaced by alanines revealed that HPV-16 VLPs induce about 20- to 40-fold-higher humoral immune responses than capsomeres (47). The influence on immunogenicity of the other mutations and deletions of the L1 protein that prevent capsid assembly has so far not been studied in depth.In a comparative analysis of eight differently modified HPV-16 L1 proteins purified as capsomeres from E. coli, we now report that their potential to induce humoral immune responses in mice correlates with their ability to assemble into particles larger than capsomeres. One of the constructs, L1ΔN10, encoded for capsomeres that exhibited immunogenicity similar to that of VLPs.  相似文献   

14.
15.
The E7 protein of human papillomavirus type 16 was produced in Lactococcus lactis. Secretion allowed higher production yields than cytoplasmic production. In stationary phase, amounts of cytoplasmic E7 were reduced, while amounts of secreted E7 increased, suggesting a phase-dependent intracellular proteolysis. Fusion of E7 to the staphylococcal nuclease, a stable protein, resulted in a highly stable cytoplasmic protein. This work provides new candidates for development of viral screening systems and for oral vaccine against cervical cancer.  相似文献   

16.
目的:优化人乳头瘤病毒16型主要衣壳蛋白L1(human papillomavirus type 16 major capsid protein L1,HPV16L1)在毕赤酵母中的表达,并考察可能的影响因素。方法:四个不同序列特征的HPV16L1基因M16、Y16、P16、W16(其中,M16和Y16按酵母密码子优化,P16为哺乳动物细胞密码子优化,而W16为野生型序列)分别克隆于毕赤酵母表达质粒p PinkTM-HC(高基因拷贝菌落筛选)和p PinkTM-LC(低基因拷贝菌落筛选),并转化不同蛋白酶缺陷的宿主菌。甲醇诱导24小时后,取菌体样品经Western blot分析L1蛋白的表达。结果:M16显示了最高的表达水平,其次是Y16与P16,而W16几乎无表达。基因序列密码子应用特征分析显示,4个基因的密码子适应指数从高到低依次为Y16、M16、W16和P16。通过自由能和GC含量分析4个序列的mRNA二级结构,Y16为-409.40 kcal/mol和43.85%;M16为-451.50 kcal/mol和47.83%;P 16为-606.50kcal/mol and 64.10%;W16为-384.70 kcal/mol and 38.01%。蛋白酶缺陷菌株L1表达高于野生型菌株,质粒p PinkTM-HC与p PinkTM-LC介导的表达无明显区别。结论:密码子优化操作显著改善了HPV16L1在毕赤酵母中的表达,但表达水平与密码子利用优劣并不完全对应,提示密码子优化仅是部分原因,而mRNA结构与稳定性变化值得探讨。蛋白酶缺陷菌株提高了HPV16L1蛋白的稳定性,显著影响了表达水平。研究证明基因剂量对HPV16L1的表达未产生明显影响。  相似文献   

17.
为预防高危型人乳头瘤病毒16型(HPV16)诱发宫颈癌,制备以减毒志贺氏杆菌为载体的HPV16预防疫苗,以期载体可介导机体产生粘膜免疫反应,达到预防HPVl6感染的目的。为此构建了以HPV16L1为免疫原的减毒志贺氏杆菌苗,并初步鉴定候选疫苗的减毒特性和免疫效果。利用基于志贺氏杆菌virG/icsA基因的表达载体(pHS3199),将HPV16L1基因插入后构成pHS3199-hpv16L1质粒,电穿孔法将其转入减毒志贺氏杆菌sh42,经筛选获得重组减毒sh42-HPV16L1工程菌。用免疫印迹法检测HPV16L1蛋白表达,连续传代法确定其传代和目的蛋白表达的稳定性;豚鼠角膜巩膜炎症试验检测细菌的毒力和菌苗的免疫效果;小鼠红细胞凝集抑制试验检测免疫血清对病毒样颗粒(VLP)的中和活性。免疫印迹检测证实,重组菌株sh42-HPV16L1可稳定表达HPV16L1;豚鼠角膜巩膜炎症试验证实,该候选菌苗无致病性。减毒sh42-HPV16L1经结膜囊途径免疫豚鼠,可以产生特异性体液免疫应答,免疫动物体内的血清、肠道、阴道分泌物中抗HPV16L1 VLPIgG、IgA含量显著高于对照组,并且sh42-HPV16L1免疫动物血清可明显抑制HPV16L1 VLP引起的小鼠红细胞凝集。因而sh42-HPV16L1将是一种潜在的HPV16候选预防疫苗。  相似文献   

18.
为了证实人乳头瘤病毒16型(HPV16)感染与食管鳞状细胞癌发生的关系,构建了包含HPV16E6E7基因的重组腺伴随病毒载体并包装重组病毒,重组病毒感染人胎食管粘膜组织,注射SCID小鼠皮下,在TPA协同下12周左右诱发肿瘤。PCR及打点杂交检测到瘤组织中HPV16E6E7基因的存在,HE染色表明为恶性鳞状上皮癌,培养形态及透射电镜观察证实了瘤组织的上皮来源。以上结果对于阐明食管癌发生的病毒病因、食管癌发生的分子机制以及为食管癌防治提供了理论和实践依据。  相似文献   

19.
为研究我国人乳头瘤病毒 6型 (HPV 6 )基因组晚期区序列变异及衣壳蛋白装配特性 ,从中国尖锐湿疣患者病损组织克隆了HPV 6L1和L2序列 ,经测序、拼接 ,获得HPV 6基因组晚期区序列。获得的两条长 2 86 9bp的序列 (GenBank登录号为AY0 15 0 0 6和AY0 15 0 0 8) ,属于HPV 6b亚型 ,与原型序列比较 ,在L1和L2ORF中共有 9个核苷酸变异 ,其中错义突变 4个。将L1和L2分别重组到杆状病毒 (AcNPV)表达载体 ,在Sf9细胞中探讨L1和L2的表达及装配规律。当L1和L2分别表达于Sf9细胞时 ,L1可以在细胞核中装配成病毒样颗粒 (VLP) ,而L2不能。从L1重组杆状病毒单独感染和L1、L2重组杆状病毒同时感染的细胞分别纯化VLP ,获得L1 VLP和L1 L2 VLP。二者在大小及形态上无明显差异 ,直径约 5 0nm ,与真实的病毒粒子相似。L1 L2 VLP包含摩尔比例约为 4∶1的L1和L2 ,具有HPV 6L1VLP构象表位。当用不同比例重组病毒同时感染细胞时 ,一定水平的L2表达可以使L1表达量及VLP产量提高。HPV 6基因组晚期区序列变异率 <0 .2 8% ,70 81位的A→G和 70 99位的G→A两处突变在我国HPV 6分离物中具有代表性。克隆的HPV 6L1和L2序列可以用于表达 ,表达产物 (L1或L1 L2 )可以自发装配成VLP。  相似文献   

20.
Diacetyl and Acetoin Production by Lactobacillus casei   总被引:2,自引:3,他引:2       下载免费PDF全文
Agitation of broth cultures of Lactobacillus casei retarded cellular dry weight accumulation but enhanced production of both diacetyl and acetoin. Addition of pyruvate overcame this retardation, but addition of sulfhydryl-protecting reagents did not. Both pyruvate and citrate enhanced accumulated dry weight of L. casei incubated without agitation, but only pyruvate increased diacetyl accumulation. Both actively dividing cells and cells suspended in buffer converted pyruvate to diacetyl and acetoin. Maximum production of diacetyl and acetoin occurred during the late logarithmic or early stationary phases. Cells isolated from pyruvate- or citrate-containing cultures showed the greatest ability to convert pyruvate to diacetyl and acetoin. The optimum pH for diacetyl and acetoin formation by whole cells was in the range of 4.5 to 5.5. The presence of citrate or acetate enhanced diacetyl and acetoin formation by L. casei cells in buffer suspension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号