首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
Shingles R  Roh MH  McCarty RE 《Plant physiology》1996,112(3):1375-1381
Chloroplast inner envelope membrane vesicles that are loaded with the pH-sensitive fluorophore, pyranine, show rapid internal acidification when nitrite is added. Acidification is dependent upon [delta]pH, with the inside of vesicles being alkaline with respect to the outside. The rate of vesicle acidification was directly proportional to the concentration of nitrite that was added and the imposed pH difference across the membrane. In contrast, added nitrate had no effect on vesicle acidification. Nitrite also caused acidification of asolectin vesicles. The extent of vesicle acidification is dependent on the internal volume of vesicles. Inner envelope and asolectin vesicles that were prepared by extrusion were approximately the same size, allowing them to be compared when the final extent of acidification, measured after the pH gradient had collapsed, was similar. The rate of nitrite-dependent acidification was similar in these two preparations at any single nitrite concentration. These results indicate that nitrite movement occurs by rapid diffusion across membranes as nitrous acid, and this movement is dependent on a proton gradient across the lipid bilayer. Under conditions approximating those in vivo, the rate of diffusion of nitrous acid far exceeds that of nitrite reduction within chloroplasts.  相似文献   

2.
3.
Endothelial production of nitric oxide (NO) is critical for vascular homeostasis. Nitrite and nitrate are formed endogenously by the stepwise oxidation of NO and have, for years, been regarded as inactive degradation products. As a result, both anions are routinely used as surrogate markers of NO production, with nitrite as a more sensitive marker. However, both nitrite and nitrate are derived from dietary sources. We sought to determine how exogenous nitrite affects steady-state concentrations of NO metabolites thought to originate from nitric oxide synthase (NOS)-derived NO as well as blood pressure and myocardial ischemia-reperfusion (I/R) injury. Mice deficient in endothelial nitric oxide synthase (eNOS-/-) demonstrated decreased blood and tissue nitrite, nitrate, and nitroso proteins, which were further reduced by low-nitrite (NOx) diet for 1 week. Nitrite supplementation (50 mg/L) in the drinking water for 1 week restored NO homeostasis in eNOS-/- mice and protected against I/R injury. Nitrite failed to alter heart rate or mean arterial blood pressure at the protective dose. These data demonstrate the significant influence of dietary nitrite intake on the maintenance of steady-state NO levels. Dietary nitrite and nitrate may serve as essential nutrients for optimal cardiovascular health and may provide a novel prevention/treatment modality for disease associated with NO insufficiency.  相似文献   

4.
The yields of nitrate and nitrite from decomposition of peroxynitrite in phosphate buffer at 37 degrees C were determined in the pH range 1-14. The NO(2)(-)/NO(3)(-) yields showed a stepwise variation with pH, with inflection points at approximately pH 3.1, 5.8, 6.8, 8.0, and 11.9. Nitrite formation increased strongly above pH 7 at the expense of nitrate, but above pH 12 nitrate again became the major product (80% at pH 14). At this pH, the Arrhenius parameters were E(a)=24.1+/-0.2kcal mol(-1) and A=(4.9+/-1.3)x10(12)s(-1). The yields of NO(2)(-), NO(3)(-), and O(2) measured at pH 5.8, 7.4, and 8.5 as a function of the initial peroxynitrite concentration (50-1000 microM) were linear only at pH 5.8. In the presence of carbon dioxide, oxygen production at pH 7.5 and pH 10 was found to be linear on the CO(2) concentration. The experimental observations were satisfactorily reproduced by kinetic simulations including principal component analyses. These data strongly suggest that the chemistry of peroxynitrite is exclusively mediated by z.rad;NO(2) and HO(z.rad;) radicals in the absence, and by z.rad;NO(2) and CO(3)(z.rad;-) radicals in the presence of CO(2).  相似文献   

5.
Nitrite has been found in previous research an inhibitor on anoxic phosphorus uptake in enhanced biological phosphorus removal systems (EBPR). However, the inhibiting nitrite concentration reported varied in a large range. This study investigates the nitrite inhibition on anoxic phosphorus uptake by using four different mixed cultures performing EBPR with pH considered an important factor. The results showed that the protonated species of nitrite, HNO(2) (or free nitrous acid, FNA), rather than nitrite, is likely the actual inhibitor on the anoxic phosphorus uptake, as revealed by the much stronger correlation of the phosphorus uptake rate with the FNA than with the nitrite concentration. All the four EBPR sludges showed decreased anoxic phosphorus uptake rates with increased FNA concentrations in the studied range of 0.002-0.02 mg HNO(2)-N/L. The phosphorus uptake by all four cultures was completely inhibited at 0.02 mg HNO(2)-N/L. Granular sludge appeared to be more tolerant to HNO(2) than flocular sludge likely due to its stronger resistance to the transfer of nitrite into the bacterial aggregates. Furthermore, denitrification by the phosphorus-accumulating organisms (PAOs) was also found to be inhibited by HNO(2). The denitrification rate decreased by approximately 40% when the FNA concentration was increased from 0.002 to 0.02 mg HNO(2)-N/L.  相似文献   

6.
The influence of different sulphur to nitrogen (S/N) ratios on the specific autotrophic denitrification activity was studied in batch experiments using thiosulphate and nitrate as substrates. Transitory accumulations of nitrite were observed for assays with S/N ratios of 3.70 and 6.67 g/g, probably due to the higher specific reduction rate of nitrate compared to that of nitrite. Nitrite was the main end product when S/N ratios of 1.16 and 2.44 g/g were tested. The effects of endogenous (NO(3)(-),NO(2)(-),S(2)O(3)(2-)and SO(4)(2-)) and exogenous compounds (acetate and NaCl) on the specific denitrifying activity of the sludge were tested. Nitrite and sulphate did exert clear inhibitory effects over the process while thiosulphate, acetate and NaCl did not have strong effects at the concentrations tested. Similar experiments also showed that sulphur was not a suitable electron donor for these microorganisms, but sulphide was used successfully.  相似文献   

7.
Nitric oxide (NO) may limit myocardial ischemia-reperfusion injury by slowing the mitochondrial metabolism. We examined whether rat heart contains catalysts potentially capable of reducing nitrite to NO during an episode of regional myocardial ischemia produced by temporary coronary artery occlusion. In intact Sprague-Dawley rats, a 15-min coronary occlusion lowered the nitrite concentration of the myocardial regions exhibiting ischemic glucose metabolism to approximately 50% that of nonischemic regions (185 +/- 223 vs. 420 +/- 203 nmol/l). Nitrite was rapidly repleted during subsequent reperfusion. The heart tissue tested in vitro acquired a substantial ability to consume nitrite when made hypoxic at neutral pH, and this ability was slightly enhanced by simultaneously lowering the pH to 5.5. More than 70% of this activity could be abolished by flushing the coronary circulation with crystalloid to remove trapped erythrocytes. Correspondingly, erythrocytes demonstrated the ability to reduce exogenous nitrite to NO under hypoxic conditions in vitro. In erythrocyte-free heart tissue, the nitrite consumption increased fivefold when the pH was lowered to 5.5. Approximately 40% of this pH-sensitive increase in nitrite consumption could be blocked by the xanthine oxidoreductase inhibitor allopurinol, whereas lowering the Po(2) sufficiently to desaturate myoglobin accelerated it further. We conclude that rat heart contains several factors capable of catalyzing ischemic nitrite reduction; the most potent is contained within erythrocytes and activated by hypoxia, whereas the remainder includes xanthine oxidoreductase and other pH-sensitive factors endogenous to heart tissue, including deoxymyoglobin.  相似文献   

8.
BACKGROUND: Nitrite is a nitric oxide (NO) metabolite in tissues and blood, which can be converted to NO under hypoxia to facilitate tissue perfusion. Although nitrite is known to cause vasodilation following its reduction to NO, the effect of nitrite on platelet activity remains unclear. In this study, the effect of nitrite and nitrite+erythrocytes, with and without deoxygenation, on platelet activity was investigated. METHODOLOGY/FINDING: Platelet aggregation was studied in platelet-rich plasma (PRP) and PRP+erythrocytes by turbidimetric and impedance aggregometry, respectively. In PRP, DEANONOate inhibited platelet aggregation induced by ADP while nitrite had no effect on platelets. In PRP+erythrocytes, the inhibitory effect of DEANONOate on platelets decreased whereas nitrite at physiologic concentration (0.1 μM) inhibited platelet aggregation and ATP release. The effect of nitrite+erythrocytes on platelets was abrogated by C-PTIO (a membrane-impermeable NO scavenger), suggesting an NO-mediated action. Furthermore, deoxygenation enhanced the effect of nitrite as observed from a decrease of P-selectin expression and increase of the cGMP levels in platelets. The ADP-induced platelet aggregation in whole blood showed inverse correlations with the nitrite levels in whole blood and erythrocytes. CONCLUSION: Nitrite alone at physiological levels has no effect on platelets in plasma. Nitrite in the presence of erythrocytes inhibits platelets through its reduction to NO, which is promoted by deoxygenation. Nitrite may have role in modulating platelet activity in the circulation, especially during hypoxia.  相似文献   

9.
Nitrite reduction to nitric oxide (NO) may be potentiated by a nitrite reductase activity of deoxyHb and contribute to systemic hypoxic vasodilation. The effect of nitrite on the pulmonary circulation has not been well characterized. We explored the effect of nitrite on hypoxic pulmonary vasoconstriction (HPV) and the role of the red blood cell (RBC) in nitrite reduction and nitrite-mediated vasodilation. As to method, isolated rat lungs were perfused with buffer, or buffer with RBCs, and subjected to repeated hypoxic challenges, with or without nitrite. As a result, in buffer-perfused lungs, HPV was reduced at nitrite concentrations of 7 muM and above. Nitrite inhibition of HPV was prevented by excess free Hb and RBCs, suggesting that vasodilation was mediated by free NO. Nitrite-inhibition of HPV was not potentiated by mild acidosis (pH = 7.2) or xanthine oxidase activity. RBCs at 15% but not 1% hematocrit prevented inhibition of HPV by nitrite (maximum nitrite concentration of approximately 35 muM) independent of perfusate Po(2). Degradation of nitrite was accelerated by hypoxia in the presence of RBCs but not during buffer perfusion. In conclusion, low micromolar concentrations of nitrite inhibit HPV in buffer-perfused lungs and when RBC concentration is subphysiological. This effect is lost when RBC concentration approaches physiological levels, despite enhanced nitrite degradation in the presence of RBCs. These data suggest that, although deoxyHb may generate NO from nitrite, insufficient NO escapes the RBC to cause vasodilation in the pulmonary circulation under the dynamic conditions of blood flow through the lungs and that RBCs are net scavengers of NO.  相似文献   

10.
Nitrite and nitrate in body fluids and tissues result from dietary source, endogenous nitric oxide (NO) production and from NO and its higher oxides (NOx) present as pollutants in the atmosphere. Nitrite and nitrate in human blood serum and plasma or urine are commonly used as biomarkers and measures of endogenous NO synthesis. In addition to dietary intake of nitrite and nitrate, our study indicates that NOx naturally present in the laboratory air may be an abundant source for nitrite and nitrate in human serum, plasma, and urine ex vivo. These artifacts can be effectively reduced by closing sample-containing vials during sample treatment.  相似文献   

11.
亚硝酸盐对污水生物除磷影响的研究进展   总被引:4,自引:0,他引:4  
亚硝酸盐作为生物硝化和反硝化的中间产物, 存在于污水生物脱氮除磷系统中。对于生物强化除磷工艺亚硝酸盐既是电子受体用于反硝化除磷, 同时又是抑制剂影响生物除磷过程。本文综述了聚磷菌在厌氧、好氧和缺氧环境中的代谢机理, 在此基础上分别从好氧除磷和反硝化除磷两方面介绍了亚硝酸盐对污水生物除磷影响的研究, 同时概述了亚硝酸盐对生物除磷的抑制机理, 并对该领域的研究提出了个人见解。  相似文献   

12.
The combined action of ammonia monooxygenase, AMO, (NH(3)+2e(-)+O(2)-->NH(2)OH) and hydroxylamine oxidoreductase, HAO, (NH(2)OH+H(2)O-->HNO(2)+4e(-)+4H(+)) accounts for ammonia oxidation in Nitrosomonas europaea. Pathways for electrons from HAO to O(2), nitrite, NO, H(2)O(2) or AMO are reviewed and some recent advances described. The membrane cytochrome c(M)552 is proposed to participate in the path between HAO and ubiquinone. A bc(1) complex is shown to mediate between ubiquinol and the terminal oxidase and is shown to be downstream of HAO. A novel, red, low-potential, periplasmic copper protein, nitrosocyanin, is introduced. Possible mechanisms for the inhibition of ammonia oxidation in cells by protonophores are summarized. Genes for nitrite- and NO-reductase but not N(2)O or nitrate reductase are present in the genome of Nitrosomonas. Nitrite reductase is not repressed by growth on O(2); the flux of nitrite reduction is controlled at the substrate level.  相似文献   

13.
The aims of this study were to test whether xanthine oxidase, lactoperoxidase, and NO are components of the innate immune system of mammary secretion during active involution in dairy cows, and whether the innate immune system is activated by casein hydrolysates. Our laboratory has shown recently that infusion of CNH into mammary glands induced involution and was associated with earlier increases in the concentrations of components of the innate immune system. Intact casein is inactive and served as control. Half of the glands of 8 Holstein cows scheduled for dry off (approximately 60 days before parturition) were injected for 3 days with a single dose of casein hydrolyzates and the contralateral glands with a single dose of intact casein with the same concentration. Involution elicited marked increases in xanthine oxidase and lactoperoxidase activities, and accumulation of urate and nitrate. NO and H(2)O(2) were constantly produced in the mammary gland secretion. Nitrite formed either by autooxidation of NO or by conversion of nitrate to nitrite by xanthine oxidase was converted into the powerful nitric dioxide radical by lactoperoxidase and H(2)O(2) that is derived from the metabolism of xanthine oxidase. Nitric dioxide is most likely responsible for the formation of nitrosothiols on thiol-bearing groups, which allows an extended NO presence in mammary secretion. Nitrite is effectively converted to nitrate, which accumulated in the range of approximately 25 microM -1 mM from the start of the experiment to the complete involution of glands. The mammary secretion in all glands was bactericidal and bacteriostatic during established involution, and this appeared sooner and more acutely in glands treated with casein hydrolyzates, within 8 to 24 h. It is concluded that xanthine oxidase, lactoperoxidase, and NO are components of the mammary innate immune system that form bactericidal and bacteriostatic activities in mammary secretions. The innate immune system play a major role in preventing intramammary infection during milk stasis and its activation may increase its effectiveness.  相似文献   

14.
NO (nitric oxide) production from sunflower plants (Helianthus annuus L.), detached spinach leaves (Spinacia oleracea L.), desalted spinach leaf extracts or commercial maize (Zea mays L.) leaf nitrate reductase (NR, EC 1.6.6.1) was continuously followed as NO emission into the gas phase by chemiluminescence detection, and its response to post-translational NR modulation was examined in vitro and in vivo. NR (purified or in crude extracts) in vitro produced NO at saturating NADH and nitrite concentrations at about 1% of its nitrate reduction capacity. The K(m) for nitrite was relatively high (100 microM) compared to nitrite concentrations in illuminated leaves (10 microM). NO production was competitively inhibited by physiological nitrate concentrations (K(i)=50 microM). Importantly, inactivation of NR in crude extracts by protein phosphorylation with MgATP in the presence of a protein phosphatase inhibitor also inhibited NO production. Nitrate-fertilized plants or leaves emitted NO into purified air. The NO emission was lower in the dark than in the light, but was generally only a small fraction of the total NR activity in the tissue (about 0.01-0.1%). In order to check for a modulation of NO production in vivo, NR was artificially activated by treatments such as anoxia, feeding uncouplers or AICAR (a cell permeant 5'-AMP analogue). Under all these conditions, leaves were accumulating nitrite to concentrations exceeding those in normal illuminated leaves up to 100-fold, and NO production was drastically increased especially in the dark. NO production by leaf extracts or intact leaves was unaffected by nitric oxide synthase inhibitors. It is concluded that in non-elicited leaves NO is produced in variable quantities by NR depending on the total NR activity, the NR activation state and the cytosolic nitrite and nitrate concentration.  相似文献   

15.
Nitrite (NO2-), an end product of nitrogen radical metabolism, has recently been shown to increase tyrosine nitration by activated leukocytes indicating that nitrite modulates the immune response. We investigated the hypothesis that nitrite may increase nitration of molecular targets within activated cells leading to altered cell cycle progression. Intracellular nitrite was increased by transfection of murine macrophage-like RAW 264.7 cells with the nitrate reductase gene obtained from barley. Nitrate reductase facilitates the conversion of nitrate to nitrite; thus when extracellular nitrate is present, intracellular nitrite will be increased. Results show that addition of KNO3 increases NO2- production and intracellular nitrotyrosine accumulation in the transfectant but not the parent. Inhibition of nitric oxide synthesis with L-NAME during activation with IFN-gamma + LPS reduced NO2- production to the same extent in both cell lines; however, cellular accumulation of nitrotyrosine was reduced by only 25% in the transfectant (P = 0.21) and 49% in the parent cell line (P = 0.007), suggesting that intracellular nitrite increased nitrotyrosine accumulation through a pathway not requiring NO synthesis, i.e., myeloperoxidase system. Approximately 15% of the transfected cells had 4n DNA content 24 h postactivation compared to < 1% of the parent cells. Increased DNA copy number was correlated to nitrotyrosine accumulation. These findings show that intracellular nitrite can increase accumulation of nitrotyrosine and that nitration is linked to cell cycle perturbation.  相似文献   

16.
Nitrosation of enzyme regulatory cysteines is one of the key posttranslational modification mechanisms of enzyme function. Frequently such modifications are readily reversible; however, cysteine proteases, such as cathepsin B, have been shown to be covalently and permanently inactivated by nitroxyl (HNO), the one-electron reduction product of NO. Owing to the high reactivity of HNO with NO, endogenous NO production could provide direct protection for the less reactive protein cysteines by scavenging HNO. Additionally, endogenous cellular production of NO could rescue enzyme function by protective nitrosation of cysteines prior to exposure to HNO. Thus, we studied the effect of endogenous NO production, induced by LPS or IFN-gamma, on inhibition of cysteine protease cathepsin B in RAW macrophages. Both LPS and IFN-gamma induce iNOS with generation of nitrate up to 9 muM in the media after a 24-h stimulation, while native RAW 264.7 macrophages neither express iNOS nor generate nitrate. After the 24-h stimulation, the HNO-releasing Angeli's salt (0-316 microM) caused dose-dependent and DTT-irreversible loss of cathepsin B activity, and induction of iNOS activity did not protect the enzyme. The lack of protection was also verified in an in vitro setup, where papain, a close structural analogue of cathepsin B, was inhibited by Angeli's salt (2.7 microM) in the presence of the NO donor DEA/NO (0-316 microM). This clearly showed that a high molar excess of DEA/NO (EC(50) 406 microM) is needed to protect papain from the DTT-irreversible covalent modification by HNO. Our results provide first evidence on a cellular level for the remarkably high sensitivity of active-site cysteines in cysteine proteases for modification by HNO.  相似文献   

17.
Chung J  Bae W 《Biodegradation》2002,13(3):163-170
Dissimilative reduction of nitrite by nitrite-acclimated cellswas investigated in a batch reactor under various environmental conditions that can beencountered in shortcut biological nitrogen removal (SBNR: ammonia to nitrite andnitrite to nitrogen gas). The maximum specific nitrite reduction rate was as much as 4.3 times faster than the rate of nitrate reduction when individually tested, but the reaction was inhibited in the presence of nitrate when the initial nitrate concentration was greater than approximately 25 mg-N/l or the initialNO 3 - N/NO 2 - N ratio was larger than 0.5. Nitrite reduction was also inhibited by nitrite itself when theconcentration was higher than that to which the cells had been acclimated. Therefore, it was desirable to avoid excessively high nitrite and nitrate concentrations in a denitrification reactor. Nitrite reduction, however, was not affected by an alkaline pH (in the range of 7–9) or a high concentration of FA (in the range of 16–39 mg/l), which can be common in SBNR processes. The chemical oxygen demand (COD) requirement for nitrite reduction was approximately 22–38% lower than that for nitrate reduction, demonstrating that the SBNR process can be economical. The specific consumption,measured as the ratio of COD consumed to nitrogen removed, was affected by the availability of COD and the physiological state of the cells. The ratio increased when the cells grew rapidly and were storing carbon and electrons.  相似文献   

18.
Recently it was suggested that abnormal endothelial function may contribute to the pathophysiological changes observed in preeclampsia (PE). Both nitric oxide (NO) and endothelin-1 (ET-1) are vasoactive substances produced by endothelial cells. NO is a vasodilator and has been believed to be decreased in PE. ET-1 is a vasoconstrictor and has been reported to be increased in PE. We simultaneously measured NO metabolites and ET-1 in sera from women with PE and investigated the correlation of NO and ET-1 concentrations. We obtained serum samples from 11 healthy nonpregnant (NP) women, 16 normotensive pregnant (NTP) women and 17 women with PE. In this study, the serum ET-1 level was assayed by the ET-1 RIA system, and serum NO metabolites were assayed by measuring nitrite (NO2-) and nitrate (NO3-) simultaneously in an HPLC-Griess reaction system. There was a significant correlation between NOx (nitrite + nitrate) and ET-1 in sera from all 44 women (NP, NTP and PE groups) (p<0.001). Nitrite and ET- in sera from each group were not significantly correlated. Nitrate and ET-1 in sera from the NP and NTP groups did not significantly correlate. However, there was a significant correlation between nitrate and ET-1 in sera from the PE group (p<0.05). The serum ET-1 and nitrate concentration in the PE group was significantly higher than in the NP and NTP groups (p<0.05 and p<0.001. respectively). These findings suggest that increased production of nitrate in PE may contribute to homeostatic vasodilation against vasoconstriction caused by a higher ET-1 concentration.  相似文献   

19.
Nitric oxide (NO) was implicated in the regulation of mobilization and function of circulating angiogenic cells (CACs). The supposedly inert anion nitrate, abundant in vegetables, can be stepwise reduced in vivo to form nitrite, and consecutively NO, representing an alternative to endogenous NO formation by NO synthases. This study investigated whether inorganic dietary nitrate influences mobilization of CACs. In a randomized double-blind fashion, healthy volunteers ingested 150 ml water with 0.15 mmol/kg (12.7 mg/kg) of sodium nitrate, an amount corresponding to 100-300 g of a nitrate-rich vegetable, or water alone as control. Mobilization of CACs was determined by the number of CD34(+)/KDR(+) and CD133(+)/KDR(+) cells using flow cytometry and the mobilization markers stem cell factor (SCF) and stromal cell-derived factor-1a (SDF-1α) were determined in plasma via ELISA. Nitrite and nitrate were measured using high-performance liquid chromatography and reductive gas-phase chemiluminescence, respectively. NOS-dependent vasodilation was measured as flow-mediated vasodilation. Further mechanistic studies were performed in mice after intravenous application of nitrite together with an NO scavenger to identify the role of nitrite and NO in CAC mobilization. Nitrate ingestion led to a rise in plasma nitrite together with an acute increase in CD34(+)/KDR(+) and CD133(+)/KDR(+)-CACs along with increased NOS-dependent vasodilation. This was paralleled by an increase in SCF and SDF-1α and the maximal increase in plasma nitrite correlated with CD133(+)/KDR(+)-CACs (r=0.73, P=0.016). In mice, nitrate given per gavage and direct intravenous injection of nitrite led to CAC mobilization, which was abolished by the NO scavenger cPTIO, suggesting that nitrite mediated its effect via formation of NO. Dietary inorganic nitrate acutely mobilizes CACs via serial reduction to nitrite and NO. The nitrate-nitrite-NO pathway could offer a novel nutritional approach for regulation of vascular regenerative processes.  相似文献   

20.
Hemoglobin (Hb) potently inactivates the nitric oxide (NO) radical via a dioxygenation reaction forming nitrate (NO(3)(-)). This inactivation produces endothelial dysfunction during hemolytic conditions and may contribute to the vascular complications of Hb-based blood substitutes. Hb also functions as a nitrite (NO(2)(-)) reductase, converting nitrite into NO as it deoxygenates. We hypothesized that during intravascular hemolysis, nitrite infusions would limit the vasoconstrictive properties of plasma Hb. In a canine model of low- and high-intensity hypotonic intravascular hemolysis, we characterized hemodynamic responses to nitrite infusions. Hemolysis increased systemic and pulmonary arterial pressures and systemic vascular resistance. Hemolysis also inhibited NO-dependent pulmonary and systemic vasodilation by the NO donor sodium nitroprusside. Compared with nitroprusside, nitrite demonstrated unique effects by not only inhibiting hemolysis-associated vasoconstriction but also by potentiating vasodilation at plasma Hb concentrations of <25 muM. We also observed an interaction between plasma Hb levels and nitrite to augment nitroprusside-induced vasodilation of the pulmonary and systemic circulation. This nitrite reductase activity of Hb in vivo was recapitulated in vitro using a mitochondrial NO sensor system. Nitrite infusions may promote NO generation from Hb while maintaining oxygen delivery; this effect could be harnessed to treat hemolytic conditions and to detoxify Hb-based blood substitutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号