首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic structure of a population of Burkholderia (Pseudomonas) cepacia isolated from a southeastern blackwater stream was investigated by using multilocus enzyme electrophoresis to examine the allelic variation in eight structural gene loci. Overall, 213 isolates were collected at transect points along the stream continuum, from both the sediments along the bank and the water column. Multilocus enzyme electrophoresis analysis revealed 164 distinct electrophoretic types, and the mean genetic diversity of the entire population was 0.574. Genetic diversity values did not vary spatially along the stream continuum. From a canonical discriminant analysis, Mahalonobis distances (measurements of genetic similarity between populations) revealed significant differences among the subpopulations at the sediment sampling points, suggesting bacterial adaptation to a heterogeneous (or patchy) microgeographical environment. Multilocus linkage disequilibrium analysis of the isolates revealed only limited association between alleles, suggesting frequent recombination, relative to binary fission, in this population. Furthermore, the dendrogram created from the data of this study and the allele mismatch distribution are typical of a population characterized by extensive genetic mixing. We suggest that B. cepacia be added to the growing list of bacteria that are not obligatorily clonal.  相似文献   

2.
Genetic structure of populations of Legionella pneumophila.   总被引:56,自引:4,他引:52       下载免费PDF全文
The genetic structure of populations of Legionella pneumophila was defined by an analysis of electrophoretically demonstrable allelic variation at structural genes encoding 22 enzymes in 292 isolates from clinical and environmental sources. Nineteen of the loci were polymorphic, and 62 distinctive electrophoretic types (ETs), representing multilocus genotypes, were identified. Principal coordinates and clustering analyses demonstrated that isolates received as L. pneumophila were a heterogeneous array of genotypes that included two previously undescribed species. For 50 ETs of L. pneumophila (strict sense), mean genetic diversity per locus was 0.312, and diversity was equivalent in ETs represented by isolates recovered from clinical sources and those collected from environmental sources. Cluster analysis revealed four major groups or lineages of ETs in L. pneumophila. Genetic diversity among ETs of the same serotype was, on average, 93% of that in the total sample of ETs. Isolates marked by particular patterns of reactivity to a panel of nine monoclonal antibodies were also genetically heterogeneous, mean diversity within patterns being about 75% of the total. Both Pontiac fever and the pneumonic form of legionellosis may be caused by isolates of the same ET. The genetic structure of L. pneumophila is clonal, and many clones apparently are worldwide in distribution. The fact that L. pneumophila is only 60% as variable as Escherichia coli raises the possibility that isolates recovered from clinical cases and man-made environments are a restricted subset of all clones in the species as a whole.  相似文献   

3.
The genetic structure of populations of Neisseria meningitidis was examined by an analysis of electrophoretically demonstrable allelic variation at 15 genes encoding enzymes in 650 isolates of eight serogroups (A, B, C, W135, X, Y, Z, and 29E) and 38 nonserogroupable isolates. A total of 331 distinctive multilocus genotypes (electrophoretic types, ETs) was identified, among which mean genetic diversity per locus (H = 0.547) was greater than in Escherichia coli and other bacterial species thus far studied. The intercontinental distribution of some ETs and the recovery of organisms of identical genotype over periods of many years strongly suggest that the genetic structure of N. meningitidis is basically clonal as a consequence of low rates of recombination of chromosomal genes. Variation among strains in serogroup, serotype, and the electrophoretic pattern of the major outer membrane proteins has little relationship to the complex structure of populations revealed by enzyme electrophoresis, which involves 14 major lineages of clones diverging from one another at genetic distances greater than 0.50. Genetic diversity among ETs of isolates of the same serogroup was, on average, 84% of that in the total sample. Clones of serogroup A were unusual in being genotypically less heterogeneous than those of other serogroups and in forming a single phylogenetic group. Isolates of the same serotype or outer membrane protein pattern were also highly heterogeneous; on average, 87 and 97%, respectively, of the total species diversity was represented by ETs of the same serotype or outer membrane protein.  相似文献   

4.
Three hundred and one (301) strains of Neisseria meningitidis serogroup B, isolated from patients with meningococcal disease during the years 1994-1996, were subjected to multilocus enzyme electrophoresis, serotyping, and serosubtyping. Based on the analyses of 14 enzyme loci, 177 electrophoretic types (ETs) were identified. Of these, 136 were represented by single isolates and 41 were represented by multiple isolates (range 2-31). The mean genetic diversity for isolates was 0.444 and for ETs was 0.440. The index of association (I(A)) between loci was 0.530 +/- 0.08 for isolates and 0.256 +/- 0.10 for ETs. Cluster analysis revealed the presence of 39 lineages each represented by a single ET or clusters of ETs. The most common serotypes were 4, 15, and 14 and accounted for 84 (28.0%), 53 (17.6%), and 32 (10.6%) of the isolates, respectively, and were dispersed amongst 46 ETs (1-122), 35 ETs (3-165), and 26 ETs (18-76), respectively. The 109 (36.6%) nontypable (NT) isolates were amongst 74 ETs (6-177). The mean genetic diversity for serotypes 4, 15, and 14 and NT isolates was 0.368, 0.371, 0.343, and 0.442, respectively, and for ETs was 0.363, 0.354, 0.397, and 0.440, respectively. Combinations of serotypes and serosubtypes (number of isolates) that occurred most frequently were 4:P1.14 (17), 14:P1.16 (16), NT:P1.16 (16), 15:P1.16 (13), and NT:P1.13 (13). The majority of group B disease in Canada during 1994-1996 was caused by meningococci of considerable genetic diversity, and reflects a situation of endemic disease. However, the results also indicate that organisms belonging to the ET-5 complex, which has been responsible for outbreaks of group B disease globally for several decades, have been introduced into the country.  相似文献   

5.
A collection of 121 isolates of Rhizobium leguminosarum biovar (bv.) trifolii was obtained from root nodules of Trifolium subterraneum L. (subclover) plants growing in an established pasture. The collection consisted of a single isolate from each of 18 plants sampled from seven microplots. The following year, a further 28 and 27 isolates were collected from the first and seventh sampling points, respectively. Analysis of restriction fragment length polymorphisms (RFLPs) of both chromosomal and Sym (symbiotic) plasmid DNA and multilocus enzyme electrophoresis (MLEE) were used to assess the diversity, genetic relationships and structure of this population. Symbiotic effectiveness tests were used to examine the symbiotic phenotype of each isolate collected in the first year. Analysis of RFLPs of the first year isolates revealed 13 chromosomal types and 25 Sym plasmid types. Similar Sym plasmid types were grouped into 14 families containing 1–6 members. No new chromosomal types and six new Sym plasmid types were detected in the second year. The symbiotic effectiveness of the first year isolates of the same Sym plasmid type was similar. Significant differences in symbiotic effectiveness were detected between different Sym plasmid types in the same plasmid family. Representative isolates of each chromosomal type Sym plasmid type identified in the first year were analysed using multilocus enzyme electrophoresis. Mean genetic diversity per locus was high (0.559). Enzyme electrophoresis revealed 17 electrophoretic types (ETs). Ouster analysis of the enzyme data revealed large genetic diversity amongst the ETs. Strong linkage disequilibrium was observed for the population as a whole, i.e. clonal population structure, but significantly less disequilibrium was observed among a cluster of ETs suggesting that recombination occurred between ETs within the cluster. Our results revealed that a population of naturally occurring isolates of Rhizobium leguminosarum bv. trifolii can be genetically diverse and support the possibility that recombination plays a role in generating new genotypes.  相似文献   

6.
We examined the genetic structure and symbiotic characteristics of Bradyrhizobium isolates recovered from four legume species (Lupinus albus [white lupine], Lupinus angustifolius [blue lupine], Ornithopus compressus [yellow serradella], and Macroptilium atropurpureum [sirato]) grown in an Oregon soil. We established that multilocus enzyme electrophoresis (MLEE) can provide insights into the genetic relatedness among Bradyrhizobium strains by showing a positive correlation (r2 = ≥0.90) between the relatedness of Bradyrhizobium japonicum strains determined by MLEE at 13 enzyme loci and that determined by other workers using either DNA-DNA hybridization or DNA sequence divergence estimates. MLEE identified 17 electrophoretic types (ETs) among 95 Bradyrhizobium isolates recovered from the four hosts. Although the overall genetic diversity among the ETs (H = 0.69) is one of the largest measured to date in a local population of any soilborne bacterial species, there was no evidence of multilocus structure (linkage disequilibrium) within the population. The majority of the isolates (73%) were represented by two closely related ETs (2 and 3) which dominated the root nodules of white lupine, serradella, and siratro. In contrast, ET1 dominated nodules of blue lupine. Although representative isolates from all of the 17 ETs nodulated siratro, white lupine, blue lupine, and big trefoil (Lotus pedunculatus), they were either completely ineffective or poorly effective at fixing nitrogen on these hosts. Despite the widespread use of serradella as a surrogate host for lupine-nodulating bradyrhizobia, 7 of the 17 ETs did not nodulate this host, and the remaining 10 ETs were ineffective at fixing nitrogen.  相似文献   

7.
The relative genetic similarities of 200 isolates of Rhizobium leguminosarum bv. trifolii recovered from an Oregon soil were determined at 13 enzyme loci by multilocus enzyme electrophoresis (MLEE). These isolates represented 13 antigenically distinct serotypes recovered from nodules formed on various clover species. The MLEE-derived levels of relatedness among isolates of R. leguminosarum bv. trifolii were found to be in good agreement with the levels of relatedness established by using repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the PCR technique and with levels of relatedness from previously published DNA reassociation studies. BIOLOG substrate utilization patterns showed that isolates within an electrophoretic type (ET) were phenotypically more similar to each other than to isolates of other ETs. The soil isolates were represented by 53 ETs which could be clustered into seven groups (groups B, E, G, H1, H2, I, and J). Evidence for multilocus structure within the population was obtained, and group B was identified as the primary creator of the disequilibrium. Of 75 isolates belonging to the nodule-dominant serotype AS6 complex, 72 were found in group B. Isolates WS2-01 and WS2-02 representing nodule-dominant serotypes recovered from subclover grown at another Oregon site were also found in group B. Isolates representing the most numerous ETs in group B (ETs 2 and 3) were either suboptimally effective or completely ineffective at fixing nitrogen on six different clover species. Another four groups of isolates (groups A, C, D, and F) were identified when 32 strains of diverse origins were analyzed by MLEE and incorporated into the cluster analysis. Group A was most dissimilar in comparisons with other groups and contained strain USDA 2124 (T24), which produces trifolitoxin and has unique symbiotic characteristics.  相似文献   

8.
A Burkholderia cepacia population naturally occurring in the rhizosphere of Zea mays was investigated in order to assess the degree of root association and microbial biodiversity at five stages of plant growth. The bacterial strains isolated on semiselective PCAT medium were mostly assigned to the species B. cepacia by an analysis of the restriction patterns produced by amplified DNA coding for 16S rRNA (16S rDNA) (ARDRA) with the enzyme AluI. Partial 16S rDNA nucleotide sequences of some randomly chosen isolates confirmed the ARDRA results. Throughout the study, B. cepacia was strictly associated with maize roots, ranging from 0.6 to 3.6% of the total cultivable microflora. Biodiversity among 83 B. cepacia isolates was analyzed by the random amplified polymorphic DNA (RAPD) technique with two 10-mer primers. An analysis of RAPD patterns by the analysis of molecular variance method revealed a high level of intraspecific genetic diversity in this B. cepacia population. Moreover, the genetic diversity was related to divergences among maize root samplings, with microbial genetic variability markedly higher in the first stages of plant growth; in other words, the biodiversity of this rhizosphere bacterial population decreased over time.  相似文献   

9.
Fifty-one isolates of Rhizobium leguminosarum biovar phaseoli from various geographic and ecological sources, largely in Mexico, were characterized by the electrophoretic mobilities of 15 metabolic enzymes, and 46 distinctive multilocus genotypes (electrophoretic types [ETs]) were distinguished on the basis of allele profiles at the enzyme loci. Mean genetic diversity per enzyme locus among the 46 ETs was 0.691, the highest value yet recorded for any species of bacterium. The occurrence of strong nonrandom associations of alleles over loci suggested a basically clonal population structure, reflecting infrequent recombination of chromosomal genes. Multilocus genotypic diversity was unusually high, with the most strongly differentiated pairs of ETs having distinctive alleles at all 15 loci and major clusters of ETs diverging at genetic distances as large as 0.89. This great diversity in the chromosomal genome raises the possibility that R. leguminosarum biovar phaseoli is a polyphyletic assemblage of strains. As other workers have suggested, the inclusion of all strains capable of nodulating beans in a single biovar or species is genetically unrealistic and taxonomically misleading. A biologically meaningful classification of Rhizobium spp. should be based on assessment of variation in the chromosomal genome rather than on phenotypic characters, especially those mediated for the most part or wholly by plasmid-borne genes, such as host relationships.  相似文献   

10.
An investigation was carried out to determine the genetic structure in soil populations of Rhizobium leguminosarum bv. trifolii and viciae at each of two Oregon sites (A and C) that were 1 km apart. Although the soils were similar, the plant communities were quite different because grazing by domestic animals had been allowed (site A) or prevented (site C). Analysis of allelic variation at 13 enzyme-encoding loci by multilocus enzyme electrophoresis delineated 202 chromosomal types (ETs) among a total of 456 isolates representing two populations of R. leguminosarum bv. trifolii (AT and CT) and two populations of R. leguminosarum bv. viciae (AV and CV). Regardless of their site of origin or biovar affiliation, isolates of the same ET were confirmed to be more closely related to each other than to isolates of other ETs by repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus sequences and the PCR technique. Despite the wide range in densities of the Rhizobium populations (<102 to >105/g of soil), their overall genetic diversities were similar (mean genetic diversity, 0.45 to 0.51), indicating that low-density populations of soil-borne bacterial species are not necessarily of little genetic diversity. Linkage disequilibrium analysis revealed significant multilocus structure (nonrandom associations of alleles) within each of the four populations. From a combination of cluster and linkage disequilibrium analyses, a total of eight distinct groups of ETs were defined in the four populations. Two groups (I and III) contributed significant numbers of ETs and isolates to each population. The two populations of R. leguminosarum bv. viciae (AV and CV) exhibited similar genetic structures despite existing at different densities, in different plant communities, and in the presence (CV) or absence (AV) of their local Vicia hosts. In contrast, total linkage disequilibrium was partitioned differently in two biovar populations occupying the same soil (AV and AT), with disequilibrium in the latter being due entirely to the presence of group V.  相似文献   

11.
In order to acquire a better understanding of the spatial and temporal variations of genetic diversity of Burkholderia cepacia populations in the rhizosphere of Zea mays , 161 strains were isolated from three portions of the maize root system at different soil depths and at three distinct plant growth stages. The genetic diversity among B. cepacia isolates was analysed by means of the random amplified polymorphic DNA (RAPD) technique. A number of diversity indices (richness, Shannon diversity, evenness and mean genetic distance) were calculated for each bacterial population isolated from the different root system portions. Moreover, the analysis of molecular variance ( amova ) method was applied to estimate the genetic differences among the various bacterial populations. Our results showed that, in young plants, B. cepacia colonized preferentially the upper part of the root system, whereas in mature plants, B. cepacia was mostly recovered from the terminal part of the root system. This uneven distribution of B. cepacia cells among different root system portions partially reflected marked genetic differences among the B. cepacia populations isolated along maize roots on three distinct sampling occasions. In fact, all the diversity indices calculated indicated that genetic diversity increased during plant development and that the highest diversity values were found in mature maize plants, in particular in the middle and terminal portions of the root system. Moreover, the analysis of RAPD patterns by means of the amova method revealed highly significant divergences in the degree of genetic polymorphism among the various B. cepacia populations.  相似文献   

12.
Although many studies have shown that animal-associated bacterial species exhibit linkage disequilibrium at chromosomal loci, recent studies indicate that both animal-associated and soil-borne bacterial species can display a nonclonal genetic structure in which alleles at chromosomal loci are in linkage equilibrium. To examine the situation in soil-borne species further, we compared genetic structure in two soil populations of Rhizobium leguminosarum bv. trifolii and two populations of R. leguminosarum bv. viciae from two sites in Oregon, with genetic structure in R. leguminosarum bv. viciae populations recovered from peas grown at a site in Washington, USA, and at a site in Norfolk, UK. A total of 234 chromosomal types (ET) were identified among 682 strains analysed for allelic variation at 13 enzyme-encoding chromosomal loci by multilocus enzyme electrophoresis (MLEE). Chi-square tests for heterogeneity of allele frequencies showed that the populations were not genetically uniform. A comparison of the genetic diversity within combined and individual populations confirmed that the Washington population was the primary cause of genetic differentiation between the populations. Each individual population exhibited linkage disequilibrium, with the magnitude of the disequilibrium being greatest in the Washington population and least in the UK population of R. leguminosarum bv. viciae. Linkage disequilibrium in the UK population was created between two clusters of 9 and 23 ETs, which, individually, were in linkage equilibrium. Strong linkage disequilibrium between the two major clusters of 8 and 12 ETs in the Washington population was caused by the low genetic diversity of the ETs within each cluster relative to the inter-cluster genetic distance. Because neither the magnitude of genetic diversity nor of linkage disequilibrium increased as hierarchical combinations of the six local populations were analysed, we conclude that the populations have not been isolated from each other for sufficient time, nor have they been exposed to enough selective pressure to develop unique multilocus genetic structure.  相似文献   

13.
To investigate the microbiology and epidemiology of the 1,700 sporadic cases of listeriosis that occur annually in the United States, we developed a multilocus enzyme electrophoresis (MEE) typing system for Listeria monocytogenes. We studied 390 isolates by MEE. Eighty-two electrophoretic types (ETs) were defined. Two distinct clusters of ETs, ET group A (ETGA) and ET group B (ETGB), separated at a genetic distance of 0.440, were identified. Strains of ETGB were associated with perinatal listeriosis (P = 0.03). All strains of H antigen type a were in ETGA, while all strains of H antigen type b were in ETGB. Among 328 clinical isolates from cases of literiosis, 55 ETs of L. monocytogenes were defined. Thirty-four ETs were identified among 62 isolates from food products. The mean number of strains per ET (5.2) was significantly higher among clinical isolates than among food-borne isolates. Examination of isolates from outbreaks further documented the link between cases and contaminated food products. In one investigation, we found 11 different ETs, ruling out a single common source as a cause of that outbreak. By examining a large number of isolates collected over a specified time in diverse geographic locations in the United States, we have begun to establish a baseline for the study of the epidemiology of listeriosis by MEE.  相似文献   

14.
To investigate the microbiology and epidemiology of the 1,700 sporadic cases of listeriosis that occur annually in the United States, we developed a multilocus enzyme electrophoresis (MEE) typing system for Listeria monocytogenes. We studied 390 isolates by MEE. Eighty-two electrophoretic types (ETs) were defined. Two distinct clusters of ETs, ET group A (ETGA) and ET group B (ETGB), separated at a genetic distance of 0.440, were identified. Strains of ETGB were associated with perinatal listeriosis (P = 0.03). All strains of H antigen type a were in ETGA, while all strains of H antigen type b were in ETGB. Among 328 clinical isolates from cases of literiosis, 55 ETs of L. monocytogenes were defined. Thirty-four ETs were identified among 62 isolates from food products. The mean number of strains per ET (5.2) was significantly higher among clinical isolates than among food-borne isolates. Examination of isolates from outbreaks further documented the link between cases and contaminated food products. In one investigation, we found 11 different ETs, ruling out a single common source as a cause of that outbreak. By examining a large number of isolates collected over a specified time in diverse geographic locations in the United States, we have begun to establish a baseline for the study of the epidemiology of listeriosis by MEE.  相似文献   

15.
Thirty-one urease-positive thermophilic Campylobacter (UPTC) isolates, including three reference strains (NCTC12892, NCTC12895 and NCTC12896), and three Campylobacter lari isolates, which were isolated from several countries and sources, were compared genotypically by using multilocus enzyme electrophoresis (MLEE). We examined allelic variation around seven enzyme loci, including the adenylate kinase, alkaline phosphatase, catalase, fumarase, malic enzyme, malate dehydrogenase, and L-phenylalanyl-L-leucine peptidase loci. MLEE typing revealed the presence of 23 different electrophoretic types (ETs) among the 31 UPTC isolates, and 14 isolates shared six electrophoretic profiles. Three different ETs were identified for the three C. lari isolates examined, and no ETs were shared by UPTC and C. lari isolates. Quantitative analyses were subsequently performed by using allelic variation data, and the results demonstrated that the mean genetic diversity was 0.655. In conclusion, MLEE demonstrated that the UPTC isolates examined are genetically hypervariable and form a cluster separate from the C. lari cluster.  相似文献   

16.
We conducted a multilocus enzyme electrophoresis (MLEE) study to assess the genetic structure of the nitrogen-fixing bacteria Rhizobium etli bv. phaseoli . We analysed the genetic variation at 10 enzyme-encoding chromosomal loci of 482 isolates from root nodules of Phaseolus vulgaris and P. coccineus bean plants. The isolates were obtained from six traditionally managed agricultural plots in two localities in the State of Puebla, in Central Mexico. The total mean genetic diversity ( H E) for the six plots was 0.531. Among the 482 isolates collected, 126 distinctive multilocus genotypes (electrophoretic types [Ets]) were obtained, and approximately half of the isolates are represented by five widespread ETs. A significant degree of genetic differentiation among the six plots ( G ST = 0.072) and between the two localities ( G ST = 0.022) was detected. The main part of the observed variability (70%) was found among the isolates within the plants. The cluster analysis revealed two deeply diverging lineages, separated at a genetic distance of 0.7. When a multilocus linkage disequilibrium analysis was performed at different hierarchical levels, we found significant linkage disequilibrium, but when the analysis was performed for the genotypes within the two diverging lineages, we found evidence of recombination. We propose for R. etli bv. phaseoli a reticulated and epidemic genetic structure, in which few genotypes increase in frequency to produce numerically dominant clones, and genetic exchange occurs mainly among genotypes within each lineage.  相似文献   

17.
Electrophoretic techniques were employed to study variation in chromosomal genes encoding enzymes and in the distribution of cryptic plasmids in the E. coli population of a human host over an 11-month period. Thirteen of the 15 enzymes studied were polymorphic, and mean genetic diversity per locus was 0.39. Among 550 clones isolated from fecal samples, protein electrophoresis revealed 53 distinct electrophoretic types (ETs). Most ETs appeared on only one or a few days and were considered transients, but two (ET-12 and ET-13) were observed many times over extended periods and represented residents. Complete turnover in the transient ETs in the population occurred in periods of from two weeks to a month. ETs appearing in one month showed no particular genetic similarity to those of the previous month. — All but 4 of the 53 ETs carried one or more "cryptic" plasmids with molecular weights ranging from 1 to 80 megadaltons. With few exceptions, the plasmid composition of each ET was unique. In the course of the 11-month sampling period, there were changes in the plasmid profiles of the resident strains ET-12 and ET-13, and also in the profile of a recurrent strain, ET-2, which was isolated on four days. Modification of the plasmid profile of ET-12 involved the sequential addition of relatively high molecular weight bands. For ET-2 and ET-13, the changes in the plasmid profiles were radical, suggesting invasions of new cell types rather than merely the addition and deletion of plasmids. — The results of this study provide three lines of evidence that recombination plays a minor role in the generation of genetic diversity in the E. coli population of a single host. (1) Several pairs of loci were in strong linkage disequilibrium; compared to a randomly generated array of genotypes, the sample of ETs contained an excess of pairs differing at one or two loci and too many pairs with highly distinctive combinations of electromorphs. (2) In most cases where pairs of ETs differed at a single locus and, therefore, could reasonably have been generated by phage- or plasmid-mobilized gene transfer, the plasmid profiles of the pair members were radically different and/or the potentially transmitted alleles were not present in other ETs in the population. (3) Although ET-12 was abundant, being represented by 252 of the 550 clones sampled, the electrophoretic type most similar to ET-12 different from it at six loci, and ET-12 carried two unique alleles. We conclude that most of the genetic diversity observed in this human host is a consequence of successive invasions of E. coli genotypes.  相似文献   

18.
Two separate animal populations consisting of a herd of cattle (19 animals) and a flock of sheep (25 animals) were investigated for strains of Escherichia coli producing Shiga toxins (STEC) over a time period of 6 months. Thirty-three STEC were isolated from 63.2% of cattle and grouped into 11 serotypes and eight electrophoretic types (ETs) by multilocus enzyme analysis. In sheep, 88% of the animals excreted STEC (n = 67 isolates) belonging to 17 different serotypes and 12 different ETs. STEC from cattle and sheep differed with respect to serotype, and only 4 of the 16 ETs occurred in both animal populations. In cattle, ET14 (O116:H21) strains predominated, whereas other STEC serotypes occurred only sporadically. The predominating STEC types in sheep were ET4 (O125 strains), ET11 (O128:H2 and others), and ET14 (O146:H21). In contrast to their diversity, STEC originating from the same animal population were similar with respect to Shiga toxin (stxy genes. Almost all STEC isolated from cattle were positive for stx2 and stx2c; only one was positive for stx1. In sheep, almost all STEC isolated were positive for stx1 and stx2, whereas stx2c was not found. XbaI-digested DNAs of genetically closely related O146:H21 strains have different restriction profiles which were associated with size alterations in XbaI fragments hybridizing with stx1- and stx2-specific DNA probes. Our results indicate that stx-encoding bacteriophages might be the origin of the genetic heterogeneity in STEC from animals.  相似文献   

19.
The genetic structure of populations of the symbiotic nitrogen-fixing soil bacterium Rhizobium meliloti was examined by analysis of electrophoretically demonstrable allelic variation in 14 metabolic, presumably chromosomal, enzyme genes. A total of 232 strains were examined, most of which were isolated from southwest Asia, where there is an unsurpassed number of indigenous host species for R. meliloti. The collection consisted of 115 isolates recovered from annual species of Medicago in Syria, Turkey, and Jordan; 85 isolates cultured from two perennial species of Medicago (M. sativa [alfalfa] and M. falcata) in northern Pakistan and Nepal; and 32 isolates collected at various localities in North and South America, Europe, South Africa, New Zealand, and Australia, largely from M. sativa. Fifty distinctive multilocus genotypes (electrophoretic types [ETs]) were identified, and cluster analysis revealed two primary phylogenetic divisions separated at a genetic distance of 0.83. By the criterion of genetic differentiation conventionally applied in defining species limits among members of the family Enterobacteriaceae and certain other bacteria, the two primary divisions of R. meliloti represent distinct evolutionary species. Division A included 35 ETs represented by 209 strains from the eastern Mediterranean basin, northern Pakistan, Nepal, and various other localities worldwide. This division contained the nine commercial alfalfa inoculant strains examined. Division B included 15 ETs represented by 23 isolates, 21 of which were isolated from annual medic species growing in previously uninoculated soils in the eastern Mediterranean basin. The two remaining strains in division B, both representing the same ET, were isolated in the United States and Australia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The genetic structure of populations of the symbiotic nitrogen-fixing soil bacterium Rhizobium meliloti was examined by analysis of electrophoretically demonstrable allelic variation in 14 metabolic, presumably chromosomal, enzyme genes. A total of 232 strains were examined, most of which were isolated from southwest Asia, where there is an unsurpassed number of indigenous host species for R. meliloti. The collection consisted of 115 isolates recovered from annual species of Medicago in Syria, Turkey, and Jordan; 85 isolates cultured from two perennial species of Medicago (M. sativa [alfalfa] and M. falcata) in northern Pakistan and Nepal; and 32 isolates collected at various localities in North and South America, Europe, South Africa, New Zealand, and Australia, largely from M. sativa. Fifty distinctive multilocus genotypes (electrophoretic types [ETs]) were identified, and cluster analysis revealed two primary phylogenetic divisions separated at a genetic distance of 0.83. By the criterion of genetic differentiation conventionally applied in defining species limits among members of the family Enterobacteriaceae and certain other bacteria, the two primary divisions of R. meliloti represent distinct evolutionary species. Division A included 35 ETs represented by 209 strains from the eastern Mediterranean basin, northern Pakistan, Nepal, and various other localities worldwide. This division contained the nine commercial alfalfa inoculant strains examined. Division B included 15 ETs represented by 23 isolates, 21 of which were isolated from annual medic species growing in previously uninoculated soils in the eastern Mediterranean basin. The two remaining strains in division B, both representing the same ET, were isolated in the United States and Australia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号