共查询到20条相似文献,搜索用时 203 毫秒
1.
Expression of the cyclin-dependent kinase inhibitor p27Kip1 by developing retinal pigment epithelium
The cyclin-dependent kinase (Cdk) inhibitor p27Kip1 contributes to the timing of cell cycle withdrawal during development and, consequently, in organogenesis. Within the retina, this effector protein is up-regulated during the birth of neuronal and glial cells [Dev. Biol. (2000) 299]. However, its expression within the retinal pigment epithelium (RPE), a supporting cell layer that is essential for neural retina development and function, has not previously been reported. We show that p27Kip1 protein expression in the RPE occurs in two phases: an up-regulation during mid-to late embryonic stages and a down-regulation during the subsequent postnatal period. In the early phase of up-regulation, an inverse relationship is seen between expression of p27Kip1 and PCNA, an indicator of cycling cells. During both up-and down-regulation, the change in spatial pattern of expression proceeds in a central to peripheral manner, with p27Kip1 up-regulation paralleling retinal maturation. These data suggest that this cell cycle regulator may be an important factor controlling the timing of RPE cell cycle withdrawal. 相似文献
2.
Zeng Y Hirano K Hirano M Nishimura J Kanaide H 《Biochemical and biophysical research communications》2000,274(1):37-42
p27(Kip1) is a cyclin-dependent kinase inhibitor, and its nuclear localization is a prerequisite for it to function as a cell cycle regulator. In the present study, the minimal requirement for the nuclear localization signal (NLS) of p27(Kip1) was determined by analyzing the localization of various mutants of p27(Kip1) tagged with green fluorescent protein (GFP) in HeLa cells and porcine aortic endothelial cells. Wild-type p27(Kip1) exclusively localized into nucleus, while GFP alone localized in both cytosol and nucleus. A comparison of various truncation mutants revealed residues 153-166 to be the minimal region necessary for nuclear localization. However, a fusion of this region to GFP showed cytoplasmic retention in addition to nuclear localization, thus suggesting that some extension flanking this region is required to achieve a full function of NLS. The site-directed mutation of the full-length p27(Kip1) therefore showed that four basic residues (K153, R154, K165, R166), especially R166, play a critical role in the nuclear localization of p27(Kip1). 相似文献
3.
4.
5.
Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer 总被引:30,自引:0,他引:30
Viglietto G Motti ML Bruni P Melillo RM D'Alessio A Califano D Vinci F Chiappetta G Tsichlis P Bellacosa A Fusco A Santoro M 《Nature medicine》2002,8(10):1136-1144
The cyclin-dependent kinase inhibitor p27(kip1) is a putative tumor suppressor for human cancer. The mechanism underlying p27(kip1) deregulation in human cancer is, however, poorly understood. We demonstrate that the serine/threonine kinase Akt regulates cell proliferation in breast cancer cells by preventing p27(kip1)-mediated growth arrest. Threonine 157 (T157), which maps within the nuclear localization signal of p27(kip1), is a predicted Akt-phosphorylation site. Akt-induced T157 phosphorylation causes retention of p27(kip1) in the cytoplasm, precluding p27(kip1)-induced G1 arrest. Conversely, the p27(kip1)-T157A mutant accumulates in cell nuclei and Akt does not affect p27(kip1)-T157A-mediated cell cycle arrest. Lastly, T157-phosphorylated p27(kip1) accumulates in the cytoplasm of primary human breast cancer cells coincident with Akt activation. Thus, cytoplasmic relocalization of p27(kip1), secondary to Akt-mediated phosphorylation, is a novel mechanism whereby the growth inhibitory properties of p27(kip1) are functionally inactivated and the proliferation of breast cancer cells is sustained. 相似文献
6.
Deng X Mercer SE Shah S Ewton DZ Friedman E 《The Journal of biological chemistry》2004,279(21):22498-22504
Elevated levels of the cyclin-dependent kinase (CDK) inhibitor p27 block the cell in G(0)/G(1) until mitogenic signals activate G(1) cyclins and initiate proliferation. Post-translational regulation of p27 by different phosphorylation events is critical in allowing cells to proceed through the cell cycle. We now demonstrate that the arginine-directed kinase, Mirk/dyrk1B, is maximally active in G(0) in NIH3T3 cells, when it stabilizes p27 by phosphorylating it at Ser-10. The phospho-mimetic mutant p27-S10D was more stable, and the non-phosphorylatable mutant p27-S10A was less stable than wild-type when expressed in G(0)-arrested cells. Following phosphorylation by Mirk, p27 remains a functional CDK inhibitor, capable of binding to CDK2. Mirk did not induce the translocation of p27 from the nucleus in G(0), but instead co-localized with nuclear p27. Depletion of Mirk by RNA interference decreased the phosphorylation of p27 at Ser-10 and the stability of endogenous p27. RNA(i) to Mirk increased cell entry from G(0) into G(1) as shown by increased expression of proliferating cell nuclear antigen and decreased expression of p27. These data suggest a model in which Mirk increases the amount of nuclear p27 by stabilizing it during G(0) when Mirk is most abundant. Mitogen stimulation then causes cells to enter G(1), reduces Mirk levels (Deng, X., Ewton, D., Pawlikowski, B., Maimone, M., and Friedman, E. (2003) J. Biol. Chem. 278, 41347-41354), and initiates the translocation of p27 to the cytoplasm. In addition, depletion of Mirk by RNA(i) in postmitotic C2C12 myoblasts decreased protein but not mRNA levels of p27, suggesting that stabilization of p27 by Mirk also occurs during differentiation. 相似文献
7.
The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition 总被引:8,自引:0,他引:8
Le XF Claret FX Lammayot A Tian L Deshpande D LaPushin R Tari AM Bast RC 《The Journal of biological chemistry》2003,278(26):23441-23450
Cyclin-dependent kinase (CDK) inhibitor p27Kip1 binds to the cyclin E.CDK2 complex and plays a major role in controlling cell cycle and cell growth. Our group and others have reported that anti-HER2 monoclonal antibodies exert inhibitory effects on HER2-overexpressing breast cancers through G1 cell cycle arrest associated with induction of p27Kip1 and reduction of CDK2. The role of p27Kip1 in anti-HER2 antibody-induced cell cycle arrest and growth inhibition is, however, still uncertain. Here we have provided several lines of evidence supporting a critical role for p27Kip1 in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. Induction of p27Kip1 and G1 growth arrest by anti-HER2 antibody, murine 4D5, or humanized trastuzumab (Herceptin) are concentration-dependent, time-dependent, irreversible, and long-lasting. The magnitude of G1 cell cycle arrest induced by trastuzumab or 4D5 is well correlated with the level of p27Kip1 protein induced. Up-regulation of p27Kip1 and G1 growth arrest could no longer be removed with as little as 14 h of treatment with trastuzumab. Anti-HER2 antibody-induced p27Kip1 protein, G1 arrest, and growth inhibition persist at least 5 days after a single treatment. The magnitude of growth inhibition of breast cancer cells induced by anti-HER2 antibody closely parallels the level of p27Kip1 induced. Induced expression of exogenous p27Kip1 results in a p27Kip1 level-dependent G1 cell cycle arrest and growth inhibition similar to that obtained with anti-HER2 antibodies. Reducing p27Kip1 expression using p27Kip1 small interfering RNA blocks anti-HER2 antibody-induced p27Kip1 up-regulation and G1 arrest. Treatment with anti-HER2 antibody significantly increases the half-life of p27Kip1 protein. Inhibition of ubiquitin-proteasome pathway, but not inhibition of calpain and caspase activities, up-regulates p27Kip1 protein to a degree comparable with that obtained with anti-HER2 antibodies. We have further demonstrated that anti-HER2 antibody significantly decreases threonine phosphorylation of p27Kip1 protein at position 187 (Thr-187) and increases serine phosphorylation of p27Kip1 protein at position 10 (Ser-10). Expression of S10A and T187A mutant p27Kip1 protein increases the fraction of cells in G1 and reduces a further antibody-induced G1 arrest. Consequently, p27Kip1 plays an important role in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition through post-translational regulation. Regulation of the phosphorylation of p27Kip1 protein is one of the post-translational mechanisms by which anti-HER2 antibody upregulates the protein. 相似文献
8.
Accumulation of the cyclin-dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte differentiation. 总被引:29,自引:2,他引:29 下载免费PDF全文
Many types of vertebrate precursor cells divide a limited number of times before they stop and terminally differentiate. In no case is it known what causes them to stop dividing. We have been studying this problem in the proliferating precursor cells that give rise to postmitotic oligodendrocytes, the cells that make myelin in the central nervous system. We show here that two components of the cell cycle control system, cyclin D1 and the Cdc2 kinase, are present in the proliferating precursor cells but not in differentiated oligodendrocytes, suggesting that the control system is dismantled in the oligodendrocytes. More importantly, we show that the cyclin-dependent kinase (Cdk) inhibitor p27 progressively accumulates in the precursor cells as they proliferate and is present at high levels in oligodendrocytes. Our findings are consistent with the possibility that the accumulation of p27 is part of both the intrinsic counting mechanism that determines when precursor cell proliferation stops and differentiation begins and the effector mechanism that arrests the cell cycle when the counting mechanism indicates it is time. The recent findings of others that p27-deficient mice have an increased number of cells in all of the organs examined suggest that this function of p27 is not restricted to the oligodendrocyte cell lineage. 相似文献
9.
Sugiyama Y Tomoda K Tanaka T Arata Y Yoneda-Kato N Kato J 《The Journal of biological chemistry》2001,276(15):12084-12090
Ectopic expression of Jab1/CSN5 induces specific down-regulation of the cyclin-dependent kinase (Cdk) inhibitor p27 (p27(Kip1)) in a manner dependent upon transportation from the nucleus to the cytoplasm. Here we show that Grb2 and Grb3-3, the molecules functioning as an adaptor in the signal transduction pathway, specifically and directly bind to p27 in the cytoplasm and participate in the regulation of p27. The interaction requires the C-terminal SH3-domain of Grb2/3-3 and the proline-rich sequence contained in p27 immediately downstream of the Cdk binding domain. In living cells, enforcement of the cytoplasmic localization of p27, either by artificial manipulation of the nuclear/cytoplasmic transport signal sequence or by coexpression of ectopic Jab1/CSN5, markedly enhances the stable interaction between p27 and Grb2. Overexpression of Grb2 accelerates Jab1/CSN5-mediated degradation of p27, while Grb3-3 expression suppresses it. A p27 mutant unable to bind to Grb2 is transported into the cytoplasm in cells ectopically expressing Jab1/CSN5 but is refractory to the subsequent degradation. These findings indicate that Grb2 participates in a negative regulation of p27 and may directly link the signal transduction pathway with the cell cycle regulatory machinery. 相似文献
10.
Increased p27Kip1 cyclin-dependent kinase inhibitor gene expression following anti-IgM treatment promotes apoptosis of WEHI 231 B cells 总被引:4,自引:0,他引:4
Wu M Bellas RE Shen J Yang W Sonenshein GE 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(12):6530-6535
Engagement of the B cell receptor of WEHI 231 immature B cells leads sequentially to a drop in c-Myc, to induction of the cyclin-dependent kinase inhibitor p27Kip1, and finally to apoptosis. Recently we demonstrated that the drop in c-Myc expression promotes cell death, whereas the induction of p27 has been shown to lead to growth arrest. In this paper, we demonstrate that increased p27 expression also promotes apoptosis of WEHI 231 B cells. The rescue of WEHI 231 cells by CD40 ligand engagement of its receptor prevented the increase in p27 induction. Inhibition of p27-ablated apoptosis induced upon expression of antisense c-myc RNA. Furthermore, specific induction of p27 gene expression resulted in apoptosis of WEHI 231 cells. Lastly, inhibition of expression of c-Myc, upon induction of an antisense c-myc RNA vector, was sufficient to induce increased p27 levels and apoptosis. Thus, these findings define a signaling pathway during B cell receptor engagement in which the drop in c-Myc levels leads to an increase in p27 levels that promotes apoptosis. 相似文献
11.
12.
Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. 总被引:31,自引:2,他引:31 下载免费PDF全文
The p27(Kip1) protein associates with G1-specific cyclin-CDK complexes and inhibits their catalytic activity. p27(Kip1) is regulated at various levels, including translation, degradation by the ubiquitin/proteasome pathway and non-covalent sequestration. Here, we describe point mutants of p27 deficient in their interaction with either cyclins (p27(c-)), CDKs (p27(k-)) or both (p27(ck-)), and demonstrate that each contact is critical for kinase inhibition and induction of G1 arrest. Through its intact cyclin contact, p27(k-) associated with active cyclin E-CDK2 and, unlike wild type p27, p27(c-) or p27(ck-), was efficiently phosphorylated by CDK2 on a conserved C-terminal CDK target site (TPKK). Retrovirally expressed p27(k-) was rapidly degraded through the proteasome in Rat1 cells, but was stabilized by secondary mutation of the TPKK site to VPKK. In this experimental setting, exogenous wild-type p27 formed inactive ternary complexes with cellular cyclin E-CDK2, was not degraded through the proteasome, and was not further stabilized by the VPKK mutation. p27(ck-), which was not recruited to cyclin E-CDK2, also remained stable in vivo. Thus, selective degradation of p27(k-) depended upon association with active cyclin E-CDK2 and subsequent phosphorylation. Altogether, these data show that p27 must be phosphorylated by CDK2 on the TPKK site in order to be degraded by the proteasome. We propose that cellular p27 must also exist transiently in a cyclin-bound non-inhibitory conformation in vivo. 相似文献
13.
Retinoids are promising agents for the prevention and treatment of several human malignancies including lung cancer. In this study, the effect of retinoic acid (RA) on cell growth and the mechanism of growth modulation were examined in human lung squamous carcinoma CH27 cells. Here we report that RA mediated the dose- and time-dependent growth arrest in G1 phase, accompanied by the up-regulation of p27(Kip1) and the down-regulation of the cyclin-dependent kinase 3 (Cdk3) and p21(CIP1/Waf1) proteins. Furthermore, RA-induced growth arrest of CH27 cells was also associated with increased retinoic acid receptor beta (RARbeta) and reduced c-Myc expression. However, RA had no effect on the levels of cyclins A, D1, D3, E, or H, or on Cdk2, Cdk4, Cdk5, CDk6, Cdk7, p16(Ink4A), p15(Ink4B), p53, or pRb proteins in CH27 cells. Evaluation of the kinase activity of cyclin-Cdk complexes showed that RA increases p27(Kip1) expression in CH27 cells leading to markedly reduced cyclin A/Cdk2 kinase activity and slightly reduced cyclin E/Cdk2 kinase activity, with no effect on cyclin D/Cdk4 and cyclin D/Cdk6 activities. Moreover, coincident with the decrease in kinase activity was a drastic increase in cyclin A-bound p27(Kip1). These results suggest that increases in the levels of p27(Kip1) and its binding to cyclin A, as well as reduction of Cdk3 protein expression, are strong candidates for the cell cycle regulator that prevents the entry into the S phase in RA-treated CH27 cells, with prolongation of G1 phase and inhibition of DNA synthesis. 相似文献
14.
Mori S Murakami-Mori K Bonavida B 《Biochemical and biophysical research communications》1999,257(2):609-614
Prostate carcinoma cells express high levels of interleukin-6 (IL-6) and IL-6 receptor. In this study, we examined the effect of IL-6 on LNCaP human prostate carcinoma cells. IL-6 induces G1 growth arrest of LNCaP. Following IL-6 treatment of LNCaP, Western blot analysis showed that the protein levels of cyclin-dependent kinase-2 (CDK2), CDK4, and CDK6 were decreased, while accumulation of CDK inhibitor p27(Kip1) was rapidly and markedly induced. In vitro kinase assays revealed that the CDK-associated histone H1 and CDK4- and CDK6-associated pRb kinase activities were significantly inhibited in IL-6-treated LNCaP. Further, a significant amount of p27(Kip1) was co-precipitated with CDK2, CDK4 and CDK6, as detected in immunoprecipitation experiments. Thus, IL-6-induced G1 arrest appears to be due to the accumulation of p27(Kip1). In addition, IL-6-treated LNCaP cells induced neuron-like morphological changes. Since neuroendocrine differentiation is observed in most prostate carcinomas, these findings raise the possibility that IL-6 may be involved in neuroendocrine differentiation in vivo. 相似文献
15.
16.
Induction of anergy in Th1 cells associated with increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1 总被引:2,自引:0,他引:2
Th1 cells exposed to Ag and the G(1) blocker n-butyrate in primary cultures lose their ability to proliferate in Ag-stimulated secondary cultures. The ability of n-butyrate to induce anergy in Ag-stimulated, but not resting, Th1 cells was shown here to be blocked by cycloheximide. Subsequent experiments to delineate the nature of the protein apparently required for n-butyrate-induced Th1 cell anergy focused on the role of cyclin-dependent kinase (cdk) inhibitors p21(Cip1) and p27(Kip1). Normally, entry into S phase by Th1 cells occurs around 24 h after Ag stimulation and corresponds with relatively low levels of both p21(Cip1) and p27(Kip1). However, unlike control Th1 cells, anergic Th1 cells contained high levels of both p21(Cip1) and p27(Kip1) when examined 24 h after Ag stimulation. The increase in p21(Cip1) observed in Ag-stimulated anergic Th1 cells appeared to be initiated in primary cultures. In contrast, the increase in p27(Kip1) observed in these anergic Th1 cells appears to represent a re-expression of the protein much earlier than control cells following Ag stimulation in secondary cultures. The anergic Th1 cells contained functionally active cdk inhibitors capable of inhibiting the activity of both endogenous and exogenous cdks. Consequently, it appears that n-butyrate-induced anergy in Th1 cells correlated with the up-regulation of p21(Cip1) and perhaps the downstream failure to maintain low levels of p27(Kip1). Increased levels of both p21(Cip1) and p27(Kip1) at the end of G(1) could prevent cdk-mediated entry into S phase, and thus help maintain the proliferative unresponsiveness found in the anergic Th1 cells. 相似文献
17.
The cyclin-dependent kinase inhibitors p27Kip1 and p21Cip1 cooperate to restrict proliferative life span in differentiating ovarian cells 总被引:3,自引:0,他引:3
Jirawatnotai S Moons DS Stocco CO Franks R Hales DB Gibori G Kiyokawa H 《The Journal of biological chemistry》2003,278(19):17021-17027
The timing of cellular exit from the cell cycle during differentiation is specific for each cell type or lineage. Granulosa cells in the ovary establish quiescence within several hours after the ovulation-inducing luteinizing hormone surge, whereas they undergo differentiation into corpora lutea. The expression of Cdk inhibitors p21(Cip1/Waf1) and p27(Kip1) is up-regulated during this process, suggesting that these cell cycle inhibitors are involved in restricting proliferative capacity of differentiating granulosa cells. Here we demonstrate that the lack of p27(Kip1) and p21(Cip1) synergistically renders granulosa cells extended an proliferative life span. Immunohistochemical analyses demonstrated that corpora lutea of p27(Kip1), p21(Cip1) double-null mice showed large numbers of cells with bromodeoxyuridine incorporation and high proliferative cell nuclear antigen expression, which were more remarkable than those in p27(Kip1) single-deficient mice showing modest hyperproliferation. In contrast, differentiating granulosa cells in p21(Cip1)-deficient mice ceased proliferation similarly to those in wild-type mice. Interestingly, granulosa cells isolated from p27(Kip1), p21(Cip1) double-null mice exhibited markedly prolonged proliferative life span in culture, unlike cells with other genotypes. Cultured p27(Kip1), p21(Cip1) double-null granulosa cells maintained expression of steroidogenic enzymes and gonadotropin receptors through 8-10 passages and could undergo further differentiation in responses to cAMP accumulation. Thus, the cooperation of p27(Kip1) and p21(Cip1) is critical for withdrawal of granulosa cells from the cell cycle, in concert with luteal differentiation and possibly culture-induced senescence. 相似文献
18.
p27(Kip1) associates with cyclin/cdk complexes and inhibiting cdk activity, and overexpression of p27(Kip1) induces G1 arrest. We found that p27(Kip1) overexpression inhibits cdk2 kinase activity, but not cdk6 kinase activity in HeLa cells. The amount of p27(Kip1) associated with cdk2 was significantly higher than that associated with cdk6. cdk6 complexes contained detectable amounts of p27(Kip1) in all human cell lines examined, except in HeLa cells where p27(Kip1) preferentially associated with cdk2. It appears that in HeLa cells overexpressed p27(Kip1) fails to inhibit cdk6 kinase activity because of low binding affinity of cdk6 to p27(Kip1). The low binding affinity is due to a low level of the cdk6/cyclin D complexes. Functional inactivation of pRb has an effect on p27(Kip1) association with cdk6/cyclin D complexes. 相似文献
19.
Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27(Kip1). 总被引:1,自引:0,他引:1
p27(Kip1) contributes to cell-cycle regulation by inhibiting cyclin-dependent kinase (Cdk) activity. The p27 Cdk-inhibition domain has an ordered conformation comprising an alpha-helix, a 3(10) helix, and beta-structure when bound to cyclin A-Cdk2. In contrast, the unbound p27 Cdk-inhibition domain is intrinsically disordered (natively unfolded) as shown by circular dichroism spectroscopy, lack of chemical-shift dispersion, and negative heteronuclear nuclear Overhauser effects. The intrinsic disorder is not due to the excision of the Cdk-inhibition domain from p27, since circular dichroism spectra of the full-length protein are also indicative of a largely unfolded protein. Both the inhibition domain and full-length p27 are active as cyclin A-Cdk2 inhibitors. Using circular dichroism and proline mutagenesis, we demonstrate that the unbound p27 Cdk-inhibition domain is not completely unfolded. The domain contains marginally stable helical structure that presages the alpha-helix, but not the 3(10) helix, adopted upon binding cyclin A-Cdk2. Increasing or reducing the stability of the partially preformed alpha-helix in the isolated p27 domain with alanine or proline substitutions did not affect formation of the p27-inhibited cyclin A-Cdk2 complex in energetic terms. However, stabilization of the helix with alanine hindered kinetically the formation of the inhibited complex, suggesting that p27 derives a kinetic advantage from intrinsic structural disorder. 相似文献
20.
Adolfo A. Ferrando Milagros Balbín Alberto M. Pendás Francisco Vizoso Gloria Velasco Carlos López-Otín 《Human genetics》1996,97(1):91-94
The human p27kip1 gene encodes a cyclin-dependent kinase inhibitor implicated in the negative regulation of the cell cycle. In order to elucidate the possible role of p27 mutations in the development or progression of human breast cancer, we have studied the occurrence of genetic abnormalities in this gene in a series of 30 primary breast carcinomas. Direct sequence analysis of the polymerase chain reaction amplified human p27 gene revealed the occurrence of two sequence variations with respect to the reported sequence; both variants were also present in the lymphocyte DNA from the same patients. First, a silent G to A change at codon 142 (Thr) was detected in a single case. Second, a T to G transversion at codon 109, resulting in a Val to Gly change, was observed in eight tumour DNA samples (26%) and in 31 out of 80 unrelated normal individuals (39%). This latter change creates a BglI restriction site that might be useful for genetic analysis of human tumours. Despite the occurrence of these polymorphisms, we did not however find any evidence of somatic mutations in the coding region of the p27 gene. On the basis of these results, we suggest that alterations in the integrity of the human p27 gene are not common events in human breast carcinomas. 相似文献