首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulk degradation of cytosol and organelles is important for cellular homeostasis under nutrient limitation, cell differentiation and development. This process occurs in a lytic compartment, and autophagy is the major route to the lysosome and/or vacuole. We found that yeast, Saccharomyces cerevisiae, induces autophagy under various starvation conditions. The whole process is essentially the same as macroautophagy in higher eukaryotic cells. However, little is known about the mechanism of autophagy at a molecular level. To elucidate the molecules involved, a genetic approach was carried out and a total of 16 autophagy-defective mutants (apg) were isolated. So far, 14 APG genes have been cloned. Among them we recently found a unique protein conjugation system essential for autophagy. The C-terminal glycine residue of a novel modifier protein Apg12p, a 186-amino-acid protein, is conjugated to a lysine residue of Apg5p, a 294-amino-acid protein, via an isopeptide bond. We also found that apg7 and apg10 mutants were unable to form an Apg12p-Apg5p conjugate. The conjugation reaction is mediated via Apg7p, E1-like activating enzyme and Apg10p, indicating that it is a ubiquitination-like system. These APG genes have mammalian homologues, suggesting that the Apg12 system is conserved from yeast to human. Further molecular and cell biological analyses of APG gene products will give us crucial clues to uncover the mechanism and regulation of autophagy.  相似文献   

2.
Analysis of albino or pale-green (apg) mutants is important for identifying nuclear genes responsible for chloroplast development and pigment synthesis. We have identified 38 apg mutants by screening 11 000 Arabidopsis Ds-tagged lines. One mutant, apg6, contains a Ds insertion in a gene encoding APG6 (ClpB3), a homologue of the heat-shock protein Hsp101 (ClpB1). We isolated somatic revertants and identified two Ds-tagged and one T-DNA-tagged mutant alleles of apg6. All three alleles gave the same pale-green phenotype. These results suggest that APG6 is important for chloroplast development. The APG6 protein contains a transit peptide and is localized in chloroplasts. The plastids of apg6 pale-green cells were smaller than those of the wild type, and contained undeveloped thylakoid membranes. APG6 mRNA accumulated in response to heat shock in various organs, but not in response to other abiotic stresses. Under normal conditions, APG6 is constitutively expressed in the root tips, the organ boundary region, the reproductive tissues of mature plants where plastids exist as proplastids, and slightly in the stems and leaves. In addition, constitutive overexpression of APG6 in transgenic plants inhibited chloroplast development and resulted in a mild pale-green phenotype. The amounts of chloroplast proteins related to photosynthesis were markedly decreased in apg6 mutants. These results suggest that APG6 functions as a molecular chaperone involved in plastid differentiation mediating internal thylakoid membrane formation and conferring thermotolerance to chloroplasts during heat stress. The APG6 protein is not only involved in heat-stress response in chloroplasts, but is also essential for chloroplast development.  相似文献   

3.
To study the functions of nuclear genes involved in chloroplast development, we systematically analyzed albino and pale green Arabidopsis thaliana mutants by use of the Activator/Dissociation (Ac/Ds) transposon tagging system. In this study, we focused on one of these albino mutants, designated apg3-1 (for a lbino or p ale g reen mutant 3). A gene encoding a ribosome release factor 1 (RF1) homologue was disrupted by the insertion of a Ds transposon into the APG3 gene; a T-DNA insertion into the same gene caused a similar phenotype (apg3-2). The APG3 gene (At3g62910) has 15 exons and encodes a protein (422-aa) with a transit peptide that functions in targeting the protein to chloroplasts. The amino acid sequence of APG3 showed 40.6% homology with an RF1 of Escherichia coli, and complementation analysis using the E. coli rf1 mutant revealed that APG3 functions as an RF1 in E. coli, although complementation was not successful in the RF2-deficient (rf2) mutants of E. coli. These results indicate that the APG3 protein is an orthologue of E. coli RF1, and is essential for chloroplast translation machinery; it was accordingly named AtcpRF1. Since the chloroplasts of apg3-1 plants contained few internal thylakoid membranes, and chloroplast proteins related to photosynthesis were not detected by immunoblot analysis, AtcpRF1 is thought to be essential for chloroplast development. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
We isolated an Arabidopsis albino and pale green 10 (apg10) mutant which exhibits pale green cotyledons and true leaves at the juvenile stage. We identified a valine to leucine change in BBMII (N'-[(5'-phosphoribosyl)-formimino]-5-aminoimidazole-4-carboxamide ribonucleotide) isomerase involved in histidine biosynthesis. The morphological abnormality of apg10 was recovered by histidine supplementation. The histidine limitation induced by apg10 mutation causes dynamic changes of the free amino acid profile, suggesting the existence of a cross-pathway regulatory mechanism of amino acid biosynthesis in plants. We also revealed that the APG10 knockout mutant exhibited embryo lethality, indicating the essential role of the Arabidopsis BBMII isomerase for plant growth.  相似文献   

5.
To study the functions of the nuclear genes involved in chloroplast development, we systematically analyzed albino and pale-green Arabidopsis thaliana mutants by using a two-component transposon system based on the Ac/Ds element of maize as a mutagen. One of the pale-green mutants, albino or pale green mutant 1 (designated as apg1), did not survive beyond the seedling stage, when germinated on soil. The chloroplasts of the apg1 plants contained decreased numbers of lamellae with reduced levels of chlorophyll. A gene encoding a 37 kDa polypeptide precursor of the chloroplast inner envelope membrane was disrupted by insertion of the Ds transposon in apg1. The 37 kDa protein had partial sequence similarity to the S-adenosylmethionine-dependent methyltransferase. The apg1 plants lacked plastoquinone (PQ), suggesting that the APG1 protein is involved in the methylation step of PQ biosynthesis, which is localized at the envelope membrane. Our results demonstrate the importance of the 37 kDa protein of the chloroplast inner envelope membrane for chloroplast development in Arabidopsis.  相似文献   

6.
The vacuole/lysosome serves an important recycling function during starvation and senescence in eukaryotes via a process called autophagy. Here bulk cytosolic constituents and organelles become sequestered in specialized autophagic vesicles, which then deliver their cargo to the vacuole for degradation. In yeasts, genetic screens have identified two novel post-translational modification pathways remarkably similar to ubiquitination that are required for autophagy. From searches of the Arabidopsis genome, we have identified gene families encoding proteins related to both the APG8 and -12 polypeptide tags and orthologs for all components required for their attachment. A single APG7 gene encodes the ATP-dependent activating enzyme that initiates both conjugation pathways. Phenotypic analysis of an APG7 disruption indicates that it is not essential for normal growth and development in Arabidopsis. However, the apg7-1 mutant is hypersensitive to nutrient limiting conditions and displays premature leaf senescence. mRNAs for both APG7 and APG8 preferentially accumulate as leaves senesce, suggesting that both conjugation pathways are up-regulated during the senescence syndrome. These findings show that the APG8/12 conjugation pathways have been conserved in plants and may have important roles in autophagic recycling, especially during situations that require substantial nitrogen and carbon mobilization.  相似文献   

7.
G. H. Goldman  N. R. Morris 《Genetics》1995,139(3):1223-1232
Cytoplasmic dynein is a large molecular weight protein complex that functions as a microtubule-dependent, negative, end-directed ``motor.' Mutations in nudA, which encodes the heavy chain of cytoplasmic dynein, inhibit nuclear migration in Aspergillus nidulans. This paper describes the selection and characterization of extragenic suppressors of the nudA1 mutation preparatory to the identification of other proteins that interact directly or indirectly with the cytoplasmic dynein heavy chain. To facilitate future cloning of the suppressor genes, we have searched particularly for extragenic suppressor mutations that also convey a selectable phenotype, such as cold or dimethyl sulfoxide sensitivity. Genetic analysis of 16 revertants has defined at least five extragenic suppressors of nudA1 (snaA-E). All the sna mutations except one were recessive in diploids homozygous for nudA1 and heterozygous for sna mutations. To characterize the nuclear migration phenotype in the sna mutants, conidia of one representative of each complementation group were germinated, fixed and nuclei stained. The sna mutants display partial suppression of the nudA1 nuclear migration defect. Although conidiophores were produced in the sna mutants, they failed to develop normally and to produce spores. Examination of the nudA1,sna conidiophores under the microscope showed that nuclear migration into the metulae and phialides was defective.  相似文献   

8.
INTRODUCTIONDNA replication is a fundamenial process thatmust occur only once at each ce1l cycle. This restrictcontrol appears to be achieved through the coordi-nated actiVities of numerous proteins. The buddingyeast Saccharompes cerevhaae provides an excellenteukaryotic model fOr study of proteins invo1ved inthe control of DNA replication.In the budding yeast, minichromosome mainte-nance (MCM) proteins, MCM2-7, are a family of strsequence-related proteins that play crucia1 roles inr…  相似文献   

9.
WangJW WuJR 《Cell research》2001,11(4):285-291
MCM10 protein is an essential replication factor involved in the initiation of DNA replication. A mcm10 mutant (mcm10-1) of budding yeast shows a growth arrest at 37 degrees C. In the present work, we have isolated a mcm10-1 suppressor strain, which grows at 37 degrees C. Interestingly, this mcm10-1 suppressor undergoes cell cycle arrest at 14 degrees C. A novel gene, YLR003c, is identified by high-copy complementation of this suppressor. We called it as Cms1 (Complementation of Mcm 10 Suppressor). Furthermore, the experiments of transformation show that cells of mcm10-1 suppressor with high-copy plasmid but not low-copy plasmid grow at 14 degrees C, indicating that overexpression of Cms1 can rescue the growth arrest of this mcm10 suppressor at non-permissive temperature. These results suggest that CMS1 protein may functionally interact with MCM10 protein and play a role in the regulation of DNA replication and cell cycle control.  相似文献   

10.
We report the genetic characterization, molecular cloning, and sequencing of a novel nuclear suppressor, the NAM9 gene from Saccharomyces cerevisiae, which acts on mutations of mitochondrial DNA. The strain NAM9-1 was isolated as a respiration-competent revertant of a mitochondrial mit mutant which carries the V25 ochre mutation in the oxi1 gene. Genetic characterization of the NAM9-1 mutation has shown that it is a nuclear dominant omnipotent suppressor alleviating several mutations in all four mitochondrial genes tested and has suggested its informational, and probably ribosomal, character. The NAM9 gene was cloned by transformation of the recipient oxi1-V25 mutant to respiration competence by using a gene bank from the NAM9-1 rho o strain. Orthogonal-field alternation gel electrophoresis analysis and genetic mapping localized the NAM9 gene on the right arm of chromosome XIV. Sequence analysis of the NAM9 gene showed that it encodes a basic protein of 485 amino acids with a presequence that could target the protein to the mitochondrial matrix. The N-terminal sequence of 200 amino acids of the deduced NAM9 product strongly resembles the S4 ribosomal proteins from chloroplasts and bacteria. Significant although less extensive similarity was found with ribosomal cytoplasmic proteins from lower eucaryotes, including S. cerevisiae. Chromosomal inactivation of the NAM9+ gene is not lethal to the cell but leads to respiration deficiency and loss of mitochondrial DNA integrity. We conclude that the NAM9 gene product is a mitochondrial ribosomal counterpart of S4 ribosomal proteins found in other systems and that the suppressor acts through decreasing the fidelity of translation.  相似文献   

11.
Autophagy is a process that involves the bulk degradation of cytoplasmic components by the lysosomal/vacuolar system. In the yeast, Saccharomyces cerevisiae, an autophagosome is formed in the cytosol. The outer membrane of the autophagosome is fused with the vacuole, releasing the inner membrane structure, an autophagic body, into the vacuole. The autophagic body is subsequently degraded by vacuolar hydrolases. Taking advantage of yeast genetics, apg (autophagy-defective) mutants were isolated that are defective in terms of formation of autophagic bodies under nutrient starvation conditions. One of the APG gene products, Apg12p, is covalently attached to Apg5p via the C-terminal Gly of Apg12p as in the case of ubiquitylation, and this conjugation is essential for autophagy. Apg7p is a novel E1 enzyme essential for the Apg12p-conjugation system. In mammalian cells, the human Apg12p homolog (hApg12p) also conjugates with the human Apg5p homolog. In this study, the unique characteristics of hApg7p are shown. A two-hybrid experiment indicated that hApg12p interacts with hApg7p. Site-directed mutagenesis revealed that Cys(572) of hApg7p is an authentic active site cysteine residue essential for the formation of the hApg7p.hApg12p intermediate. Overexpression of hApg7p enhances the formation of the hApg5p.hApg12p conjugate, indicating that hApg7p is an E1-like enzyme essential for the hApg12p conjugation system. Cross-linking experiments and glycerol-gradient centrifugation analysis showed that the mammalian Apg7p homolog forms a homodimer as in yeast Apg7p. Each of three human Apg8p counterparts, i.e. the Golgi-associated ATPase enhancer of 16 kDa, GABA(A) receptor-associated protein, and microtubule-associated protein light chain 3, coimmunoprecipitates with hApg7p and conjugates with mutant hApg7p(C572S) to form a stable intermediate via an ester bond. These results indicate that hApg7p is an authentic protein-activating enzyme for hApg12p and the three Apg8p homologs.  相似文献   

12.
Cytoplasmic Dynein Function Is Essential in Drosophila Melanogaster   总被引:5,自引:0,他引:5       下载免费PDF全文
The microtubule motor cytoplasmic dynein has been implicated in a variety of intracellular transport processes. We previously identified and characterized the Drosophila gene Dhc64C, which encodes a cytoplasmic dynein heavy chain. To investigate the function of the cytoplasmic dynein motor, we initiated a mutational analysis of the Dhc64C dynein gene. A small deletion that removes the chromosomal region containing the heavy chain gene was used to isolate EMS-induced lethal mutations that define at least eight essential genes in the region. Germline transformation with a Dhc64C transgene rescued 16 mutant alleles in the single complementation group that identifies the dynein heavy chain gene. All 16 alleles were hemizygous lethal, which demonstrates that the cytoplasmic dynein heavy chain gene Dhc64C is essential for Drosophila development. Furthermore, our failure to recover somatic clones of cells homozygous for a Dhc64C mutation indicates that cytoplasmic dynein function is required for cell viability in several Drosophila tissues. The intragenic complementation of dynein alleles reveals multiple mutant phenotypes including male and/or female sterility, bristle defects, and defects in eye development.  相似文献   

13.
We have used molecular dynamics simulations to investigate the effect of phosphorylation and mutation on the cytoplasmic domain of phospholamban (PLB), a 52-residue protein that regulates the calcium pump in cardiac muscle. Simulations were carried out in explicit water systems at 300 K for three peptides spanning the first 25 residues of PLB: wild-type (PLB(1-25)), PLB(1-25) phosphorylated at Ser16 and PLB(1-25) with the R9C mutation, which is known to cause human heart disease. The unphosphorylated peptide maintains a helical conformation from 3 to 15 throughout a 26-ns simulation, in agreement with spectroscopic data. Comparison with simulations of a fourth peptide truncated at Pro21 showed the importance of the region from 17 to 21 in preventing local unfolding of the helix. The results suggest that residues 11-16 are more likely to unfold when specific capping motifs are not present. It is proposed that protein kinase A exploits the intrinsic flexibility of the 11-21 region when binding PLB. In agreement with available CD and NMR data, the simulations show a decrease in the helical content upon phosphorylation. The phosphorylated peptide is characterized by helix spanning residues 3-11, followed by a turn that optimizes the salt-bridge interaction between the side chains of the phosphorylated Ser-16 and Arg-13. Replacing Arg-9 with Cys results in unfolding of the helix from C9 and an overall decrease of the helical conformation. The simulations show that initiation of unfolding is due to increased solvent accessibility of the backbone atoms near the smaller Cys. It is proposed that the loss of inhibitory potency upon Ser-16 phosphorylation or R9C mutation of PLB is due to a similar mechanism, in which the partial unfolding of the cytoplasmic helix of PLB results in a conformation that interacts with the cytoplasmic domain of the calcium pump to relieve its inhibition.  相似文献   

14.
A. Vincent  G. Newnam    S. W. Liebman 《Genetics》1994,138(3):597-607
The allosuppressor mutation, sal6-1, enhances the efficiency of all tested translational suppressors, including codon-specific tRNA suppressors as well as codon-nonspecific omnipotent suppressors. The SAL6 gene has now been cloned by complementation of the increased suppression efficiency and cold sensitivity caused by sal6-1 in the presence of the omnipotent suppressor sup45. Physical analysis maps SAL6 to chromosome XVI between TPK2 and spt14. The SAL6 gene encodes a very basic 549-amino acid protein whose C-terminal catalytic region of 265 residues is 63% identical to serine/threonine PP1 phosphatases, and 66% identical to yeast PPZ1 and PPZ2 phosphatases. The unusual 235 residue N-terminal extension found in SAL6, like those in the PPZ proteins, is serine-rich. The sal6-1 mutation is a frameshift at amino acid position 271 which destroys the presumed phosphatase catalytic domain of the protein. Disruptions of the entire SAL6 gene are viable, cause a slight growth defect on glycerol medium, and produce allosuppressor phenotypes in suppressor strain backgrounds. The role of the serine-rich N terminus is unclear, since sal6 phenotypes are fully complemented by a SAL6 allele that contains an in-frame deletion of most of this region. High copy number plasmids containing wild-type SAL6 cause antisuppressor phenotypes in suppressor strains. These results suggest that the accuracy of protein synthesis is affected by the levels of phosphorylation of the target(s) of SAL6.  相似文献   

15.
We have analyzed extragenic suppressors of paralyzed flagella mutations in Chlamydomonas reinhardtii in an effort to identify new dynein mutations. A temperature-sensitive allele of the PF16 locus was mutagenized and then screened for revertants that could swim at the restrictive temperature (Dutcher et al. 1984. J. Cell Biol. 98:229-236). In backcrosses of one of the revertant strains to wild-type, we recovered both the original pf16 mutation and a second, unlinked suppressor mutation with its own flagellar phenotype. This mutation has been identified by both recombination and complementation tests as a new allele of the previously uncharacterized PF9 locus on linkage group XII/XIII. SDS-PAGE analysis of isolated flagellar axonemes and dynein extracts has demonstrated that the pf9 strains are missing four polypeptides that form the I1 inner arm dynein subunit. The primary effect of the loss of the I1 subunit is a decrease in the forward swimming velocity due to a change in the flagellar waveform. Both the flagellar beat frequency and the axonemal ATPase activity are nearly wild-type. Examination of axonemes by thin section electron microscopy and image averaging methods reveals that a specific domain of the inner arm complex is missing in the pf9 mutant strains (see accompanying paper by Mastronarde et al.). When combined with other flagellar defects, the loss of the I1 subunit has synergistic effects on both flagellar assembly and flagellar motility. These synthetic phenotypes provide a screen for new suppressor mutations in other loci. Using this approach, we have identified the first interactive suppressors of a dynein arm mutation and an unusual bypass suppressor mutation.  相似文献   

16.
Srp1p (importin alpha) functions as the nuclear localization signal (NLS) receptor in Saccharomyces cerevisiae. The srp1-31 mutant is defective in this nuclear localization function, whereas an srp1-49 mutant exhibits defects that are unrelated to this localization function, as was confirmed by intragenic complementation between the two mutants. RPN11 and STS1 (DBF8) were identified as high-dosage suppressors of the srp1-49 mutation but not of the srp1-31 mutation. We found that Sts1p interacts directly with Srp1p in vitro and also in vivo, as judged by coimmunoprecipitation and two-hybrid analyses. Mutants of Sts1p that cannot interact with Srp1p are incapable of suppressing srp1-49 defects, strongly suggesting that Sts1p functions in a complex with Srp1p. STS1 also interacted with the second suppressor, RPN11, a subunit of the 26S proteasome, in the two-hybrid system. Further, degradation of Ub-Pro-beta-galactosidase, a test substrate for the ubiquitin-proteasome system, was defective in srp1-49 but not in srp1-31. This defect in protein degradation was alleviated by overexpression of either RPN11 or STS1 in srp1-49. These results suggest a role for Srp1p in regulation of protein degradation separate from its well-established role as the NLS receptor.  相似文献   

17.
18.
The trm1 mutation of Saccharomyces cerevisiae is a single nuclear mutation that affects a specific base modification of both cytoplasmic and mitochondrial tRNA. Transfer RNA isolated from trm1 cells lacks the modified base N2,N2-dimethylguanosine, and extracts from these cells do not have detectable N2,N2-dimethylguanosine-specific tRNA methyltransferase activity. As part of our efforts to determine how this mutation affects enzyme activities in two different cellular compartments we have isolated the TRM1 locus by genetic complementation. The TRM1 locus restores the N2,N2-dimethylguanosine modification to both cytoplasmic and mitochondrial tRNA in trm1 cells. An open reading frame in this TRM1 gene is essential for complementation of the trm1 phenotype. Expression of this open reading frame in Escherichia coli converts the organism from one that neither makes N2,N2-dimethylguanosine nor has N2,N2-dimethylguanosine-specific tRNA methyltransferase activity into one that does. This result suggests that the TRM1 locus is the structural gene for the tRNA modification enzyme and that both nuclear/cytoplasmic and mitochondrial forms of the methyltransferase are produced from the same gene.  相似文献   

19.
The Drosophila Glued gene product shares sequence homology with the p150 component of vertebrate dynactin. Dynactin is a multiprotein complex that stimulates cytoplasmic dynein-mediated vesicle motility in vitro. In this report, we present biochemical, cytological, and genetic evidence that demonstrates a functional similarity between the Drosophila Glued complex and vertebrate dynactin. We show that, similar to the vertebrate homologues in dynactin, the Glued polypeptides are components of a 20S complex. Our biochemical studies further reveal differential expression of the Glued polypeptides, all of which copurify as microtubule-associated proteins. In our analysis of the Glued polypeptides encoded by the dominant mutation, Glued, we identify a truncated polypeptide that fails to assemble into the wild-type 20S complex, but retains the ability to copurify with microtubules. The spatial and temporal distribution of the Glued complex during oogenesis is shown by immunocytochemistry methods to be identical to the pattern previously described for cytoplasmic dynein. Significantly, the pattern of Glued distribution in oogenesis is dependent on dynein function, as well as several other gene products known to be required for proper dynein localization. In genetic complementation studies, we find that certain mutations in the cytoplasmic dynein heavy chain gene Dhc64C act as dominant suppressors or enhancers of the rough eye phenotype of the dominant Glued mutation. Furthermore, we show that a mutation that was previously isolated as a suppressor of the Glued mutation is an allele of Dhc64C. Together with the observed dependency of Glued localization on dynein function, these genetic interactions demonstrate a functional association between the Drosophila dynein motor and Glued complexes.  相似文献   

20.
Y. H. Chiu  N. R. Morris 《Genetics》1995,141(2):453-464
Nuclear migration plays an important role in the growth and development of many organisms including the filamentous fungus Aspergillus nidulans. We have cloned three genes from A. nidulans, nudA, nudC, and nudF, in which mutations affect nuclear migration. The nudA gene encodes the heavy chain of cytoplasmic dynein. The nudC gene encodes a 22-kD protein. The nudF gene was identified as an extracopy suppressor of the temperature sensitive (ts(-)) nudC3 mutation. The nudC3 mutation substantially decreases the intracellular concentration of the nudF protein at restrictive temperature. This is restored toward the normal level by an extra copy of nudF. To identify other genes whose products interact directly or indirectly with the NUDC protein, we have isolated a set of extragenic suppressors of the nudC3 temperature-sensitive mutation. Genetic analysis of 16 such extragenic suppressors showed them to represent nine different genes, designated sncA-sncI (for suppressor of nudC). sncA-sncH were either dominant or semidominant in diploids homozygous for nudC3 and heterozygous for the snc mutations. All of the suppressors reversed the ts(-) phenotype of nudC3 by restoring the intracellular concentration of the NUDF protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号