首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intraspecies variability is widespread in marine invertebrates. Size, colour, texture, general shape and secondary chemistry can differ quite drastically from one individual to another. Cystodytes dellechiajei (Polycitoridae) is a cosmopolitan colonial ascidian with several morphotypes, most of which differ in colour and spicular composition. New molecular tools enable us to assess the taxonomic status of these morphotypes. To determine whether variation observed in Mediterranean Cystodytes has a genetic basis, we sequenced 45 specimens from eight locations of the western Mediterranean and one from Mayotte (Indian Ocean), and obtained a 617 bp fragment of the mitochondrial gene COI. Fifteen different colour morphs were recorded and four kinds of spicules were found: disk-shaped, sphere-shaped, star-shaped and discoidal, thick spicules with a toothed margin. Zooid morphology was remarkably uniform in the whole sample set. Different tree construction methods (distance-based, parsimony-based, and maximum-likelihood-based) yielded consistent results, and recognized six major clades, which had no correspondence with spicule shape and were only partially consistent with colour morphs. Results are discussed in the light of previous knowledge of the chemistry of blue, green, brown and purple colour morphs. In spite of the different colour patterns and spicular variability we concluded, on the basis of chemical and genetic data, that the morphological traits analysed were not consistent enough to be used to differentiate between Cystodytes species. We point out the importance of genetics and chemistry in assessing the taxonomic status of species with variable morphology.  相似文献   

2.
3.
为探讨刺参科海参和海参科海参的系统进化关系,本研究通过PCR技术获取19种刺参科和海参科海参的ITS2序列,从NCBI上获取瓜参(C. salma)的ITS2序列。结果表明ITS2序列具有长度多态性,从318 bp (绿刺参)到591 bp (白尼参属)。海参属的ITS2序列长度多态性高,ITS2的GC含量从56.7%(糙海参)到70.6%(瓜参)。海参ITS2序列保守性不高,仅有48个保守位点,其余均为变异位点。基于ITS2的系统进化树结果显示进化树主要分成两支,一支包括海参科的4个属:海参属、白尼参属、辐肛参属和格皮氏海参属。辐肛参属和格皮氏海参属为姐妹关系,二者聚在一起后与白尼参属聚为一支,随后再与海参属聚在一起。白尼参属和辐肛参属为单系,海参属为复系。另一支为C. salma和刺参科。梅花参属与刺参属聚为一支后,再与仿刺参属聚在一起,3个属都是单系。在20种海参中,S. naso与B. argus的遗传距离最大(6.415)。刺参属中,S. monotuberculatus和S. horrens遗传距离最近(0.012),海参属中,糙海参与H. fuscopunctata的遗传距离最大(3.24)。本研究为从分子水平上研究海参科和刺参科之间的系统进化关系奠定了基础。  相似文献   

4.
Siliceous sponge spicules contain silicateins--proteins taking part in biogenic silica precipitation and determination of the spicule morphological features. The exon-intron structure of four silicatein-alpha isoforms: -alpha1,-alpha2, -alpha3 and -alpha4 from endemic baikalian sponge Lubomirskia baicalensis was studied. For eight sponge species, including both cosmopolitan (Spongilla lacustris, Ephydatia muelleri, E. fluviatilis) and Baikal endemic (L. baicalensis, L. incrustans, Baikalospongia intermedia, B. fungiformis, Sw. papyracea) species, seventeen gene fragment sequences of different silicatein isoforms were determined. It was shown that cosmopolitan and endemic Baikalian sponges differ from each other by gene structure (have different length ofintrons). Among Baikalian sponges silicatein-alpha1 has the most variable intron length, and silicatein-alpha4 is the most conservative. Phylogenetic analysis of amino-acid silicatein sequences allow identify different silicatein isoforms, which authentically differ form four clusters on phylogenetic tree. Phylogenetic analysis of exon-intron sequences gives the possibility to separate different sponge species in the clusters.  相似文献   

5.
Heliconema hainanensis sp. nov. collected from Uroconger lepturus (Richardson) (Anguilliformes: Congridae), Muraenesox cinereus (Forsskål) and Congresox talabonoides (Bleeker) (Anguilliformes: Muraenesocidae) in the South China Sea was described using light and scanning electron microscopy. The new species differs from its congeners by the following morphology: pseudolabia, the number and arrangement of caudal papillae (4 pairs of pedunculate precloacal papillae arranged in 2 groups of 2 and 2 pairs and 6 pairs of pedunculate postcloacal papillae arranged in 4 groups of 1, 2, 1 and 2 pairs), the length of spicules [left spicule 0.51-0.69 mm, right spicule 0.20-0.27 mm, spicule (right:left) ratio 1:2.20-2.69] and the morphology of the female tail tip. In addition, specimens of the new species collected from the three different hosts and specimens of an unidentified species of Heliconema collected from U. lepturus were characterised using molecular methods by sequencing the internal transcribed spacer (ITS) of ribosomal DNA. Analyses and comparison of the ITS sequence of H. hainanensis sp. nov. with Heliconema sp. support the validity of the new species based on morphological observations. An identification key to the species of Heliconema is also provided.  相似文献   

6.
7.
Thirty-eight specimens belonging to four genera and 15 species of the nudibranch family Phyllidiidae were examined to investigate whether the morphology of their integumentary calcareous spicules and/or the occurrence of the spicules within the regions of the body could be used to distinguish genera and species. The spicules were studied separately from five regions of the body of each specimen—the foot, gills, mantle, dorsal pustules (or ridges in Reticulidia) and rhinophores. The mantle itself plus its pustules were found to possess the full complement of spicules in every individual. Four types of spicules were recorded overall—smooth diactines, centro-polytylote diactines, triactines and tetractines. Different regions of the body were found to possess different spicule types: (a) only smooth diactines in the gills, (b) both smooth diactines and triactines in the foot and (c) all of smooth diactines, centro-polytylote diactines and triactines in the mantle, dorsal pustules and the rhinophores. Among the genera, three types of spicules (smooth diactine, triactine, and tetractine) are present in Phyllidia, Phyllidiopsis and Reticulidia, but the form of the spicules is not diagnostic between these genera or between the constituent species. The fourth type of spicule (centro-polytylote diactine) is present exclusively in Phyllidiella, and is diagnostic for that genus. However, we failed to find any difference in spicule form, or composition, or location in the body between the three (closely related) species of Phyllidiella we investigated. Therefore, our key conclusion is that spicule morphology is an extremely important character to tell the genus Phyllidiella apart from all the other genera of the family, but it is not taxonomically informative at the level of species.  相似文献   

8.
皖南早寒武世荷塘组海绵骨针化石   总被引:10,自引:1,他引:9  
本文报道皖南休宁县早寒武世荷塘组黑色页岩中产出的海绵骨针化石组合,这些海绵骨针化石具有较高的丰度和分异度,它们以二轴四射针、T型针、三轴六射针和三轴五射针为主。骨针形态完整,并保存了内部轴丝、轴管以及同心圈层等微细构造。黄铁矿化在化石的保存中起了重要的作用,化石产出的时代可能为梅树村阶至筇竹寺阶(Tommotian-Atdabanian),这个化石组合证实了海绵动物在早寒武世已开始迅速分异。  相似文献   

9.
The pentastomid Raillietiella namibiensis n. sp., from the lungs of the agamid lizards Agama aculeata aculeata and A. planiceps planiceps taken at Windhoek, Namibia, is described. The type-series comprised 14 mature female and 9 mature males specimens, all with bluntly-rounded tips to the posterior hooks. The flared, rounded base of the male copulatory spicule was furnished with a knobbly extension projecting towards the mid-ventral line, a feature known only in two other species: Raillietiella mabuiae from Mabuya sulcata in Namibia and an as yet unnamed raillietiellid from M. homalocephala from Kenya. Significant differences in annulus number, and in the dimensions of the hooks and copulatory spicules, separate the latter species from R. namibiensis. However, the holotype female of R. mabuiae was immature and therefore of little diagnostic value, whereas the single paratype male possesses an identical spicule to R. namibiensis n. sp., but a larger hook with a much longer barb. The latter difference was sufficiently great (148 vs 108 m, range 95–115, in R. namibiensis) to justify the recognition of a new species.  相似文献   

10.
Caenorhabditis elegans male spicule morphogenesis requires the coordinated cellular behaviors of several types of cells. We found that the spicule neurons and sheath cells, although important for spicule function, are dispensable for spicule morphology. In contrast, the spicule socket cells are essential for both spicule elongation and formation of spicule cuticle. The socket cells are not only necessary but also sufficient to produce spicule cuticle. This functional aspect of socket cells is genetically separable from their function in mediating spicule elongation: elongated spicules with defective spicule cuticle can be formed. During spicule morphogenesis, the expression of an egl-17::GFP reporter gene is found in the spicule socket cells and its expression appears to be regulated in the socket cells. Mutants defective in TGF-beta signaling display a crumpled spicules phenotype as a result of failure of socket cell movement during spicule morphogenesis. These observations suggest that both the FGF and the TGF-beta signaling pathways might be involved in spicule elongation.  相似文献   

11.
A phylogenetic analysis of mitochondrial ND4 and adjacent tRNA sequences for a geographically extensive series of specimens reveals nine major clades within Pseudonaja, of which six are largely coincident with nominal taxa (P. affinis, P. guttata, P. inframacula, P. ingrami, P. modesta, and P. textilis). The remaining three clades are composed of specimens presently referred to P. nuchalis. Two of these clades correspond with the "Darwin" and "Southern" morphs of previous authors, while the third clade incorporates the "Orange with black head" and "Pale head, grey nape" morphs. We are unable to confirm the presence of consistent karyotypic differences between "Orange with black head" and "Pale head, grey nape" specimens, however, P. inframacula, P. textilis, and P. nuchalis "Darwin" are found to exhibit distinctive karyotypes, as previously reported. These results, in conjunction with additional observations of karyotpic and morphological variation, are consistent with nine historically-independent lineages (i.e., species) within Pseudonaja. There is strong support for a clade composed of P. affinis, P. inframacula, P. ingrami, P. textilis, and the three P. nuchalis lineages, and for the relationships (P. inframacula, P. nuchalis "Southern") and (P. nuchalis "Darwin", P. nuchalis "Orange with black head"--"Pale head, grey nape" ).  相似文献   

12.
Siliceous sponges, one of the few animal groups involved in a biosilicification process, deposit hydrated silica in discrete skeletal elements called spicules. A multidisciplinary analysis of the structural features of the protein axial filaments inside the spicules of a number of marine sponges, belonging to two different classes (Demospongiae and Hexactinellida), is presented, together with a preliminary analysis of the biosilicification process. The study was carried out by a unique combination of techniques: fiber diffraction using synchrotron radiation, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC), Fourier transform infrared spectroscopy (FTIR), and molecular modeling. From a phylogenetic point of view, the main result is the structural difference between the dimension and packing of the protein units in the spicule filaments of the Demospongiae and the Hexactinellida species. Models of the protein organization in the spicule axial filaments, consistent with the various experimental evidences, are given. The three different species of demosponges analyzed have similar general structural features, but they differ in the degree of order. The structural information on the spicule axial filaments can help shed some light on the still unknown molecular mechanisms controlling biosilicification.  相似文献   

13.
Growth patterns of Lower Palaeozoic sponges   总被引:1,自引:0,他引:1  
Detailed studies of the growth patterns of modern siliceous sponges are restricted to demosponges and theoretical models. It is generally assumed that sponge growth is essentially incremental, with completion of one arbitrary unit being followed by external addition. All recent species are thick-walled, but Lower Palaeozoic sponges are dominated by thin-walled hexactinellids, with most Cambrian taxa consisting of a single spicule layer. Large populations of a primitive dictyospongiid have allowed the reconstruction of the growth patterns of their spicules and body morphology. The results indicate that growth occurred through continuous expansion of the globose body, accompanied by continuous enlargement of existing spicules, with a spicule size limit being reached only during the lifetime of a few individuals. It is noted that this skeletal growth pattern is otherwise restricted to deuterostomes. Consecutive appearance of successive spicule size orders appears to have maintained a maximum inhalant pore area. Comparisons with more limited data from two acanthose hexactinellids and a hazeliid demosponge indicate that an identical growth pattern operated in these species. The subsequent evolution of growth patterns is discussed, with various mechanisms producing the later thick-walled morphologies of hexactinellids and demosponges. The implications of these observations are discussed with reference to identification and systematics, since spicule size and arrangement are shown to vary during growth.  相似文献   

14.
The secondary male sex characteristics of Hoplolaimus galeatus consisted of caudal alae, two independently retractable spicules and a gubernaculum with two bilobed titillae. The spicules were dimorphic, with the outer one possessing a velum. When both spicules were completely extruded, the only open orifice on the ventral surface of the posterior region was formed by the close association of these two appendages. In specimens where the inner spicule was slightly retracted, the velum almost completely surrounded the inner spicule. When the inner spicule was retracted further, the velum appeared to convolute, closing the orifice described above.  相似文献   

15.

Cucullanus tunisiensis sp. nov., (Nematoda: Cucullanidae), collected from the intestine of the white grouper Epinephelus aeneus from waters off the coast of Tunisia is described based on light and scanning electron microscopic observations. The new species is characterized by the presence of lateral alae, ventral sucker, long unequal spicules (left spicule 2474-2789 μm long, right spicule 2357-2518 μm long). This is the sixth nominal species of the genus Cucullanus Müller, 1777 and the first representative of this genus infecting fishes of Serranidae family reported from Tunisian waters.

  相似文献   

16.
Abundant and well-preserved assemblages of disarticulated sponge spicules occur in Middle and Late Cambrian platform carbonates of western Hunan, China. Assemblages recovered from 11 stratigraphic horizons include calcisponges, demosponges, and hexactinellids. Hexactinellida, in particular, are both abundant and diverse in Upper Cambrian carbonates. Comparison with spicule assemblages from Australia indicates that many of these taxa have long stratigraphic ranges, limiting their use in correlation. The morphological diversity of these spicules exceeds that known for living siliceous sponges, supporting the observation that during the Cambrian radiation, sponges, like other metazoans, evolved a variety of architectural forms not observed in later periods. Like conodonts, individual sponges can produce more than one spicule form; thus, an "apparatus genus" concept based on multiple co-occurring elements may eventually prove useful in the biostratigraphic and paleobiological interpretation of disarticulated sponge spicules. Four distinctive forms are recognized as new taxa: Australispongia sinensis new genus and species, Flosculus gracilis new genus and species, Pinnatispongia bengtsoni new genus and species, and Nabaviella paibiensis new species.  相似文献   

17.
The earliest evidence for animal life comes from the fossil record of 24-isopropylcholestane, a sterane found in Cryogenian deposits, and whose precursors are found in modern demosponges, but not choanoflagellates, calcareans, hexactinellids, or eumetazoans. However, many modern demosponges are also characterized by the presence of siliceous spicules, and there are no convincing demosponge spicules in strata older than the Cambrian. This temporal disparity highlights a problem with our understanding of the Precambrian fossil record – either these supposed demosponge-specific biomarkers were derived from the sterols of some other organism and are simply retained in modern demosponges, or spicules do not primitively characterize crown-group demosponges. Resolving this issue requires resolving the phylogenetic placement of another group of sponges, the hexactinellids, which not only make a spicule thought to be homologous to the spicules of demosponges, but also make their first appearance near the Precambrian/Cambrian boundary. Using two independent analytical approaches and data sets – traditional molecular phylogenetic analyses and the presence or absence of specific microRNA genes – we show that demosponges are monophyletic, and that hexactinellids are their sister group (together forming the Silicea). Thus, spicules must have evolved before the last common ancestor of all living siliceans, suggesting the presence of a significant gap in the silicean spicule fossil record. Molecular divergence estimates date the origin of this last common ancestor well within the Cryogenian, consistent with the biomarker record, and strongly suggests that siliceous spicules were present during the Precambrian but were not preserved.  相似文献   

18.
Botting, J.P., Muir, L.A., Xiao, S., Li, X. & Lin, J.‐P. 2012: Evidence for spicule homology in calcareous and siliceous sponges: biminerallic spicules in Lenica sp. from the Early Cambrian of South China. Lethaia, Vol. 45, pp. 463–475. The relationships of the extant sponge classes, and the nature of the last common ancestor of all sponges, are currently unclear. Early sponges preserved in the fossil record differ greatly from extant taxa, and therefore information from the fossil record is critical for testing hypotheses of sponge phylogenetic relationships that are based on modern taxa. New specimens of the enigmatic sponge Lenica sp., from the Early Cambrian Hetang Biota of South China, exhibit an unusual spicule structure. Each spicule consists of a siliceous core with an axial canal, an organic outer layer and a middle layer interpreted to have been originally calcium carbonate. This finding confirms previous work suggesting the existence of biminerallic spicules in early sponges. Combined with data from other early sponges, the new findings imply that the two fundamental spicule structures of modern sponges were derived from a compound, biminerallic precursor. Spicules are therefore homologous structures in Calcarea and Silicea, and if sponges are paraphyletic with respect to Eumetazoa, then spicules may also have been a primitive feature of Metazoa. □Calcarea, Early Cambrian, Hetang Biota, phylogeny, Silicea, taphonomy.  相似文献   

19.
Aposematism is one of the great mysteries of evolutionary biology. The evolution of aposematic coloration is poorly understood, but even less understood is the evolution of polymorphism in aposematic signals. Here, we use a phylogeographic approach to investigate the evolution of color polymorphism in Dendrobates pumilio, a well-known poison-dart frog (family Dendrobatidae), which displays perhaps the most striking color variation of any aposematic species. With over a dozen color morphs, ranging from bright red to dull green, D. pumilio provides an ideal opportunity to examine the evolution of color polymorphism and evolutionary shifts to cryptic coloration in an otherwise aposematic species. We constructed a phylogenetic tree for all D. pumilio color morphs from 3051bp of mtDNA sequence data, reconstructed ancestral states using parsimony and Bayesian methods, and tested the recovered tree against constraint trees using parametric bootstrapping to determine the number of changes to each color type. We find strong evidence for nearly maximal numbers of changes in all color traits, including five independent shifts to dull dorsal coloration. Our results indicate that shifts in coloration in aposematic species may occur more regularly than predicted and that convergence in coloration may indicate that similar forces are repeatedly driving these shifts.  相似文献   

20.
External morphology of spicules in several species of Trichodoridae was studied by scanning electron and light microscopy. The bristles on the spicules observed in the light microscope in several species were revealed as small scales forming a sheath which covers most of the spicule body. Some species have smooth spicules, whereas other species exhibited complicated structures formed by projections. In all of the species studied, either a ventro-terminal or terminal opening of the spicules was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号