首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
3.
4.
Hypoxic ventilatory response (HVR), hypercapnic ventilatory response (HCVR), and maximal oxygen uptake (VO2max) were measured in elite male climbers (Clim.: n = 4) and physically active controls (Con.: n = 8). Although mean value of S, an index of HCVR, showed almost the same values in both groups (Clim.: 2.26 +/- 0.62 vs. Con.: 1.85 +/- 0.58 l.min-1.Torr-1), mean value of A, an index of HVR, was significantly higher in climbers than controls (Clim.: 237.8 +/- 109.2 vs. Con.: 111.3 +/- 62.0 l.min-1.Torr-1). Mean value of VO2max in climbers was not different from that in controls (Clim.: 49.3 +/- 2.9 vs. Con.: 47.5 +/- 5.7 ml.kg-1.min-1). These results demonstrate that elite climbers are characterized by their enhanced ventilatory response to hypoxia rather than prominency in aerobic work capacity. It is speculated that enhanced HVR in climbers makes compensation for decreased VO2max at high altitude. The enhanced HVR in elite climbers who have ordinary values in VO2max may be one of factors in their successful performance at extreme altitude.  相似文献   

5.
The effect of induced erythrocythemia on hemoglobin concentration ([Hb]) and aerobic work capacity was determined for nine women. Cycle tests were performed at prereinfusion (T1), 2 days after a placebo infusion (T2), 2 days postreinfusion of 334 ml of red blood cells (T3), 8 days postreinfusion (T4), and 14 days postreinfusion (T5). T1 and T2 responses did not differ, negating a placebo effect. [Hb] increased from 12.7 g X dl at T1 to 14.7 g X dl at T3 and then remained constant at T4 and T5. Hematocrit increased from 38.1% at T1 to 44.9% at T3 and then remained constant at T4 and T5. Submaximal O2 uptake (VO2) and stroke volume (SV) did not change from T1 through T5. Submaximal cardiac output (Q) and heart rate (HR) decreased from T1 to T3 and then remained constant at T4 and T5. Arteriovenous O2 difference increased from T1 to T3 and then remained constant at T4 and T5. Maximal VO2 was greater at T3 (2.65 l X min-1), T4 (2.66 l X min-1), and T5 (2.60 l X min-1) than at T1 (2.41 l X min-1). Physical work capacity was greater at T3 (10,740 kg X m), T4 (10,980 kg X m), and T5 (10,380 kg X m) than at T1 (8,747 kg X m). Maximal values for Q, HR, and SV were unchanged from T1 through T5. At maximum, arteriovenous O2 difference and Hb flow rate increased from T1 to T3 and then remained constant at T4 and T5. The greater postreinfusion [Hb] improved O2 transport capacity and appeared to regulate circulatory responses.  相似文献   

6.
7.
8.
9.
The methodology of assessing the optimality of ontogeny (physical development of children and adolescents) by bioenergetic criteria is substantiated and the lower limit of aerobic capacity as an optimum of development is determined on the basis of theoretical analysis of the literature and original experimental data.  相似文献   

10.
Observation of the physiological responses during exercise in a hot environment and measurement of maximal work capacity were made on eight young male subjects, ages 20--22. Exercise was performed on a bicycle ergometer at a constant work load of 450 kg . m/min at a cycling rate of 50 rpm for 30 min in a climatic chamber at 30 degree C with 70% relative humidity. The maximum work capacity was measured by bicycle ergometer exercise. Heat tolerance during exercise was assessed by the magnitude of physiological strain expressed by the combination of relative rise in rectal temperature, relative water loss and relative salt loss. Heat load during exercise was calculated using metabolic rates at rest and during exercise, assuming heat loss through the respiratory tract to be 10 percent of metabolic rate. Fairly good correlations were found between the ratio of work done to maximum work capacity and rise in rectal temperature, ratio of body weight loss to body weight and heat tolerance during exercise. Close correlations were found among relative heat load during exercise and rise in rectal temperature, relative body weight loss and heat tolerance. Heat tolerance during exercise in a hot environment correlated well to capacity of heat dissipation and maximum work capacity.  相似文献   

11.
12.
To assess whether decreased aerobic work capacity was associated with albuminuria in insulin dependent diabetics aerobic capacity was measured in three groups of 10 patients matched for age, sex, duration of diabetes, and degree of physical activity. Group 1 comprised 10 patients with normal urinary albumin excretion (<30 mg/24 h), group 2 comprised 10 with incipient diabetic nephropathy (urinary albumin excretion 30-300 mg/24 h, and group 3 comprised 10 with clinical diabetic nephropathy (urinary albumin excretion >300 mg/24 h). Ten non-diabetic subjects matched for sex, age, and physical activity served as controls. Oxygen uptake was similar in the four groups at rest and during a 75 W workload. Maximal oxygen uptake was also similar in the control subjects and group 1 (median 41·7, (range 29·1-53·0) ml/kg/min v 38·5 (26·6-59·2) ml/kg/min, respectively), but was significantly lower in group 2 (27·7 (13·9-44·3) ml/kg/min) and group 3 (26·8 (22·6-36·7) ml/kg/min). The difference in maximal oxygen uptake between groups 1 and 2 was 10·8 ml/kg/min (95% confidence interval 3·6 to 23·4 ml/kg/min) and between groups 1 and 3, 11·7 ml/kg/min (4·9 to 22·5 ml/kg/min). These differences were not explained by differences in metabolic control or the degree of autonomic neuropathy.Thus the insulin dependent diabetics with only slightly increased urinary albumin excretion had an appreciably impaired aerobic work capacity which could not be explained by autonomic neuropathy or the duration of diabetes. Whether the reduced capacity is due to widespread microangiopathy or another pathological process affecting the myocardium remains to be established.  相似文献   

13.
The question concerning respiratory function reserves among the factors determining the maximal power of muscular work is considered. Even in strenuous physical exercise, pulmonary ventilation does not exceed a rather constant level for every individual. Studies conducted using the programmed isocapnic hyperpnea method developed by the authors demonstrated that this level precisely reflects the functional respiratory reserve that is one of the factors limiting maximal work performance intensity. Under normal conditions, the functional respiratory reserve is 20 to 40% less than the so-called maximal breathing capacity (MBC) determined in a test, which requires voluntarily forcing respiratory efforts and exorbitant energy expenditure for the respiratory muscles performance. Therefore, the MBC should be regarded only as a parameter of ventilatory forced capacity used in extreme situations such as competitive athletic loading or in more resistive breathing when decreased respiratory system reserves become a leading factor rigidly limiting aerobic working capacity. A scheme is given that illustrates the ambiguous role of the respiratory system in this aspect.  相似文献   

14.
15.
16.
17.
18.
A mathematical model for the aerobic growth of Saccharomyces cerevisiae in both batch and continuous culture is described. It was based on the experimental observation that the respiratory capacity of organism may become saturated and exhibit a maximum specific oxygen uptake rate after suitable adaptation. This experimental observation led to the possibility that transport into and out of the mitochondrion was of major importance in the overall metabolism of S. cerevisiae and was subject to long-term adaptation. Consistent with this observation a distributed model was proposed which. as its basis, assumed the control of repression or inhibition of the uptake rates of other substrates. No other regulation of fermentation and respiration was assumed. The model provided a suitable structure allowing precise quantification of the changes in rate and stoichiometry of energy production. The model clearly indicated that growth under the wide range of experimental conditions reported could not be predicted using constant values for the maximum specific respiratory rate of constant values of YATP (g biomass/mol ATP) and PO ratio of (mol ATP/atom oxygen). The causes of the variation in the respiratory rate were not determined and it was concluded that a more detailed analysis (reported subsequently) was required. The variation of YATP and PO ratio with specific growth rate implied that the efficiency of ATP generation or ATP utilization decreased with increasing specific growth rate. It was concluded that it was not possible to quantify the individual effect of YATP and PO ratio until independent means for their reliable estimation is available.  相似文献   

19.
20.
The aim of this study was to investigate the relationship between cardiopulmonary fitness as indicated by maximal work rate (Wmax) production and aerobic capacities (WAT), body mass index (BMI) and heart rate reserve. A total of 60 sedentary subjects (30 males, 30 females, aged 18-25 years) were enrolled in the study. Each subject performed an incremental exercise test (15 W/min) to the limit of tolerance on an electromagnetically-braked cycle ergometer. There was a negative correlation between increased BMI to Wmax capacity per kilogram body weight in male (r=-0.846, P=0.0001) and in female (r=-0.896, P=0.0001) subjects. In addition, W(AT) for each kilogram body weight also negatively correlated with increased BMI in male (r=-0.870, P=0.0001) and in females (r=-0.807, P=0.0001). The heart rate reserve correlated negatively with increasing BMI: r=-0.699, P=0.0001 (males) and r=-0.655, P=0.0001 (females). The results of the present study have suggested that, due to the inverse correlation between BMI, Wmax capacity, aerobic fitness and heart rate reserve, it may be useful to consider BMI in establishing cardiopulmonary fitness in various subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号