首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of regulation of actomyosin subfragment 1 ATPase   总被引:9,自引:0,他引:9  
The mechanism of regulation of actin-subfragment 1 nucleoside triphosphatase is described in terms of the rate and equilibrium constants of a relatively simple kinetic scheme: (Formula: see text) where T, D, and Pi are nucleoside triphosphate, nucleoside diphosphate, and inorganic phosphate, respectively; Ka, Kb, and Kc are association constants; the ki are first-order rate constants; A is regulated actin (actin-tropomyosin-troponin); and M is subfragment 1. Calcium binding to regulated actin had little effect on step 2; k2 was almost unaffected, and k-2 increased, at most, 2-fold. k-1 and k3 increased 10-20-fold for ATP and 3-5-fold for 1-N6-ethenoadenosine triphosphate as substrates. Kb and Kc increased by less than 50%, whereas Ka increased 6-10-fold. The primary effect in regulation is on the rate of a conformational change which determines the rate of dissociation of ligands bound to the active site. The measurements probably underestimate the ratio of rate constants of product dissociation for active and relaxed states of actin because of heterogeneity. The kinetic evidence can be explained by a partial steric blocking mechanism or by a conformational (nonsteric) mechanism.  相似文献   

2.
The fluorescent nucleotides epsilon ADP and epsilon ATP were used to study the binding and hydrolysis mechanisms of subfragment 1 (S-1) and acto-subfragment 1 from striated and smooth muscle. The quenching of the enhanced fluorescence emission of bound nucleotide by acrylamide analyzed either by the Stern-Volmer method or by fluorescence lifetime measurements showed the presence of two bound nucleotide states for 1-N6-ethenoadenosine triphosphate (epsilon ATP), 1-N6-ethenoadenosine diphosphate (epsilon ADP), and epsilon ADP-vanadate complexes with S-1. The equilibrium constant relating the two bound nucleotide states was close to unity. Transient kinetic studies showed two first-order transitions with rate constants of approximately 500 and 100 s-1 for both epsilon ATP and epsilon ADP and striated muscle S-1 and 300 and 30 s-1, respectively, for smooth muscle S-1. The hydrolysis of [gamma-32P] epsilon ATP yielded a transient phase of small amplitude (less than 0.2 mol/site) with a rate constant of 5-10 s-1. Consequently, the hydrolysis of the substrate is a step in the mechanism which is distinct from the two conformational changes induced by the binding of epsilon ATP. An essentially symmetric reaction mechanism is proposed in which two structural changes accompany substrate binding and the reversal of these steps occurs in product release. epsilon ATP dissociates acto-S-1 as effectively as ATP. For smooth muscle acto-S-1, dissociation proceeds in two steps, each accompanied by enhancement of fluorescence emission. A symmetric reaction scheme is proposed for the acto-S-1 epsilon ATPase cycle. The very similar kinetic properties of the reactions of epsilon ATP and ATP with S-1 and acto-S-1 suggest that two ATP intermediate states also occur in the ATPase reaction mechanism.  相似文献   

3.
We have used actin labelled in Cys-374 with N-(1-pyrenyl)iodoacetamide to monitor the dynamics and equilibria of the interaction between myosin subfragment 1 and the actin-troponin-tropomyosin complex in the presence of calcium. These results are compared with those obtained for pure actin and myosin subfragment 1. The sensitivity of this fluorescent label allowed us to measure the binding affinity of myosin subfragment 1 for actin directly by fluorescence titration. The affinity of subfragment 1 for actin is increased sixfold by troponin-tropomyosin in the presence of calcium. Kinetic studies of the interaction of subfragment 1 and actin have revealed an isomerization of the actin-subfragment 1 complex from a state in which actin is weakly bound (Ka = 5.9 X 10(4) M-1) to a more tightly bound complex (Ka = 1.7 X 10(7) M-1) (Coates, Criddle & Geeves (1985) Biochem. J. 232, 351). Results in the presence of troponin-tropomyosin show the same isomerization. The sixfold increase in affinity of subfragment 1 for actin is shown to be due to a decrease in the rate of dissociation of actin from the weakly bound complex.  相似文献   

4.
M A Geeves 《Biochemistry》1989,28(14):5864-5871
The equilibrium and dynamics of the interaction between actin, myosin subfragment 1 (S1), and ADP have been investigated by using actin which has been covalently labeled at Cys-374 with a pyrene group. The results are consistent with actin binding to S1.ADP (M.D) in a two-step reaction, A + M.D K1 equilibrium A-M.D K2 equilibrium A.M.D, in which the pyrene fluorescence only monitors the second step. In this model, K1 = 2.3 X 10(4) M-1 (k+1 = 4.6 X 10(4) M-1 s-1) and K2 = 10 (k+2 less than or equal to 4 s-1); i.e., both steps are relatively slow compared to the maximum turnover of the ATPase reaction. ADP dissociates from both M.D and A-M.D at 2 s-1 and from A.M.D at greater than or equal to 500 s-1; therefore, actin only accelerates the release of product from the A.M.D state. This model is consistent with the actomyosin ATPase model proposed by Geeves et al. [(1984) J. Muscle Res. Cell Motil. 5, 351]. The results suggest that A-M.D cannot break down at a rate greater than 4 s-1 by dissociation of ADP, by dissociation of actin, or by isomerizing to A.M.D. It is therefore unlikely to be significantly occupied in a rapidly contracting muscle, but it may have a role in a muscle contracting against a load where the ATPase rate is markedly inhibited. Under these conditions, this complex may have a role in maintaining tension with a low ATP turnover rate.  相似文献   

5.
Ikkai & Ooi [Ikkai, T. & Ooi, T. (1966) Biochemistry 5, 1551-1560] made a thorough study of the effect of pressure on G- and F-actins. However, all of the measurements in their study were made after the release of pressure. In the present experiment in situ observations were attempted by using epsilon ATP to obtain further detailed kinetic and thermodynamic information about the behaviour of actin under pressure. The dissociation rate constants of nucleotides from actin molecules (the decay curve of the intensity of fluorescence of epsilon ATP-G-actin or epsilon ADP-F-actin) followed first-order kinetics. The volume changes for the denaturation of G-actin and F-actin were estimated to be -72 mL x mol(-1) and -67 mL x mol(-1) in the presence of ATP, respectively. Changes in the intensity of fluorescence of F-actin whilst under pressure suggested that epsilon ADP-F-actin was initially depolymerized to epsilon ADP-G-actin; subsequently there was quick exchange of the epsilon ADP for free epsilon ATP, and then polymerization occurred again with the liberation of phosphate from epsilon ATP bound to G-actin in the presence of excess ATP. In the higher pressure range (> 250 MPa), the partial collapse of the three-dimensional structure of actin, which had been depolymerized under pressure, proceeded immediately after release of the nucleotide, so that it lost the ability to exchange bound ADP with external free ATP and so was denatured irreversibly. An experiment monitoring epsilon ATP fluorescence also demonstrated that, in the absence of Mg(2+)-ATP, the dissociation of actin-heavy meromyosin (HMM) complex into actin and HMM did not occur under high pressure.  相似文献   

6.
A one-dimensional kinetic Ising model is developed to describe the binding of myosin subfragment 1 (SF-1) to regulated actin. The model allows for cooperative interactions between individual actin sites with bound SF-1 ligands rather than assuming that groups of actin monomer sites change their state in a cooperative fashion. With the triplet closure approximation, the model yields a set of 16 independent differential (master) equations which may be solved numerically to yield the extent of binding as a function of time. The predictions of the model are compared with experiments on the transient binding of SF-1 to regulated actin in the presence of Ca2+ and in the absence of Ca2+ with varying amounts of SF-1 prebound to the actin filament and on the equilibrium binding of SF-1 X ADP to regulated actin in the absence of Ca2+. In all cases, the calculations fit the data to within the experimental errors. In the case of SF-1 X ADP, the results suggest that a repulsive interaction exists between adjacently bound SF-1 at the ends of two neighboring seven-site actin units.  相似文献   

7.
The reactions of pyrene-labeled actin with myosin subfragment 1 (S1) and S1-ligand complexes at low ionic strength are described by the schemes [formula: see text] where M refers to a myosin head; A is actin; L is ligand; the asterisk refers to a high fluorescence state of actin; and K1 and K3 are association constants. K1 is reduced approximately 10-fold for M.ADP or M.pyrophosphate versus M alone. The rate constant of the isomerization step (k2) is 150-200 s-1 for A*M, A*M.ADP, and A*M-pyrophosphate (20 degrees C). The interaction between the ligand the actin binding sites reduces K2 from 2,000 for A*M to 50-100 for A*M.ADP and to approximately unity for A*M-pyrophosphate. The A*M.ADP state is equated with the AM'.ADP state of Sleep and Hutton (Sleep, J., A., and Hutton, R. L. (1980) Biochemistry 19, 1276-1283).  相似文献   

8.
Gly 680 of Dictyostelium myosin II sits at a critical position within the reactive thiol helices. We have previously shown that G680V mutant subfragment 1 largely remains in strongly actin-bound states in the presence of ATP. We speculated that acto-G680V subfragment 1 complexes accumulate in the A.M.ADP.P(i) state on the basis of the biochemical phenotypes conferred by mutations which suppress the G680V mutation in vivo [Wu, Y., et al. (1999) Genetics 153, 107-116]. Here, we report further characterization of the interaction between actin and G680V subfragment 1. Light scattering data demonstrate that the majority of G680V subfragment 1 is bound to actin in the presence of ATP. These acto-G680V subfragment 1 complexes in the presence of ATP do not efficiently quench the fluorescence of pyrene-actin, unlike those in rigor complexes or in the presence of ADP alone. Kinetic analyses demonstrated that phosphate release, but not ATP hydrolysis or ADP release, is very slow and rate limiting in the acto-G680V subfragment 1 ATPase cycle. Single turnover kinetic analysis demonstrates that, during ATP hydrolysis by the acto-G680V subfragment 1 complex, quenching of pyrene fluorescence significantly lags the increase of light scattering. This is unlike the situation with wild-type subfragment 1, where the two signals have similar rate constants. These data support the hypothesis that the main intermediate during ATP hydrolysis by acto-G680V subfragment 1 is an acto-subfragment 1 complex carrying ADP and P(i), which scatters light but does not quench the pyrene fluorescence and so has a different conformation from the rigor complex.  相似文献   

9.
The large change in fluorescence emission of 1-N6-etheno-2-aza-ATP (epsilon-aza-ATP) has been used to investigate the kinetic mechanism of etheno-aza nucleotide binding to bovine cardiac myosin subfragment 1 (myosin-S1) and actomyosin subfragment 1 (actomyosin-S1). The time course of nucleotide fluorescence enhancement observed during epsilon-aza-ATP hydrolysis is qualitatively similar to the time course of tryptophan fluorescence enhancement observed during ATP hydrolysis. In single turnover experiments, the nucleotide fluorescence rapidly increases to a maximum level, then decreases with a rate constant of 0.045 s-1 to a final level, which is about 30% of the maximal enhancement; a similar fluorescence enhancement is obtained by adding epsilon-aza-ADP to cardiac myosin-S1 or actomyosin-S1 under the same conditions (100 mM KCl, 10 mM 4-morpholinepropanesulfonic acid, 5 mM MgCl2, 0.1 mM dithiothreitol, pH 7.0, 15 degrees C). The kinetic data are consistent with a mechanism in which there are two sequential (acto)myosin-S1 nucleotide complexes with enhanced nucleotide fluorescence following epsilon-aza-ATP binding. The apparent second order rate constants of epsilon-aza-ATP binding to cardiac myosin subfragment 1 and actomyosin subfragment 1 are 2-12 times slower than those for ATP. Actin increases the rate of epsilon-aza-ADP dissociation from bovine cardiac myosin-S1 from 1.9 to 110 s-1 at 15 degrees C which can be compared to 0.3 and 65 s-1 for ADP dissociation under similar conditions. Although there are quantitative differences between the rate and equilibrium constants of epsilon-aza- and adenosine nucleotides to cardiac actomyosin-S1 and myosin-S1, the basic features of the nucleotide binding steps of the mechanism are unchanged.  相似文献   

10.
The Mg2+-dependent ATPase (adenosine 5'-triphosphatase) mechanism of myosin and subfragment 1 prepared from frog leg muscle was investigated by transient kinetic technique. The results show that in general terms the mechanism is similar to that of the rabbit skeletal-muscle myosin ATPase. During subfragment-1 ATPase activity at 0-5 degrees C pH 7.0 and I0.15, the predominant component of the steady-state intermediate is a subfragment-1-products complex (E.ADP.Pi). Binary subfragment-1-ATP (E.ATP) and subfragment-1-ADP (E.ADP) complexes are the other main components of the steady-state intermediate, the relative concentrations of the three components E.ATP, E.ADP.Pi and E.ADP being 5.5:92.5:2.0 respectively. The frog myosin ATPase mechanism is distinguished from that of the rabbit at 0-5 degrees C by the low steady-state concentrations of E.ATP and E.ADP relative to that of E.ADP.Pi and can be described by: E + ATP k' + 1 in equilibrium k' - 1 E.ATP k' + 2 in equilibrium k' - 2 E.ADP.Pi k' + 3 in equilibrium k' - 3 E.ADP + Pi k' + 4 in equilibrium k' - 4 E + ADP. In the above conditions successive forward rate constants have values: k' + 1, 1.1 X 10(5)M-1.S-1; k' + 2 greater than 5s-1; k' + 3, 0.011 s-1; k' + 4, 0.5 s-1; k'-1 is probably less than 0.006s-1. The observed second-order rate constants of the association of actin to subfragment 1 and of ATP-induced dissociation of the actin-subfragment-1 complex are 5.5 X 10(4) M-1.S-1 and 7.4 X 10(5) M-1.S-1 respectively at 2-5 degrees C and pH 7.0. The physiological implications of these results are discussed.  相似文献   

11.
We previously determined the binding constants of ADP, adenylyl imidodiphosphate (AMP-PNP), and inorganic pyrophosphate (PPi) to acto . myosin subfragment 1 (acto X S-1) by measuring the dissociation of acto X S-1 as a function of ATP analog concentration (Greene, L.E., and Eisenberg, E. (1980) J. Biol. Chem. 255, 543-548). In the present study, we reinvestigated this question by measuring the extent to which these ATP analogs inhibit the acto X S-1 ATPase activity using both cross-linked actin X S-1 and non-cross-linked proteins. No significant difference was found between the cross-linked and non-cross-linked acto X S-1 complexes in their affinity for either ADP or AMP-PNP. The binding constant of ADP to acto X S-1 determined by the inhibition method was in excellent agreement with that obtained previously by the dissociation method, both techniques giving values of about 7 X 10(3) M-1. However, this was not the case for AMP-PNP and PPi, with the inhibition method giving about 10-fold weaker binding constants than those determined previously by the dissociation method. Upon redoing our dissociation experiments over a wider range of actin concentrations than we used previously, we now find that the dissociation method gives much weaker values for the binding constants of PPi and AMP-PNP to acto X S-1, i.e. values on the order of 4 X 10(2) M-1. The very weak binding of these ATP analogs to acto X S-1 makes it difficult to obtain these values with great accuracy. Nevertheless, they seem to be in good agreement with the binding constants determined by the inhibition method. The weak binding of AMP-PNP and PPi to acto X S-1 is consistent with the recent fiber studies of Pate and Cooke (Pate, E., and Cooke, R. (1985) Biophys. J. 47, 773-780) and Schoenberg and Eisenberg (Schoenberg, M., and Eisenberg, E. (1986) Biophys. J. 48, 863-872).  相似文献   

12.
The kinetics of conformational change of troponin-C (TN-C) induced by binding or removal of calcium ion were studied in the presence or absence of magnesium ion by measuring the fluorescence of tyrosyl residues by stopped-flow spectrofluorometry. The result was analyzed in terms of first-order kinetics. Two phases were observed both in pCa-up and in pCa-down experiments. The dependence of the rate constants on pCa was explained by a simple mechanism as follows; (see article). The dissociation constants of calcium bound to TN-C, K and K', calculated from the experimentally determined rate constants were K = 3.16 X 10(-7) M, K' = 1.58 X 10(-6) M in the absence of magnesium ion, and K = K' = 1 X 10(-6) M in the presence of 2 mM MgCl2.  相似文献   

13.
The effect of Ca2+ on the interaction of bovine cardiac myosin subfragment 1 (S-1) with actin regulated by cardiac troponin-tropomyosin was evaluated. The ratios of actin to troponin and to tropomyosin were adjusted to optimize the Ca2+-dependent regulation of the steady-state actin-activated magnesium adenosinetriphosphatase (MgATPase) rate of myosin S-1. At 25 degrees C, pH 6.9, 16 mM ionic strength, the extrapolated values for maximal adenosine 5'-triphosphate (ATP) turnover rate at saturating actin, Vmax, were 6.5 s-1 in the presence of Ca2+ and 0.24 s-1 in the absence of Ca2+. In contrast to this 27-fold regulation of ATP hydrolysis, there was negligible Ca2+-dependent regulation of cardiac myosin S-1 binding to actin. In the presence of ATP, the dissociation constant of regulated actin and cardiac myosin S-1 was 32 microM in the presence of Ca2+ and 40 microM in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. These dissociation constants are indistinguishable from the concentrations of actin needed to reach half-saturation of the myosin S-1 MgATPase rates, 37 microM actin in the presence of Ca2+ and 53 microM in its absence. Although there may be Ca2+-dependent regulation of cross-bridge binding in the intact heart, the present biochemical studies suggest that cardiac regulation critically involves other parts of the cross-bridge cycle, evidenced here by almost complete Ca2+-mediated control of the myosin S-1 MgATPase rate even when the myosin S-1 is actin-bound.  相似文献   

14.
The kinetic mechanism of the binding and release of calcium by troponin and by the complexes troponin: tropomyosin, troponin:tropomyosin:actin, and troponin (TN)-tropomyosin (TM)-actin:myosin subfraction 1 (SF-1) was investigated using troponin labeled on the TN-I subunit with the fluorophore 4-(N-iodoac etoxyethyl-N-methyl)-7-nitrobenz-2-oxa-1,3-diazole. The apparent association constant is five to 10 times smaller for TN:TM:actin compared to TN:TM or TN and saturation of actin sites with SF-1 increased the binding constant approximately to the value for TN:TM. Kinetic measurements on TN or TN:TM fitted a single rate process for association or dissociation which is consistent with a model in which the calcium sites are equivalent and independent and each calcium induces a change in structure of the complex. TN:TM:actin gave biphasic transients for association and dissociation of calcium. The two binding sites are no longer equivalent and independent. The TN:TM:actin:SF-1 complex gave kinetic behavior essentially equivalent to TN:TM. The kinetics of calcium dissociation from the various complexes was also measured by the fluorescent calcium indicator quin 2, which gave the same values for the rate constants as for the labeled protein. The evidence is interpreted in terms of a model in which regulated actin can exist in two states and the binding of each calcium and SF-1 displaces the equilibrium between states. Formation of the complex of TN:TM with actin yielded an enhancement of the fluorescence of the labeled TN-I moiety of approximately 30%. The rate of constant for association of the complex decreased 6-fold in the presence of calcium while the rate constant for dissociation of the protein complex was essentially unchanged. Saturation of actin sites with SF-1 had no effect on the rate constant for association with TN:TM in the presence of calcium.  相似文献   

15.
Mouse myosin V is a two-headed unconventional myosin with an extended neck that binds six calmodulins. Double-headed (heavy meromyosin-like) and single-headed (subfragment 1-like) fragments of mouse myosin V were expressed in Sf9 cells, and intact myosin V was purified from mouse brain. The actin-activated MgATPase of the tissue-purified myosin V, and its expressed fragments had a high V(max) and a low K(ATPase). Calcium regulated the MgATPase of intact myosin V but not of the fragments. Both the MgATPase activity and the in vitro motility were remarkably insensitive to ionic strength. Myosin V and its fragments translocated actin at very low myosin surface densities. ADP markedly inhibited the actin-activated MgATPase activity and the in vitro motility. ADP dissociated from myosin V subfragment 1 at a rate of about 11.5 s(-1) under conditions where the V(max) was 3.3 s(-1), indicating that, although not totally rate-limiting, ADP dissociation was close to the rate-limiting step. The high affinity for actin and the slow rate of ADP release helps the myosin head to remain attached to actin for a large fraction of each ATPase cycle and allows actin filaments to be moved by only a few myosin V molecules in vitro.  相似文献   

16.
The regulation by calcium and rigor-bound myosin-S1 of the rate of acceleration of 2'-deoxy-3'-O-(N-methylanthraniloyl)ADP (mdADP) release from myosin-mdADP-P(i) by skeletal muscle thin filaments (reconstituted from actin-tropomyosin-troponin) was measured using double mixing stopped-flow fluorescence with the nucleotide substrate 2'-deoxy-3'-O-(N-methylanthraniloyl). The predominant mechanism of regulation is the acceleration of product dissociation by a factor of approximately 200 by thin filaments in the fully activated conformation (bound calcium and rigor S1) relative to the inhibited conformation (no bound calcium or rigor S1). In contrast, only 2-3-fold regulation is due to a change in actin affinity such as would be expected by "steric blocking" of the myosin binding site of the thin filament by tropomyosin. The binding of one ligand (either calcium or rigor-S1) produces partial activation of the rate of product dissociation, but the binding of both is required to maximally accelerate product dissociation to a rate similar to that obtained with F-actin in the absence of regulatory proteins. The data support an allosteric regulation model in which the binding of either calcium or rigor S1 alone to the thin filament shifts the equilibrium in favor of the active conformation, but full activation requires binding of both ligands.  相似文献   

17.
S H Lin  H C Cheung 《Biochemistry》1991,30(17):4317-4322
We previously reported that the nucleotide complex of myosin subfragment 1, S1.epsilon ADP, exists in two states on the basis of the temperature dependence of the fluorescence decay of bound 1,N6-ethenoadenosine diphosphate (epsilon ADP) [Aguirre, R., Lin. S.-H., Gonsoulin, F., Wang, C.-K., & Cheung, H.C. (1989) Biochemistry 28, 799-809]. We have extended the previous study of the equilibrium between the two states, S1L.ADP in equilibrium S1H.ADP, by using a fluorescently labeled myosin S1 (S1-AF). In S1 alkylated with IAF [5-(iodoacetamido)fluorescein], the decay of the label emission was biexponential both in the presence and absence of ADP and/or actin. In the presence of ADP, the two decay times were 4.30 (alpha 1 = 0.55) and 0.80 ns (alpha 2 = 0.45) at 12.4 degrees C, in a medium containing 60 mM KCl, 30 mM TES (pH 7.5), and 2 mM MgCl2. The steady-state fluorescence intensities of S1-AF, (S1-AF).ADP, acto.(S1-AF), and acto.(S1-AF).ADP were dependent on temperature over the range of 5-30 degrees C. By combining lifetime and steady-state intensity data, we obtained for the two-state transition (S1-AF)L.ADP in equilibrium (S1-AF)H.ADP the following parameters: delta H degrees = 16.1 kcal/mol (67.3 kJ/mol) and delta S degrees = 55.8 cal/(deg.mol) [233.5 J/(deg.mol)], in agreement with previous results obtained with epsilon ADP. The delta H degrees values for the two-state transition of S1-AF, acto.(S1-AF), and acto.(S1-AF).ADP are 13.0, 21.6, and 5.2 kcal/mol, respectively. The corresponding delta S degrees values are 46.9, 79.5, and 17.4 cal/(deg.mol).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
C Tesi  K Kitagishi  F Travers  T Barman 《Biochemistry》1991,30(16):4061-4067
The post-ATP binding steps of myosin subfragment 1 (S1) and actomyosin subfragment 1 (actoS1) ATPases were studied at -15 degrees C with 40% ethylene glycol as antifreeze. The cleavage and release of Pi steps were studied by the rapid-flow quench method and the interaction of actin with S1 plus ATP by light scattering in a stopped-flow apparatus. At -15 degrees C, the interaction of actin with S1 remains tight, and the Km for the activation of S1 ATPase is very small (0.3 microM). The chemical data were interpreted by E + ATP----E*.ATP----E**.ADP.Pi----E*.ADP----products, where E is S1 or actoS1. In Pi burst experiments with S1, there was a large Pi burst of free Pi, but E**.ADP.Pi could not be detected. Here the predominant complex in the seconds time range is E*.ATP and in the steady-state E*.ADP. With actoS1, there was a small Pi burst of E**.ADP.Pi, evidence that the cleavage steps for S1 and actoS1 are different. From the stopped-flow experiments, the dissociation of actoS1 by ATP was complete, even at actin concentrations 60X its Km. Further, no interaction of actin with the key intermediate M*.ATP could be detected. Therefore, at -15 degrees C, actoS1 ATPase occurs by a dissociative pathway; in particular, the cleavage step appears to occur in the absence of actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effects of selected nucleotides (N) on the binding of myosin subfragment 1 (S-1) and pure F-actin (A) were measured by time-resolved fluorescence depolarization for 0.15 M KCl, pH 7.0 at 4 degrees. The association constants K'A, KN, and K'N in the scheme (see article), were determined for the magnesium salts of ADP, adenyl-5'-yl imidodiphosphate AMP-P(NH)P, and PPi. The nucleotide binding site on S-1 was "mapped" with respect to its interaction on the actin binding site. The subsites were the beta- and gamma-phosphoryl groups of ATP bind had the largest effects. A quantitative measure of the interaction, the interaction free energy, was defined as -RT ln (KA/K'A). For ADP, K'A was 2.7 X 10(5) M-1 and the interaction free energy was -4.67 kJ M-1. For AMP-P(NH)P and PPi it was much larger. A ternary complex was shown to exist for ADP, S-1, and actin in the presence of Mg2+ and evidence from AMP-P(NH)P and PPi measurements indicated that ATP also likely forms a ternary complex. The mechanism of (S-1)-actin dissociation is discussed in light of these results.  相似文献   

20.
We have used a new fluorescent ATP analogue, 3'-(7-diethylaminocoumarin-3-carbonylamino)-3'-deoxyadenosine-5'-triphosphate (deac-aminoATP), to study the ATP hydrolysis mechanism of the single headed myosinV-S1. Our study demonstrates that deac-aminoATP is an excellent substrate for these studies. Although the deac-amino nucleotides have a low quantum yield in free solution, there is a very large increase in fluorescence emission ( approximately 20-fold) upon binding to the myosinV active site. The fluorescence emission intensity is independent of the hydrolysis state of the nucleotide bound to myosinV-S1. The very good signal-to-noise ratio that is obtained with deac-amino nucleotides makes them excellent substrates for studying expressed proteins that can only be isolated in small quantities. The combination of the fast rate of binding and the favorable signal-to-noise ratio also allows deac-nucleotides to be used in chase experiments to determine the kinetics of ADP and Pi dissociation from actomyosin-ADP-Pi. Although phosphate dissociation from actomyosinV-ADP-Pi does not itself produce a fluorescence signal, it produces a lag in the signal for deac-aminoADP dissociation. The lag provides direct evidence that the principal pathway of product dissociation from actomyosinV-ADP-Pi is an ordered mechanism in which phosphate precedes ADP. Although the mechanism of hydrolysis of deac-aminoATP by (acto)myosinV-S1 is qualitatively similar to the ATP hydrolysis mechanism, there are significant differences in some of the rate constants. Deac-aminoATP binds 3-fold faster to myosinV-S1, and the rate of deac-aminoADP dissociation from actomyosinV-S1 is 20-fold slower. Deac-aminoATP supports motility by myosinV-HMM on actin at a rate consistent with the slower rate of deac-aminoADP dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号