首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Uteroplacental production of eicosanoids in ovine pregnancy   总被引:3,自引:0,他引:3  
Dramatic cardiovascular alterations occur during normal ovine pregnancy which may be associated with increased prostaglandin production, especially of uteroplacental origin. To study this, we examined (Exp 1) the relationships between cardiovascular alterations, e.g., the rise in uterine blood flow and fall in systemic vascular resistance, and arterial concentrations of prostaglandin metabolites (PGEM, PGFM and 6-keto-PGF1 alpha) in nonpregnant (n = 4) and pregnant (n = 8) ewes. To determine the potential utero-placental contribution of these eicosanoids in pregnancy, we also studied (Exp 2) the relationship between uterine blood flow and the uterine venous-arterial concentration differences of PGE2, PGF2 alpha, PGFM, 6-keto-PGF1 alpha, and TxB2 in twelve additional late pregnant ewes. Pregnancy was associated with a 37-fold increase in uterine blood flow and a proportionate (27-fold) fall in uterine vascular resistance (p less than 0.01). Arterial concentrations of PGEM were similar in nonpregnant and pregnant ewes (316 +/- 19 and 245 +/- 38 pg/ml), while levels of PGFM and PGI2 metabolite 6-keto-PGF1 alpha were elevated 23-fold (31 +/- 14 to 708 +/- 244 pg/ml) and 14-fold (12 +/- 4 to 163 +/- 78 pg/ml), respectively (p less than 0.01). Higher uterine venous versus uterine arterial concentrations were observed for PGE2 (397 +/- 36 and 293 +/- 22 pg/ml) and 6-keto-PGF1 alpha (269 +/- 32 and 204 +/- 32 pg/ml), p less than 0.05, but not PGF2 alpha or TxB2. Although PGFM concentrations appeared to be greater in uterine venous (1197 +/- 225 pg/ml) as compared to uterine arterial (738 +/- 150 pg/ml) plasma, this did not reach significance (0.05 less than p less than 0.1). In normal ovine pregnancy arterial levels of PGI2 are increased, which may in part reflect increased uteroplacental production. Moreover the gravid ovine uterus also appears to produce PGE2 and metabolize PGF2 alpha.  相似文献   

2.
Prostaglandin E2 (PGE2), thromboxane B2 (TXB2; as a stable metabolite of TXA2), prostaglandin F2 alpha (PGF2 alpha) and 6-keto-PGF1 alpha (as a stable end product of prostacyclin) have been measured by using specific radioimmunoassay in the plasma of the cord artery immediately after delivery before the cord was clamped. Plasma prostanoid concentrations in normal deliveries (n = 8, as controls) were 24.8 +/- 2.6 (PGE2), 246.8 +/- 37.0 (TXB2), 122.2 +/- 13.3 (PGF2 alpha) and 82.1 +/- 7.7 (6-keto-PGF1 alpha) respectively (pg/ml, mean +/- s.e). On the other hand, in fetal distressed deliveries showing continuous bradycardia (n = 6), they increased significantly to 275.4 +/- 20.1 (PGE2), 948.6 +/- 102.5 (TXB2), 218.0 +/- 21.4 (PGF2 alpha) and 1498.6 +/- 298.4 (6-keto-PGF1 alpha) respectively (pg/ml, mean +/- s.e, p less than 0.005). However, both PGF2 alpha/PGE2 and TXB2/6-keto-PGF1 alpha ratios declined significantly from 4.70 +/- 0.33 to 0.68 +/- 0.05 and from 3.07 +/- 0.37 to 0.68 +/- 0.12 respectively (mean +/- s.e, p less than 0.005) in the fetal distressed group compared with those of the controls. From these results, it may be concluded that the cord artery, which is known as the patent source for the production of PGE2 and prostacyclin, did exert a sufficiently strong reaction to overcome the undesirable haemodynamic changes to maintain the fetal well-being in utero.  相似文献   

3.
Interleukin-1 (IL-1) is a polypeptide that has both local and systemic effects on numerous tissues, including endocrine cells. To evaluate the effect of IL-1 on luteal function, bovine luteal cells were cultured for 5 days with increasing concentrations (0.1, 0.5, 1.0, 2.5, 5.0, 10.0 ng/ml) of recombinant bovine interleukin-1 beta (rbIL-1 beta). IL-1 beta increased the production of luteal 6-keto-prostaglandin-F1 alpha (6-keto-PGF1 alpha), prostaglandin E2 (PGE2), and prostaglandin F2 alpha (PGF2 alpha) in a dose-dependent manner, but had no effect on progesterone (P4) production. Treatment with the cyclooxygenase inhibitor, indomethacin (5 micrograms/ml), inhibited basal, as well as rbIL-1 beta-stimulated prostaglandin production. Addition of Iloprost (a synthetic analogue of prostacyclin, 5 ng/ml) suppressed basal production of PGF2 alpha and PGE2, but did not reduce the stimulatory effect of rbIL-1 beta. Similarly, PGF2 alpha suppressed basal, but not IL-1 beta-stimulated, production of 6-keto-PGF1 alpha. PGE2 had no effect on the synthesis of either PGF2 alpha or 6-keto-PGF1 alpha. P4 (1.75 micrograms/ml) reduced basal as well as rbIL-1 beta-stimulated production of 6-keto-PGF1 alpha, PGE2, and PGF2 alpha. These results indicate that IL-1 beta could serve as an endogenous regulator of luteal prostaglandin production. It appears that IL-1 beta action is not modified by exogenous prostaglandins, but is at least partially regulated by elevated P4. It is possible that the role of IL-1 beta in stimulation of luteal prostaglandin production may be confined to a period characterized by low P4 levels, such as during luteal development or regression.  相似文献   

4.
A sensitive and selective assay for measuring prostaglandins in cerebrospinal fluid has been developed, based on the selected-ion-monitoring, electron-capture negative ionization GC/MS detection for the MO-PFB-TMS derivatives of prostaglandins E2, E1, F2 alpha, F1 alpha, and 6-keto-F1 alpha. Improvements over previously published assay procedures have been made, and the new assay has been applied to measurement of prostaglandin concentrations in lumbar CSF of healthy human volunteers, abstinent alcoholic patients, in cisternal CSF of Rhesus monkeys, and continuously sampled lumbar CSF of awake Rhesus monkeys. Results indicated that the concentrations of PGE2, PGE1, PGF1 alpha, and 6-keto-PGF1 alpha were below 15 pg/mL CSF in lumbar CSF of healthy humans and abstinent alcoholics, and in cisternal CSF of Rhesus monkeys. In contrast, continuously sampled lumbar CSF of awake Rhesus monkeys contained more than 200 pg/mL of PGE2, PGF2 alpha, and 6-keto-PGF1 alpha, probably present as a result of local production.  相似文献   

5.
Monkey trabecular meshwork (MTM) cells synthesize a variety of prostaglandins, including large amounts of prostaglandin E2 (PGE2) and smaller amounts of 6-keto-PGF1 alpha and PGF2 alpha. The predominance of PGE2 production by the MTM cells is similar to that observed in human trabecular meshwork cells. In contrast, the relative amounts of 6-keto-PGF1 alpha and PGF2 alpha were reversed compared with the human cells. The MTM cells produced increased amounts of PGE2 in response to treatment with bradykinin, platelet activating factor, and A-23187. Dexamethasone caused a dose-dependent inhibition of PGE2 production with 50% inhibition by 10(-8) M, although this response was variable.  相似文献   

6.
A liquid chromatographic-electrospray ionization-mass spectrometric (LC-ESI-MS) technique was developed to simultaneously determine the cyclooxygenase metabolites of arachidonic acid (6-keto-PGF(1alpha), PGD(2), PGE(2), PGF(2alpha), and PGJ(2)) produced by cultured cells. Samples were separated on a C(18) column with water-acetonitrile mobile phase, ionized by electrospray, and detected in the positive mode. Selected ion monitoring (SIM) of m/z 353, 335, 335, 319, and 317 were used for quantifying 6-keto-PGF(1alpha), PGD(2), PGE(2), PGF(2alpha), and PGJ(2), respectively. Prostaglandins were detected at concentrations as low as 1 pg (S/N=3) on the column. The method was used to determine the production of PGs from bovine coronary artery endothelial cells (ECs) and human prostate cancer cells (PC-3) with different degree of invasiveness. Bradykinin (10(-6) M) stimulated a marked increase in the production of 6-keto-PGF(1alpha), PGE(2), and PGF(2alpha) and a small increase of PGD(2) by ECs. 6-Keto-PGF(1alpha) was the major metabolite in these cells. The production of PGE(2) was threefold higher and PGD(2) was twofold higher in PC-3-S (invasive) cells than in PC-3-U (non-invasive) cells.  相似文献   

7.
Metabolism of [3H] arachidonic acid ([3H] AA) and synthesis of prostaglandins were examined with ovine conceptuses and endometrial slices collected on various days after mating. Tissues were incubated for 24 hr with or without 5 microCi of [3H] AA and with 200 micrograms radioinert AA. In experiment 1, results of chromatography indicated that conceptuses collected on days 14 and 16 after mating metabolized [3H] AA to PGE2, PGF2 alpha, PGFM, 6-keto-PGF1 alpha, and to unidentified compounds in three chromatographic regions. One of these regions (region I) contained triglycerides. Endometrial slices metabolized only small amounts of the [3H] AA to prostaglandins. In experiment 2, results of radioimmunoassays indicated that day 14 conceptuses released somewhat similar amounts (ng/mg tissue) of PGF2 alpha (32.1 +/- 17.9), PGFM (8.4 +/- 6.2), PGE2 (12.3 +/- 7.5) and 6-keto-PGF1 alpha (41.4 +/- 4.8), whereas day 16 conceptuses released more (P less than .05) PGF2 alpha (9.0 +/- 4.1) and 6-keto-PGF1 alpha (15.9 +/- 2.7) than PGE2 (0.9 +/- 0.2) or PGFM (0.5 +/- 0.08). Day 14 and 16 endometrial slices released (ng/mg tissue) more (P less than .05) PGFM (3.0 +/- 0.2) and 6-keto-PGF1 alpha (4.0 +/- 0.4) than PGF2 alpha (0.5 +/- 0.08) or PGE2 (0.05 +/- 0.02). In experiment 3, conceptuses were recovered on days 16, 20 and 24 of pregnancy and incubated with [3H] AA to determine the effects of indomethacin on [3H] AA metabolism. In general, indomethacin (Id; 4 X 10(-4) M) reduced (P less than .05) the percentage of total dpm recovered as prostaglandins, but Id increased the release of chromatographic region I. Experiment 4 was conducted with day 16, 20 and 24 conceptuses to evaluate the time course of metabolism of [3H] AA, and the appearance of region I and of prostaglandins. In general, the percentage of total dpm in region I increased as the percentage of dpm as [3H] AA decreased. The percentage of dpm as prostaglandins increased as the percentage of dpm in region I decreased. Prostaglandins, probably essential for embryonal survival and development, were synthesized in vitro by ovine conceptuses.  相似文献   

8.
Corpora lutea (CL) were collected from Holstein heifers on Days 5, 10, 15 and 18 (5/day) of the estrous cycle. Dispersed luteal cell preparations were made and 10(6) viable luteal cells were incubated with bovine luteinizing hormone (LH) and different amounts of arachidonic acid in the presence and absence of the prostaglandin (PG) synthetase inhibitor indomethacin. The concentrations of progesterone, PGF2 alpha and 6-keto-PGF1 alpha, the stable inactive metabolite of prostacyclin (PGI2), were measured. Day 5 CL had the greatest initial content of 6-keto-PGF1 alpha (1.01 +/- 0.16 ng/10(6) cells), and synthesized more 6-keto-PGF1 alpha (2.55 +/- 0.43) than CL collected on Days 10 (0.57 +/- 0.11), 15 (0.08 +/- 0.05) and 18 (0.19 +/- 0.03) during a 2-h incubation period. Arachidonic acid stimulated the production of 6-keto-PGF1 alpha by Days 10, 15 and 18 luteal tissue. PGF2 alpha was produced at a greater rate on Day 5 (0.69 +/- 0.17 ng/10(6) cells) than on Days 10 (0.06 +/- 0.01), 15 (0.04 +/- 0.02) and 18 (0.08 +/- 0.01). Arachidonic acid stimulated and indomethacin inhibited the production of PGF2 alpha, in most cases. The initial content of 6-keto-PGF1 alpha was higher than that of PGF2 alpha on all days of the cycle and more 6-keto-PGF1 alpha was synthesized in response to arachidonic acid addition. The ratio of 6-keto-PGF1 alpha content to PGF2 alpha content was 4.39, 2.30, 1.25 and 1.13 on Days 5, 10, 15 and 18, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Tumor necrosis factor (TNF) is known to be a mitogen for human diploid FS-4 fibroblasts. We have shown in an earlier study (Hori et al. (1989) J. Cell. Physiol. 141, 275-280) that indomethacin further enhances the cell proliferation stimulated by TNF. Since indomethacin inhibits the activity of cyclooxygenase, the role of prostaglandins in TNF-stimulated cell growth was examined. Cell growth stimulated by TNF and indomethacin was inhibited by exogenously added prostaglandins (PGE2, PGF2 alpha, and PGD2), among which PGE2 caused the greatest inhibition of cell growth. Treatment of FS-4 cells with 10 ng/ml TNF resulted in the release of prostaglandins (PGE2, 6-keto-PGF1 alpha, PGA2, PGD2, and PGF2 alpha) 2 to 4 fold over that of untreated cells. The amount of all these prostaglandins increased in a time-dependent manner over 6 h after treatment. In both TNF-treated and control cells, PGE2 was released as the predominant prostaglandin. Furthermore, when PGE2 production and DNA synthesis were determined in FS-4 cells treated with increasing doses of indomethacin, these two cellular responses were inversely affected by indomethacin. These data show that prostaglandins induced by TNF antagonize growth stimulatory action of TNF.  相似文献   

10.
The outputs of PGF(2 alpha), PGE(2) and 6-keto-PGF(1 alpha) were higher from the day 29 guinea-pig placenta than from the sub-placenta in culture, with PGF(2 alpha)being the major prostaglandin produced by the placenta. Lack of extracellular calcium reduced the production of all three prostaglandins by the sub-placenta and 6-keto-PGF(1 alpha) production by the placenta, but had no effect on the production of PGF(2 alpha) and PGE(2) by the placenta. EGTA (a calcium chelator) and a low concentration (30 microM) of TMB-8 (an intracellular calcium antagonist) generally inhibited prostaglandin output from the placenta and sub-placenta at various time points during culture, although EGTA had no effect on PGE(2) output from the placenta. Trifluoperazine and W-7 (calmodulin inhibitors) had no inhibitory effect on the outputs of PGF(2 alpha) and PGE(2) from the placenta, nor on the outputs of any prostaglandin from the sub-placenta. However, these two compounds inhibited the output of 6-keto-PGF(1 alpha) from the placenta. Nifedipine and verapamil (calcium channel blocking drugs) generally reduced the outputs of prostaglandins from the placenta and sub-placenta, except verapamil had no inhibitory effect on PGF(2 alpha) output from the sub-placenta. Gonadotrophin-releasing hormone (GnRH) did not stimulate the output of prostaglandins from the placenta, and tended to have a weak inhibitory action on this tissue. On the sub-placenta, GnRH had an initial inhibitory action on the outputs of PGF(2alpha) and 6-keto-PGF(1 alpha), which was then followed by a stimulation of the outputs of PGF(2 alpha) and, to a lesser extent, of PGE(2).  相似文献   

11.
Antiabortifacient action of dibenzyloxyindanpropionic acid in mice   总被引:1,自引:0,他引:1  
To evaluate the details of the adrenergic stimulation of urinary prostaglandins in man, ten normal volunteers were given various agonists and antagonists. The effect of 4 hour IV infusions of norepinephrine (NE), NE + phentolamine (PHT), NE + phenoxybenzamine (PHB), NE + prazosin (PZ), isoproterenol (ISO), and PHT alone on urinary PGE2 and PGI2 (6 keto PGF1 alpha) were determined. PGE2 and 6 keto PGF1 alpha were measured by radioimmunoassay from 4 hour urine samples. NE stimulated both PGE2 (196 +/- 40 to 370 +/- 84 ng/4 hrs/g creatinine and 6 keto PGF1 alpha (184 +/- 30 to 326 +/- 36), both p less than 0.01. In contrast, ISO had no effect on either PGE2 or 6 keto PGF1 alpha excretion. Alpha blockade with PHT. PHB, or PZ inhibited the NE induced systemic pressor effect. However, the effect of the alpha blockers on the NE induced stimulation of PGE2 and 6 keto PGF1 alpha varied. PHT did not alter the NE stimulated PGE2 or 6 keto PGF1 alpha release (370 +/- 84 vs. 381 +/- 80) PGE2 and (326 +/- 50 vs. 315 +/- 40) 6 keto PGF1 alpha both p greater than 0.2). PHT alone stimulated only 6 keto PGF1 alpha. PHB and the specific alpha 1 antagonist PZ similarly eliminated the NE induced prostaglandin release. These results suggest that adrenergically mediated urinary prostaglandin release in man is via an alpha receptor with alpha 1 characteristics.  相似文献   

12.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

13.
The outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)were similar from the day 22 guinea-pig placenta and sub-placenta in culture, except for PGE2 output from the sub-placenta which was lower. Between days 22 and 29 of pregnancy, the outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)during the initial 2 h culture period increased 6.9-, 1.1- and 3.2-fold, respectively, from the placenta, and 2.1-, 1.4- and 2.2-fold, respectively, from the sub-placenta. Therefore, there was a relatively specific increase in PGF(2 alpha)production by the guinea-pig placenta between days 22 and 29 of pregnancy. The output of PGFM from the cultured placenta also increased between days 22 and 29, indicating that the increase in PGF(2 alpha)output was due to increased synthesis rather than to decreased metabolism. By comparing the amounts of prostaglandins produced by tissue homogenates during a 1 h incubation period, it appears that there is approximately a 2-fold increase in the amount of prostaglandin H synthase (PGHS) present in the guinea-pig placenta between days 22 and 29. NS-398 (a specific inhibitor of PGHS-2) and indomethacin (an inhibitor of both PGHS-1 and PGHS-2) both inhibited prostaglandin production by homogenates of day 22 and day 29 placenta. Indomethacin was more effective than NS-398, except for their actions on PGF(2 alpha)production by the day 29 placenta where indomethacin and NS-398 were equiactive. Indomethacin and NS-398 were both very effective at inhibiting the outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)from the day 22 and day 29 placenta and sub-placenta in culture, indicating that prostaglandin production by the guinea-pig placenta and sub-placenta in culture is largely dependent upon the activity of PGHS-2. The high production of PGF(2 alpha)by the day 29 placenta is not dependent on the continual synthesis of fresh protein(s), as inhibitors of protein synthesis did not reduce PGF(2 alpha)output from the day 29 guinea-pig placenta in culture.  相似文献   

14.
T Kobayashi 《Prostaglandins》1986,31(3):469-475
Effects of 10 ppm nitrogen dioxide (NO2) exposure on the contents of prostaglandins (PGs) and thromboxane (TX) B2 in bronchoalveolar lavage (BAL) of rats were studied. In the BAL of normal rats, the amounts of PGs and TXB2 in the whole lavage were 6-keto-PGF1 alpha (38.0 +/- 6.4 ng) greater than TXB2 (11.8 +/- 4.0 ng) greater than PGF2 alpha (5.7 +/- 1.6 ng) much greater than PGE (0.5 +/- 0.3 ng). Rats were exposed to NO2 for 1,3,5,7 and 14 days. The NO2 exposure decreased in the level of 6-keto-PGF1 alpha by about 35% throughout the exposure. The level of TXB2 was higher in the day 5 exposure group (155%). The contents of PGF2 alpha and PGE first, decreased and then transiently increased on days 3 and 5. PG 15-hydroxy-dehydrogenase activity of lung homogenate decreased correspondingly on day 3 and 5. Then the contents PGF2 alpha and PGE decreased on day 7 and 14. 6-keto-PGF1 alpha and TXB2 are stable metabolites of PGI2, a strong bronchorelaxant and TXA2, a strong bronchoconstrictor respectively. Therefore the results suggested that the decrease in 6-keto-PGF1 alpha, a major prostanoid in the BAL and the increase in TXB2 may correlate with broncho constriction by NO2 exposure.  相似文献   

15.
Prostaglandin F2 alpha (PGF2 alpha) is a well-known luteolytic factor in the rat corpus luteum. To investigate a possible luteal origin of PGF2 alpha, measurements of this prostaglandin were performed in different luteal tissues in vivo. Prostaglandin E2 (PGE2) and the stable metabolite of prostacyclin, 6-keto-PGF1 alpha, were assayed simultaneously. Corpora lutea of different ages from 57 pregnant and pseudopregnant rats (mated with sterile males) were rapidly excised, dissected in 0 degree C indomethacin solution, homogenized, and extracted for prostaglandins with solid-phase extraction cartridges. Prostaglandins were determined by radioimmunoassay. Plasma levels of progesterone and 20 alpha-dihydroprogesterone were also monitored. In the adult pseudopregnant rat model, luteolysis occurs at Day 13 +/- 1, and maximal levels of all three prostaglandins were detected on Day 13 of pseudopregnancy: 0.40 +/- 0.02, 2.6 +/- 0.29, and 1.76 +/- 0.24 pmol/mg protein (mean +/- SEM, n=7) for PGF2 alpha, PGE2, and 6-keto-PGF1 alpha respectively. In pregnant rats, on the corresponding day, levels were considerably lower: 0.15 +/- 0.02, 0.90 +/- 0.13, and 0.50 +/- 0.06 pmol/mg protein (mean +/- SEM, n=9, p less than 0.0001), respectively. Luteal levels in pregnant rats showed a continuous decline on Days 13 and 19 for all prostaglandins measured, whereas in pseudopregnant rats an increment of PGF2 alpha was noted between Days 7 and 13 and remained high on Day 19. PGE2 closely followed levels of PGF2 alpha, but at a 5- to 10-fold higher level. The coefficient of correlation between PGF2 alpha and PGE2 in the luteal compartment of both models was 0.87 (p less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Three newly established human melanoma cell lines (WU-BI, PN-JC, MJ-ZJ) of different morphology and different stage of malignancy were incubated with ionophore A23187 (2.5 to 40 microM) or arachidonic acid (AA, 6.25 to 100 microM). PGF2 alpha, 6-keto-PGF1 alpha, PGE2, TXB2 and 2,3-dinor-TXB2 from isolated cells and supernatants were measured by negative ion chemical ionization gas chromatography/mass spectrometry (GC/MS). PGE2 decreased in the fibroblastoid MJ-ZJ cells from 36.7 ng/mg cell protein about 70% (A23187) and about 20% (AA), respectively. However, in the cell supernatant PGE2 increased up to 295.4 +/- 66.5 ng/mg cell protein. Production of PGF2 alpha and PGE2 increased up to 5.7 +/- 1.2 ng/mg cell protein for polydendritic WU-BI cells and spindle shaped PN-JC cells. Up to 9.3 +/- 4.3 ng PGF2 alpha and 13.4 +/- 4.7 ng PGE2 was measured for WU-BI and PN-JC in the cell supernatants. All three melanoma cell lines completely lacked formation of 6-keto-PGF1 alpha, TXB2, and 2,3-dinor-TXB2.  相似文献   

17.
The effects of several prostaglandins on the proliferation of secondary cultures of osteoblast-like cells, as measured by the incorporation of [3H]-thymidine into DNA and total DNA content of the cultures, were studied. PGE2 in the concentration range of 10(-8) to 10(-5) M caused a direct, dose-related stimulation of proliferation, while PGF2 alpha and PGD2 were less effective. PGA2 and 6-keto-PGF1 alpha were inactive in the osteoblasts in concentrations of 10(-7) to 10(-6) M. A similar stimulation profile was observed for the induction of ornithine decarboxylase (ODC, L-ornithine decarboxy-lyase, EC 4.1.1.17): the order of potency of the different prostaglandins in the induction of the ODC activity was PGE2 greater than PGF2 alpha = PGD2; again, PGA2 and 6-keto-PGF1 alpha were without effect in concentrations up to 10(-6) M. These results show that the primary prostaglandins, in order of potency PGE2 greater than PGF2 alpha = PGD2, can have a direct, stimulatory effect on the proliferation of osteoblasts, which is closely related to the induction of ODC activity.  相似文献   

18.
Fifteen sows were assigned to three groups of five each, according to gestational age (109 days, 114 days or labour). Two fetuses per sow were chosen at random, and amnion, allantochorion, amniochorion, amniotic fluid and fetal urine were collected. Tissues were enzymatically dispersed and incubated for 1, 2, 3 or 4 h and the prostaglandin (PG) content of the supernatant medium was measured by radioimmunoassay. In general, all placental cell types produced at least three times more prostaglandin E (PGE) and 6-keto-PGF1 alpha than PGF. Production did not vary across gestational age, except that production of 6-keto-PGF1 alpha was lower in cells collected during labour, resulting in a relative increase in PGF and PGE. Aminochorion cells had a lower de novo capacity to synthesize PG than did allantochorion or amniochorion, whereas treatment of allantochorion with preterm amniotic fluid, preterm or term fetal urine resulted in increased PG output. These results demonstrate that porcine placental cells can synthesize and metabolize prostaglandin in late gestation but suggest that their capacity to produce PGI2 (as measured by 6-keto-PGF1 alpha) is lower than for other prostaglandins during labour.  相似文献   

19.
Formation of prostaglandins by ovarian carcinomas   总被引:1,自引:0,他引:1  
Tissue contents of prostaglandins (PG) PGE2, PGE2a and 6-keto-PGF1a (degradation product of PGI2) were determined in specimens of advanced human ovarian cancer (n = 11). The PG levels (ng/mg tissue protein) varied widley: PGE2 17-515; PGF2a 2-43 and 6-keto-PGF1a 5-105. Tumors of patients without response to chemotherapy contained more PGE2, PGF2a and 6-keto-PGF1a than did tumors responding to chemotherapy. PG production was investigated in two ovarian carcinoma-derived cell lines. The ability of these cells to synthesize PG varied depending on the cell density. An increase of cell number was associated with a decrease of PG yield. PG formation was inhibited by indomethacin in a concentration-dependent manner. The present study suggests that ovarian carcinoma cells form PG in vivo and vitro.  相似文献   

20.
The effect of prostaglandins (PG) on free cytosolic calcium concentrations [( Ca2+]i) and cAMP levels was studied in the osteosarcoma cell line UMR-106. PGF2 alpha and PGE2, but not 6-keto-PGF1 alpha, induced an increase in [Ca2+]i which was mainly due to Ca2+ release from intracellular stores. The EC50 for PGF2 alpha was approximately 7 nM, whereas that for PGE2 was approximately 1.8 microM. Maximal doses of PGF2 alpha increased [Ca2+]i to higher levels than PGE2. Both active PGs also stimulated phosphatidylinositol turnover in UMR-106 cells. The effects of the two PGs were independent of each other and appear to involve separate receptors for each PG. PGE2 was a very potent stimulator of cAMP production and increased cAMP by approximately 80-fold with an EC50 of 0.073 microM. PGF2 alpha was a very poor stimulator of cAMP production; 25 microM PGF2 alpha increased cAMP by 5-fold. The increase in cellular cAMP levels activated a plasma membrane Ca2+ channel which resulted in a secondary, slow increase in [Ca2+]i. High concentrations of both PGs (10-50 microM) inhibited this channel independent of their effect on cAMP levels. Pretreatment of the cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate inhibited the PG-mediated increase in phosphatidylinositol turnover and the increase in [Ca2+]i. However, pretreatment with 12-O-tetradecanoyl-13-acetate had no effect on the PGE2-mediated increase in cAMP. The latter finding, together with the dose responses for PGE2-mediated increases in [Ca2+]i and cAMP levels, suggests the presence of two subclasses of PGE2 receptors: one coupled to adenylate cyclase and the other to phospholipase C. With respect to osteoblast function, the cAMP signaling system is antiproliferative, whereas the Ca2+ messenger system, although having no proliferative effect by itself, tempers cAMP's antiproliferative effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号