首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The final stage of map-based gene isolation is complementation of the mutant phenotype with wild-type DNA to determine the exact location of the gene of interest. This usually involves Agrobacterium tumefaciens-mediated transformation, which is reliable and produces stable transformants. However, the process of Agrobacterium transformation may take up to three months to complete. If the mutant phenotype can be seen in a single cell, and the wild-type copy of the gene can act cell autonomously, then complementation of the whole plant is not strictly necessary. We have developed a technique for the biolistic transformation of Arabidopsis thaliana root hairs, and used this to test large insert clones for complementation of two recessive mutant phenotypes, a procedure that takes less than a day. Our results show that biolistic transformation can be used with transient assays to conduct rapid tests for complementation by large insert clones.  相似文献   

2.
This article describes a set of protocols—for retrofitting, transformation and purification—that together enable the delivery of full-sized YAC-DNA to plant cells. To be able to equip YACs of interest with plant selectable markers, we have constructed a retrofitting vector that carriesnptII anduidA. Furthermore, we established a transformation protocol for plant protoplasts that is sufficiently efficient to support transfer of high-molecular-weight DNA. In this protocol lipofection is combined with PEG-mediated direct gene transfer. Large amounts of purified DNA are necessary for lipofection. To obtain sufficient quantities of concentrated, purified YAC-DNA, we used an optimized two-step, gel-purification method. Transient expression of a YAC-bornuidA demonstrates that both retrofitting vector and transformation protocol are effective.  相似文献   

3.
The isolation of DNA clone termini is an important step in the development of DNA contigs utilized for a range of applications, including physical mapping, genetic map-based cloning, insertion mutagenesis cloning, and isolation of complete gene sequences. We describe a rapid PCR-based method for the isolation of vector-insert junctions, or insert terminal sequences, of cloned plant DNA fragments. PCR amplification is performed using a vector-specific primer and a nonspecific primer, originally designed for use in animal systems, containing degenerative bases that we have shown can also anneal to plant insert DNA. Using this method we have successfully isolated end-terminal sequences from plant genomic clones harbored in YAC, BAC, and bacteriophage λ vectors. Termini of genomic clones from both tomato andArabidopsis were isolated demonstrating the utility of this technique among a range of plant species.  相似文献   

4.
Nagano Y  Takao S  Kudo T  Iizasa E  Anai T 《Plant cell reports》2007,26(12):2111-2117
T-DNA binary vectors are often used in plant transformation experiments. Because they are usually very large and have few restriction sites suitable for DNA ligation reactions, cloning DNA fragments into these vectors is difficult. We provide herein an alternative to cloning DNA fragments into very large vectors. Our yeast-based recombineering method enables DNA fragments to be cloned into certain types of T-DNA binary vectors by one-step transformation without the requirement of specific recombination sites or precisely positioned restriction ends, thus making the cloning process more flexible. Moreover, this method is inexpensive and is applicable to multifragment cloning.  相似文献   

5.
Bacterial artificial chromosome (BAC) has the capacity to clone DNA fragments in excess of 300 kb. It also has the considerable advantages of stable propagation and ease of purification. These features make BAC suitable in genetic research, such as library construction, transgenic mice production, and gene targeting constructs. Homologous recombination in Escherichia coli, a process named recombineering, has made the modification of BACs easy and reliable. We report here a modified recombineering method that can efficiently mediate the fusion of large DNA fragments from two or more different BACs. With the introduction of kanamycin-resistant gene and proposed rare-cutting restriction endonuclease (RCRE) sites into two BACs, a 82.6-kb DNA frament containing the inverted human α-globin genes (ϑ, α1, α2, and ζ) from BAC191K2 and the locus control region (LCR) of human β-globin gene locus (from the BAC186D7) was reconstructed. This approach for combining different BAC DNA fragments should facilitate many kinds of genomic experiments. These two authors contributed equally to this work.  相似文献   

6.
Simple binary vectors for DNA transfer to plant cells   总被引:3,自引:0,他引:3  
Summary Cosmid binary vectors for the introduction of DNA into plant cells have been constructed. These vectors are derived from the replicon of the broad host range plasmid pRK2 and contain the T-DNA border regions between which have been placed a chimaeric gene conferring resistance to kanamycin in plant cells. Appropriate restriction endonuclease targets have also been placed between the border regions. These binary vectors, in conjunction with appropriate Agrobacterium strains, are capable of delivering DNA to plant cells in cocultivation experiments with very high efficiency. The transformation frequency is shown to be somewhat dependent on the replicon used. re]19850121 rv]19850506 ac]19850513  相似文献   

7.
Summary We have used both Escherichia coli cells and Agrobacterium tumefaciens cells as microprojectiles to deliver DNA into suspension-cultured tobacco (Nicotiana tabacum L. line NT1) cells using a helium powered biolistic device. In addition, E. coli cells were used as microprojectiles for the transformation of suspension-cultured maize (Zea mays cv. Black Mexican Sweet) cells. Pretreating the bacterial cells with phenol at a concentration of 1.0%, and combining the bacterial cells with tungsten particles increased the rates of transformation. In N. tabacum, we obtained hundreds of transient transformants per bombardment, but were unable to recover any stable transformants. In Z. mays we obtained thousands of transient transformants and an average of six stable transformants per bombardment. This difference is discussed.Abbreviations BMS Black Mexican Sweet - RPM revolutions per minute - uidA -glucuronidase gene - GUS -glucuronidase protein - LB Luria-Bertani broth - OD600 optical density at 600 nm - psi pounds per square inch - Apr ampicillin resistance - Knr kanamycinresistance  相似文献   

8.
陈林姣  李爱贞 《广西植物》2004,24(3):248-252
近年来 ,植物基因工程技术取得了重要进展 ,在农作物品种改良和育种方面发挥越来越重要的作用。然而 ,目前植物遗传转化所采用的受体系统 ,大都依赖于细胞组织培养技术才能获得转基因植株。其中 ,基因型限制和遗传变异是限制该技术发展和应用的两大障碍。因此 ,一些研究者试图避开组织培养和植株再生过程 ,利用植物有性生殖途径进行转化 ,并取得了一系列成果。这些方法包括以下方面 :(1 )利用花粉粒或花粉管作为转化DNA的载体 ;(2 )将外源DNA导入子房或胚珠中 ;(3 )以精、卵细胞、合子作为转化受体。这些方法利用了高等植物的有性生殖机制和胚胎发育过程 ,避免了无性繁殖过程中的遗传变异、植株再生困难及转基因植株嵌合等问题。该文归纳综合了该研究领域所取得的成果和最新进展 ,并对这些方法进行了评价及其发展趋势进行了分析。  相似文献   

9.
In relation to the question which DNA form (single- or double-stranded) is transferred by Agrobacterium tumefaciens to plant cells, we studied the behaviour of single-stranded DNA, as compared to double-stranded DNA, when it is introduced into plant protoplasts by electroporation. To this end, we cloned a construct with a plant NPTII gene as well as a CAT gene in the M13 vectors tg130 and tg131. We found that both complementary single-stranded molecules gave rise to substantial CAT activity in plant protoplasts, suggesting that single-stranded DNA is converted into double-stranded DNA by the plant cell replication machinery. Unexpectedly, we found that single-stranded DNA leads to a 3–10 fold higher frequency of stable transformation (selection for kanamycin resistance) than double-stranded DNA. These results indicate that the use of single-stranded DNA might be considered in experiments in which optimal transformation frequencies are needed, e.g. with protoplasts form recalcitrant plant species.Abbreviations ss single-stranded - ds double-stranded - CAT chloramphenicol acetyl transferase - NPTII neomycin phosphotransferase II - RT room temperature  相似文献   

10.
Transformation with large DNA molecules enables multiple genes to be introduced into plants simultaneously to produce transgenic plants with complex phenotypes. In this study, a large DNA fragment (ca. 100 kb) containing a set of Aegilops tauschii hardness genes was introduced into rice plants using a novel transformation method, called bioactive beads-mediated transformation. Nine transgenic rice plants were obtained and the presence of transgenes in the rice genome was confirmed by PCR and FISH analyses. The results suggested that multiple transgenes were successfully integrated in all transgenic plants. The expression of one of the transgenes, puroindoline b, was confirmed at the mRNA and protein levels in the T2 generation. Our study clearly demonstrates that the bioactive bead method is capable of producing transgenic rice plants carrying large DNA fragments. This method will facilitate the production of useful transgenic plants by introducing multiple genes simultaneously.  相似文献   

11.
The large genomes of many plant species contain numerous dispersed repeat sequences. The problem of large-scale structural instability due to the presence of such repeats in yeast artificial chromosome (YAC) clones was assessed. The feasibility of stabilising plant sequences prone to rearrangement in YACs was demonstrated using a host yeast strain deficient in recombination.  相似文献   

12.
A new culture method for the injection of tobacco mesophyll protoplasts has been established. The protoplasts are embedded in a thin layer of alginate and are nourished from the medium in the underlying basislayer. In the alginate layer the protoplasts regenerate to calli at a frequency of up to 80%. Embedded protoplasts can be selected either with 50 mg l−1 kanamycin or 5 mg l−1 paromomycin. Single resistant cells can be recovered from about 10 000 sensitive cells in one alginate layer. Injection of theneo gene (coding for neomycin phosphotransferase II) into protoplast derived single cells in the alginate layer results in kanamycin resistant colonies that can be regenerated to mature plants. These plants express the neomycin phosphotransferase as shown by enzyme activity assay. The integration of the transgene into the plant genome could be proved by Southern hybridization to high molecular weight DNA. With this culture method 100 cells can be injected per hour. Transformation frequencies range from 2 to 20%. In crossing experiments, it was shown that the foreign gene is transmitted to the next generation in a Mendelian fashion.  相似文献   

13.
We have developed anAgrobacterium-mediated transformation system, using tobacco cell suspensions, that permits evaluation of factors affecting transformation within seven days of co-cultivation. Tobacco cell transformation was determined by monitoring -glucuronidase (GUS) activity detected in plant cell extracts. The use of a chimeric gene construct, 35S-GUS/INT, containing a portable intron in theuidA reading frame, assured only plant-specific GUS expression. During the co-cultivation period, induction of the bacterialvir-region was monitored using a heterologous gene construct composed of avirB promoter fragment from pTiC58 fused to the chloramphenicol acetyltranferase (CAT) gene ofTn9. Tobacco cell transformants were confirmed by antibiotic selection of transformed plant cells and by X-Gluc staining. Maximum transformation was obtained when plant suspension cultures were growing rapidly which also was coincidental with elevated levels of bacterialvir-region expression. One week after co-cultivation, the transformed cultures exhibited a stable pattern of GUS activity which remained constant without antibiotic selection. The system was used to compare the virulence of a number ofAgrobacterium strains. GUS activity of plant cells co-cultivated with a strain containing a cointegrate plasmid was 3-fold higher than that of one with a binary configuration of the T-DNA. When the co-cultivatingAgrobacterium strain also carried the plasmid used to monitorvir induction, the frequency of transformation was reduced by as much, as 97%.  相似文献   

14.
Recombineering techniques have been developed to modify bacterial artificial chromosomes (BACs) via bacterial homologous recombination systems, simplifying the molecular manipulations of large DNA constructs. However, precise modifications of a DNA fragment larger than 2-3 kb by recombineering remain a difficult task, due to technical limitations in PCR amplification and purification of large DNA fragments. Here, we describe a new recombineering strategy for the replacement of large DNA fragments using the commonly utilized phage/Red recombination host system. This approach involved the introduction of rare restriction enzyme sites and positive selection markers into the ends of a large DNA fragment, followed by its release from the donor BAC construct and integration into an acceptor BAC. We have successfully employed this method to precisely swap a number of large DNA fragments ranging from 6 to 40 kb between two BAC constructs. Our results demonstrated that this new strategy was highly effective in the manipulations of large genomic DNA fragments and therefore should advance the conventional BAC recombineering technology to the next level.  相似文献   

15.
Summary The T-DNA structure and organization in tissues obtained via transformation of tobacco protoplasts with Ti-plasmid DNA was found to be completely different from the T-DNA introduced via Agrobacterium tumefaciens. It is often fragmented. Overlapping copies of T-DNA, having various sizes, as well as separated fragments of T-DNA were detected. The border sequences of 23 basepairs (bp), flanking the T-region in the Ti-plasmid as direct repeats are not used as preferred sequences for integration. Similar results were obtained with a T-region clone lacking one of the TL-borders. This clone, which carried the cytokinin locus and only the right border sequence of TL and the left border sequence of TR, still had the capacity to transform protoplasts. Also the Vir-region of the Ti-plasmid is not required for integration of foreign DNA via DNA transformation. This is demonstrated by the results with the T-region clone mentioned and by the transforming capacity of a Ti-plasmid carrying a mutated Vir-region. Nevertheless, in a number of Ti-plasmid DNA transformants Vir-region fragments were found to be stably integrated. Furthermore, it has been established that co-transformation can occur with plant cells. Besides the detection of Ti-plasmid fragments from outside the T-region also DNA sequences originating from two DNA sources, which were both independently present in transformation experiments, have been found in some DNA transformants, e.g. calf thymus DNA, which was used as carrier DNA. No expression of the co-transferred DNA was observed. In total three phenotypical classes of DNA transformants were isolated. Although the T-DNA was often scrambled, polyA+ mRNA studies indicated that the different phenotypes studied can be explained by the presence of active T-DNA genes with known functions.  相似文献   

16.
In a search for sequences that confer on bacterial plasmids the capacity of autonomous replication in yeast cells, we chemically synthesized polynucleotides 80 bp in length from an equimolar mixture of A and T. The random AT-polymer population, W80, was inserted into the plasmid YIp5-Kan1 (which carries the markers URA3 and G418(R), but does not replicate in yeast) and amplified in Escherichia coli. This library, representing 10 000 different AT sequences, was transformed into three species of yeast: Saccharomyces cerevisiae, Kluyveromyces lactis and Torulaspora delbrueckii. The aim was to evaluate the frequency, if any, of autonomously replicating sequences (ARSs) in the random sequences. A large number of transformants were obtained from each species. Many of them showed a stable transformed phenotype. Several W80 sequences were found many times for a given species, suggesting that each species preferred particular sequences for ARS function, although they are diverse in their primary sequence. In view of the high frequency and stability of the replicative plasmids found in the different hosts, this small random AT library may be conveniently used as a source of replicative gene vectors for genetic manipulation of many nonconventional yeast species, in place of searching for species-specific chromosomal ARSs.  相似文献   

17.
Summary Direct gene transfer has proved to be an efficient transformation method for arabidopsis thaliana, a member of the Brassicaceae. Transgenic Arabidopsis plants resistant to hygromycin B have been regenerated from mesophyll protoplasts treated with polyethylene glycol and plasmid DNA carrying the hygromycin phosphotransferase (HPT) gene under the control of the 35 S promoter of cauliflower mosaic virus. The transformation procedure reproducibly yields transformants at frequencies of approximately 1×10-4 (based on the number of protoplasts treated) or 5% (based on the number of regenerating calli). DNA from plants regenerated from hygromycin resistant colonies was analysed by Southern blot hybridization demonstrating that the foreign gene is stably integrated into the plant chromosome. Genetic analysis of several hygromycin resistant plants showed that the HPT gene is transmitted to the progeny. Transformation experiments performed with a selectable and a non-selectable gene on separate plasmids resulted in a co-transformation rate of functionally active copies in about 25% of the transformants analysed. Hence this approach can be used to introduce non-selectable genes into the Arabidopsis genome.  相似文献   

18.
The functional analysis of plant cells at the cellular and subcellular levels requires novel technologies for the directed manipulation of individual cells. In this report, we demonstrate the use of an infrared (1,064 nm) picosecond laser for the perforation of tobacco cell protoplasts. A single pulse was sufficient to perforate the plasma membrane enabling the uptake of dye from the surrounding medium into the cytosol. Moreover, the procedure was shown to be suitable for the efficient delivery of DNA expression constructs to the nucleus, as demonstrated by the subsequent expression and correct targeting of a recombinant fluorescent protein. Single cell perforation using this novel optoporation method shows that isolated plant cells can be permeabilized without direct manipulation. This is a valuable procedure for cell-specific applications, particularly where the import of specific molecules into plant cells is required for functional analysis.  相似文献   

19.
Efficient plasmid transformation of Kluyveromyces marxianus cells of 1.9 × 103 transformant μg−1 DNA with an episomal plasmid was achieved by the use of a simple lithium acetate method with the addition of 10 mM DTT and an increased heat shock temperature of 47 °C. This method is shown to be also efficient for replicative plasmids. Therefore, we suggest its use as a routine method to transform K. marxianus cells. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号