首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small RNAs mediate gene silencing by binding Argonaute/Piwi proteins to regulate target RNAs. Here, we describe small RNA profiling of the adult testes of Callithrix jacchus, the common marmoset. The most abundant class of small RNAs in the adult testis was piRNAs, although 353 novel miRNAs but few endo-siRNAs were also identified. MARWI, a marmoset homolog of mouse MIWI and a very abundant PIWI in adult testes, associates with piRNAs that show characteristics of mouse pachytene piRNAs. As in other mammals, most marmoset piRNAs are derived from conserved clustered regions in the genome, which are annotated as intergenic regions. However, unlike in mice, marmoset piRNA clusters are also found on the X chromosome, suggesting escape from meiotic sex chromosome inactivation by the X-linked clusters. Some of the piRNA clusters identified contain antisense-orientated pseudogenes, suggesting the possibility that pseudogene-derived piRNAs may regulate parental functional protein-coding genes. More piRNAs map to transposable element (TE) subfamilies when they have copies in piRNA clusters. In addition, the strand bias observed for piRNAs mapped to each TE subfamily correlates with the polarity of copies inserted in clusters. These findings suggest that pachytene piRNA clusters determine the abundance and strand-bias of TE-derived piRNAs, may regulate protein-coding genes via pseudogene-derived piRNAs, and may even play roles in meiosis in the adult marmoset testis.  相似文献   

2.
3.
Ro S  Song R  Park C  Zheng H  Sanders KM  Yan W 《RNA (New York, N.Y.)》2007,13(12):2366-2380
Small noncoding RNAs have been suggested to play important roles in the regulation of gene expression across all species from plants to humans. To identify small RNAs expressed by the ovary, we generated mouse ovarian small RNA complementary DNA (srcDNA) libraries and sequenced 800 srcDNA clones. We identified 236 small RNAs including 122 microRNAs (miRNAs), 79 piwi-interacting RNAs (piRNAs), and 35 small nucleolar RNAs (snoRNAs). Among these small RNAs, 15 miRNAs, 74 piRNAs, and 21 snoRNAs are novel. Approximately 70% of the ovarian piRNAs are encoded by multicopy genes located within the repetitive regions, resembling previously identified repeat-associated small interference RNAs (rasiRNAs), whereas the remaining approximately 30% of piRNA genes are located in nonrepetitive regions of the genome with characteristics similar to the majority of piRNAs originally cloned from the testis. Since these two types of piRNAs display different structural features, we categorized them into two classes: repeat-associated piRNAs (rapiRNAs, equivalent of the rasiRNAs) and non-repeat-associated piRNAs (napiRNAs). Expression profiling analyses revealed that ovarian miRNAs were either ubiquitously expressed in multiple tissues or preferentially expressed in a few tissues including the ovary. Ovaries appear to express more rapiRNAs than napiRNAs, and sequence analyses support that both may be generated through the "ping-pong" mechanism. Unique expression and structural features of these ovarian small noncoding RNAs suggest that they may play important roles in the control of folliculogenesis and female fertility.  相似文献   

4.
Piwi-interacting RNAs (piRNAs) are a class of short chain noncoding RNAs that are constituted by 26-30 nucleotides (nt) and can couple with PIWI protein family. piRNAs were initially described in germline cells and are believed to be critical regulators of the maintenance of reproductive line. Increasing evidence has extended our perspectives on the biological significance of piRNAs and indicated that they could still affect somatic gene expression through DNA methylation, chromatin modification and transposon silencing, etc. Many studies have revealed that the dysregulation of piRNAs might contribute to diverse diseases through epigenetic changes represented by DNA methylation and chromatin modification. In this review, we summarized piRNA/PIWI protein-mediated DNA methylation regulation mechanisms and methylation changes caused by piRNA/PIWI proteins in different diseases, especially cancers. Since DNA methylation and inhibitory chromatin marks represented by histone H3 lysine 9 (H3K9) methylation frequently cooperate to silence genomic regions, we also included methylation in chromatin modification within this discussion. Furthermore, we discussed the potential clinical applications of piRNAs as a new type promising biomarkers for cancer diagnosis, as well as the significance of piRNA/PIWI protein-associated methylation changes in treatment, providing disparate insights into the potential applications of them.  相似文献   

5.
6.
7.
PIWI-interacting RNAs (piRNAs) are a new class of small RNAs specifically expressed in male germ cells. It is known to bind to PIWI class of Argonaute proteins, Mili and Miwi. To help to decipher the mechanism of piRNA function, here, we report a real time PCR-based multiplex assay for piRNA expression. Firstly, we showed that the assay specifically detects piRNA expression in adult testis, consistent with the Northern blot result. The method we developed can simultaneously detect at least eight piRNAs using only 10 pg total RNA, which is equivalent to the RNA present in a single cell. This is five to six order magnitude more sensitive than corresponding Northern blot assays. Finally we used this assay to analyze eight piRNAs expression in mouse primordial germ cells (PGCs) in genital ridges from E12.5, at the time when piRNA-binding protein Mili starts to be detected in PGCs. This multiplex piRNA assay can be further expanded to assay a few hundred of piRNAs simultaneously from as little as total RNA from a single cell. This approach will help to understand the mechanism and function of piRNAs during germ cell development.  相似文献   

8.
Argonaute/Piwi proteins can regulate gene expression via RNA degradation and translational regulation using small RNAs as guides. They also promote the establishment of suppressive epigenetic marks on repeat sequences in diverse organisms. In mice, the nuclear Piwi protein MIWI2 and Piwi‐interacting RNAs (piRNAs) are required for DNA methylation of retrotransposon sequences and some other sequences. However, its underlying molecular mechanisms remain unclear. Here, we show that piRNA‐dependent regions are transcribed at the stage when piRNA‐mediated DNA methylation takes place. MIWI2 specifically interacts with RNAs from these regions. In addition, we generated mice with deletion of a retrotransposon sequence either in a representative piRNA‐dependent region or in a piRNA cluster. Both deleted regions were required for the establishment of DNA methylation of the piRNA‐dependent region, indicating that piRNAs determine the target specificity of MIWI2‐mediated DNA methylation. Our results indicate that MIWI2 affects the chromatin state through base‐pairing between piRNAs and nascent RNAs, as observed in other organisms possessing small RNA‐mediated epigenetic regulation.  相似文献   

9.
10.
11.
12.
13.
Identification of piRNAs in the central nervous system   总被引:1,自引:0,他引:1  
Piwi-interacting RNAs (piRNAs) are small noncoding RNAs generated by a conserved pathway. Their most widely studied function involves restricting transposable elements, particularly in the germline, where piRNAs are highly abundant. Increasingly, another set of piRNAs derived from intergenic regions appears to have a role in the regulation of mRNA from early embryos and gonads. We report a more widespread expression of a limited set of piRNAs and particularly focus on their expression in the hippocampus. Deep sequencing of extracted RNA from the mouse hippocampus revealed a set of small RNAs in the size range of piRNAs. These were confirmed by their presence in the piRNA database as well as coimmunoprecipitation with MIWI. Their expression was validated by Northern blot and in situ hybridization in cultured hippocampal neurons, where signal from one piRNA extended to the dendritic compartment. Antisense suppression of this piRNA suggested a role in spine morphogenesis. Possible targets include genes, which control spine shape by a distinctive mechanism in comparison to microRNAs.  相似文献   

14.
The mammalian testis expresses a class of small noncoding RNAs that interact with mammalian PIWI proteins. In mice, the PIWI-interacting RNAs (piRNAs) partner with mammalian PIWI proteins, PIWIL1 and PIWIL2, also known as MIWI and MILI, to maintain transposon silencing in the germline genome. Here, we demonstrate that inactivation of Nct1/2, two noncoding RNAs encoding piRNAs, leads to derepression of LINE-1 (L1) but does not affect mouse viability, spermatogenesis, testicular gene expression, or fertility. These findings indicate that piRNAs from a cluster on chromosome 2 are necessary to maintain transposon silencing.  相似文献   

15.
16.
17.
PIWI‐interacting RNAs (piRNAs) are germ cell‐specific small RNAs essential for retrotransposon gene silencing and male germ cell development. In piRNA biogenesis, the endonuclease MitoPLD/Zucchini cleaves long, single‐stranded RNAs to generate 5′ termini of precursor piRNAs (pre‐piRNAs) that are consecutively loaded into PIWI‐family proteins. Subsequently, these pre‐piRNAs are trimmed at their 3′‐end by an exonuclease called Trimmer. Recently, poly(A)‐specific ribonuclease‐like domain‐containing 1 (PNLDC1) was identified as the pre‐piRNA Trimmer in silkworms. However, the function of PNLDC1 in other species remains unknown. Here, we generate Pnldc1 mutant mice and analyze small RNAs in their testes. Our results demonstrate that mouse PNLDC1 functions in the trimming of both embryonic and post‐natal pre‐piRNAs. In addition, piRNA trimming defects in embryonic and post‐natal testes cause impaired DNA methylation and reduced MIWI expression, respectively. Phenotypically, both meiotic and post‐meiotic arrests are evident in the same individual Pnldc1 mutant mouse. The former and latter phenotypes are similar to those of MILI and MIWI mutant mice, respectively. Thus, PNLDC1‐mediated piRNA trimming is indispensable for the function of piRNAs throughout mouse spermatogenesis.  相似文献   

18.
Piwi-interacting RNAs (piRNAs) and CRISPR RNAs (crRNAs) are two recently discovered classes of small noncoding RNA that are found in animals and prokaryotes, respectively. Both of these novel RNA species function as components of adaptive immune systems that protect their hosts from foreign nucleic acids-piRNAs repress transposable elements in animal germlines, whereas crRNAs protect their bacterial hosts from phage and plasmids. The piRNA and CRISPR systems are nonhomologous but rather have independently evolved into logically similar defense mechanisms based on the specificity of targeting via nucleic acid base complementarity. Here we review what is known about the piRNA and CRISPR systems with a focus on comparing their evolutionary properties. In particular, we highlight the importance of several factors on the pattern of piRNA and CRISPR evolution, including the population genetic environment, the role of alternate defense systems and the mechanisms of acquisition of new piRNAs and CRISPRs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号