首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given the sequence of a protein, how can we predict whether it is a membrane protein or non-membrane protein? If it is, what membrane protein type it belongs to? Since these questions are closely relevant to the function of an uncharacterized protein, their importance is self-evident. Particularly, with the explosion of protein sequences entering into databanks and the relatively much slower progress in using biochemical experiments to determine their functions, it is highly desired to develop an automated method that can be used to give a fast answers to these questions. By hybridizing the functional domain (FunD) and pseudo-amino acid composition (PseAA), a new strategy called FunD-PseAA predictor was introduced. To test the power of the predictor, a highly non-homologous data set was constructed where none of proteins has 25% sequence identity to any other. The overall success rates obtained with the FunD-PseAA predictor on such a data set by the jackknife cross-validation test was 85% for the case in identifying membrane protein and non-membrane protein, and 91% in identifying the membrane protein type among the following 5 categories: (1) type-1 membrane protein, (2) type-2 membrane protein, (3) multipass transmembrane protein, (4) lipid chain-anchored membrane protein, and (5) GPI-anchored membrane protein. These rates are much higher than those obtained by the other methods on the same stringent data set, indicating that the FunD-PseAA predictor may become a useful high throughput tool in bioinformatics and proteomics.  相似文献   

2.
Zhou GP  Cai YD 《Proteins》2006,63(3):681-684
Proteases play a vitally important role in regulating most physiological processes. Different types of proteases perform different functions with different biological processes. Therefore, it is highly desired to develop a fast and reliable means to identify the types of proteases according to their sequences, or even just identify whether they are proteases or nonproteases. The avalanche of protein sequences generated in the postgenomic era has made such a challenge become even more critical and urgent. By hybridizing the gene ontology approach and pseudo amino acid composition approach, a powerful predictor called GO-PseAA predictor was introduced to address the problems. To avoid redundancy and bias, demonstrations were performed on a dataset where none of proteins has >/= 25% sequence identity to any other. The overall success rates thus obtained by the jackknife cross-validation test in identifying protease and nonprotease was 91.82%, and that in identifying the protease type was 85.49% among the following five types: (1) aspartic, (2) cysteine, (3) metallo, (4) serine, and (5) threonine. The high jackknife success rates yielded for such a stringent dataset indicate the GO-PseAA predictor is very powerful and might become a useful tool in bioinformatics and proteomics.  相似文献   

3.
Liu H  Yang J  Wang M  Xue L  Chou KC 《The protein journal》2005,24(6):385-389
Membrane proteins are generally classified into the following five types: (1) type I membrane protein, (2) type II membrane protein, (3) multipass transmembrane proteins, (4) lipid chain-anchored membrane proteins, and (5) GPI-anchored membrane proteins. Given the sequence of an uncharacterized membrane protein, how can we identify which one of the above five types it belongs to? This is important because the biological function of a membrane protein is closely correlated with its type. Particularly, with the explosion of protein sequences entering into databanks, it is in high demand to develop an automated method to address this problem. To realize this, the key is to catch the statistical characteristics for each of the five types. However, it is not easy because they are buried in a pile of long and complicated sequences. In this paper, based on the concept of the pseudo amino acid composition (Chou, K. C. (2001). PROTEINS: Structure, Function, and Genetics 43: 246–255), the technique of Fourier spectrum analysis is introduced. By doing so, the sample of a protein is represented by a set of discrete components that can incorporate a considerable amount of the sequence order effects as well as its amino acid composition information. On the basis of such a statistical frame, the support vector machine (SVM) is introduced to perform predictions. High success rates were yielded by the self-consistency test, jackknife test, and independent dataset test, suggesting that the current approach holds a promising potential to become a high throughput tool for membrane protein type prediction as well as other related areas.  相似文献   

4.
Cell membranes are vitally important to living cells. Although the infrastructure of biological membrane is provided by the lipid bilayer, membrane proteins perform most of the specific functions. Knowledge of membrane protein types often provides crucial hints toward determining the function of an uncharacterized membrane protein. With the avalanche of new protein sequences generated in the post-genomic era, it is highly demanded to develop a high throughput tool in identifying the type of newly found membrane proteins according to their primary sequences, so as to timely annotate them for reference usage in both basic research and drug discovery. To realize this, the key is to establish a powerful identifier that can catch their characteristic sequence patterns for different membrane protein types. However, it is not easy because they are buried in a pile of long and complicated sequences. In this paper, based on the concept of the pseudo-amino acid composition [K.C. Chou, PROTEINS: Struct., Funct., Genet. 43 (2001) 246-255], the low-frequency Fourier spectrum analysis is introduced. The merits by doing so are that the sequence pattern information can be more effectively incorporated into a set of discrete components, and that all the existing prediction algorithms can be straightforwardly used on such a formulation for protein samples. High success rates were observed by the re-substitution test, jackknife test, and independent dataset test, indicating that the low-frequency Fourier spectrum approach may become a very useful tool for membrane protein type prediction. The novel approach also holds a high potential for predicting many other attributes of proteins.  相似文献   

5.
Given an uncharacterized protein sequence, how can we identify whether it is a membrane protein or not? If it is, which membrane protein type it belongs to? These questions are important because they are closely relevant to the biological function of the query protein and to its interaction process with other molecules in a biological system. Particularly, with the avalanche of protein sequences generated in the Post-Genomic Age and the relatively much slower progress in using biochemical experiments to determine their functions, it is highly desired to develop an automated method that can be used to help address these questions. In this study, a 2-layer predictor, called MemType-2L, has been developed: the 1st layer prediction engine is to identify a query protein as membrane or non-membrane; if it is a membrane protein, the process will be automatically continued with the 2nd-layer prediction engine to further identify its type among the following eight categories: (1) type I, (2) type II, (3) type III, (4) type IV, (5) multipass, (6) lipid-chain-anchored, (7) GPI-anchored, and (8) peripheral. MemType-2L is featured by incorporating the evolution information through representing the protein samples with the Pse-PSSM (Pseudo Position-Specific Score Matrix) vectors, and by containing an ensemble classifier formed by fusing many powerful individual OET-KNN (Optimized Evidence-Theoretic K-Nearest Neighbor) classifiers. The success rates obtained by MemType-2L on a new-constructed stringent dataset by both the jackknife test and the independent dataset test are quite high, indicating that MemType-2L may become a very useful high throughput tool. As a Web server, MemType-2L is freely accessible to the public at http://chou.med.harvard.edu/bioinf/MemType.  相似文献   

6.
To understand the networks in living cells, it is indispensably important to identify protein-protein interactions on a genomic scale. Unfortunately, it is both time-consuming and expensive to do so solely based on experiments due to the nature of the problem whose complexity is obviously overwhelming, just like the fact that "life is complicated". Therefore, developing computational techniques for predicting protein-protein interactions would be of significant value in this regard. By fusing the approach based on the gene ontology and the approach of pseudo-amino acid composition, a predictor called "GO-PseAA" predictor was established to deal with this problem. As a showcase, prediction was performed on 6323 protein pairs from yeast. To avoid redundancy and homology bias, none of the protein pairs investigated has > or = 40% sequence identity with any other. The overall success rate obtained by jackknife cross-validation was 81.6%, indicating the GO-PseAA predictor is very promising for predicting protein-protein interactions from protein sequences, and might become a useful vehicle for studying the network biology in the postgenomic era.  相似文献   

7.
Enzyme function is much less conserved than anticipated, i.e., the requirement for sequence similarity that implies similarity in enzymatic function is much higher than the requirement that implies similarity in protein structure. This is because the function of an enzyme is an extremely complicated problem that may involve very subtle structural details as well as many other physical chemistry factors. Accordingly, if simply based on the sequence similarity approach, it would hardly get a decent success rate in predicting enzyme sub-class even for a dataset consisting of samples with 50% sequence identity. To cope with such a situation, the GO-PseAA predictor was adopted to identify the sub-class for each of the six main enzyme families. It has been observed that, even for the much more stringent datasets in which none of the enzymes has 25% sequence identity to any others, the overall success rates are 73-95%, suggesting that the GO-PseAA predictor can catch the core features of the statistical samples concerned and may become a useful high throughput tool in proteomics and bioinformatics.  相似文献   

8.
Knowledge of membrane protein type often provides crucial hints toward determining the function of an uncharacterized membrane protein. With the avalanche of new protein sequences emerging during the post-genomic era, it is highly desirable to develop an automated method that can serve as a high throughput tool in identifying the types of newly found membrane proteins according to their primary sequences, so as to timely make the relevant annotations on them for the reference usage in both basic research and drug discovery. Based on the concept of pseudo-amino acid composition [K.C. Chou, Proteins: Struct. Funct. Genet. 43 (2001) 246-255; Erratum: Proteins: Struct. Funct. Genet. 44 (2001) 60] that has made it possible to incorporate a considerable amount of sequence-order effects by representing a protein sample in terms of a set of discrete numbers, a novel predictor, the so-called "optimized evidence-theoretic K-nearest neighbor" or "OET-KNN" classifier, was proposed. It was demonstrated via the self-consistency test, jackknife test, and independent dataset test that the new predictor, compared with many previous ones, yielded higher success rates in most cases. The new predictor can also be used to improve the prediction quality for, among many other protein attributes, structural class, subcellular localization, enzyme family class, and G-protein coupled receptor type. The OET-KNN classifier will be available as a web-server at http://www.pami.sjtu.edu.cn/kcchou.  相似文献   

9.
Shen HB  Chou KC 《Amino acids》2007,32(4):483-488
Predicting membrane protein type is both an important and challenging topic in current molecular and cellular biology. This is because knowledge of membrane protein type often provides useful clues for determining, or sheds light upon, the function of an uncharacterized membrane protein. With the explosion of newly-found protein sequences in the post-genomic era, it is in a great demand to develop a computational method for fast and reliably identifying the types of membrane proteins according to their primary sequences. In this paper, a novel classifier, the so-called "ensemble classifier", was introduced. It is formed by fusing a set of nearest neighbor (NN) classifiers, each of which is defined in a different pseudo amino acid composition space. The type for a query protein is determined by the outcome of voting among these constituent individual classifiers. It was demonstrated through the self-consistency test, jackknife test, and independent dataset test that the ensemble classifier outperformed other existing classifiers widely used in biological literatures. It is anticipated that the idea of ensemble classifier can also be used to improve the prediction quality in classifying other attributes of proteins according to their sequences.  相似文献   

10.
Prediction of protease types in a hybridization space   总被引:2,自引:0,他引:2  
Regulating most physiological processes by controlling the activation, synthesis, and turnover of proteins, proteases play pivotal regulatory roles in conception, birth, digestion, growth, maturation, ageing, and death of all organisms. Different types of proteases have different functions and biological processes. Therefore, it is important for both basic research and drug discovery to consider the following two problems. (1) Given the sequence of a protein, can we identify whether it is a protease or non-protease? (2) If it is, what protease type does it belong to? Although the two problems can be solved by various experimental means, it is both time-consuming and costly to do so. The avalanche of protein sequences generated in the post-genetic era has challenged us to develop an automated method for making a fast and reliable identification. By hybridizing the functional domain composition and pseudo-amino acid composition, we have introduced a new method called "FunD-PseAA predictor" that is operated in a hybridization space. To avoid redundancy and bias, demonstrations were performed on a dataset where none of the proteins has >or=25% sequence identity to any other. The overall success rate thus obtained by the jackknife cross-validation test in identifying protease and non-protease was 92.95%, and that in identifying the protease type was 94.75% among the following six types: (1) aspartic, (2) cysteine, (3) glutamic, (4) metallo, (5) serine, and (6) threonine. Demonstration was also made on an independent dataset, and the corresponding overall success rates were 98.36% and 97.11%, respectively, suggesting the FunD-PseAA predictor is very powerful and may become a useful tool in bioinformatics and proteomics.  相似文献   

11.
The Golgi apparatus is an important eukaryotic organelle. Successful prediction of Golgi protein types can provide valuable information for elucidating protein functions involved in various biological processes. In this work, a method is proposed by combining a special mode of pseudo amino acid composition (increment of diversity) with the modified Mahalanobis discriminant for predicting Golgi protein types. The benchmark dataset used to train the predictor thus formed contains 95 Golgi proteins in which none of proteins included has ≥40% pairwise sequence identity to any other. The accuracy obtained by the jackknife test was 74.7%, with the ROC curve of 0.772 in identifying cis-Golgi proteins and trans-Golgi proteins. Subsequently, the method was extended to discriminate cis-Golgi network proteins from cis-Golgi network membrane proteins and trans-Golgi network proteins from trans-Golgi network membrane proteins, respectively. The accuracies thus obtained were 76.1% and 83.7%, respectively. These results indicate that our method may become a useful tool in the relevant areas. As a user-friendly web-server, the predictor is freely accessible at http://immunet.cn/SubGolgi/.  相似文献   

12.
Given a new uncharacterized protein sequence, a biologist may want to know whether it is a membrane protein or not? If it is, which membrane protein type it belongs to? Knowing the type of an uncharacterized membrane protein often provides useful clues for finding the biological function of the query protein, developing the computational methods to address these questions can be really helpful. In this study, a sequence encoding scheme based on combing pseudo position-specific score matrix (PsePSSM) and dipeptide composition (DC) is introduced to represent protein samples. However, this sequence encoding scheme would correspond to a very high dimensional feature vector. A dimensionality reduction algorithm, the so-called geometry preserving projections (GPP) is introduced to extract the key features from the high-dimensional space and reduce the original high-dimensional vector to a lower-dimensional one. Finally, the K-nearest neighbor (K-NN) and support vector machine (SVM) classifiers are employed to identify the types of membrane proteins based on their reduced low-dimensional features. Our jackknife and independent dataset test results thus obtained are quite encouraging, which indicate that the above methods are used effectively to deal with this complicated problem of predicting the membrane protein type.  相似文献   

13.
Mimicking cellular sorting improves prediction of subcellular localization   总被引:27,自引:0,他引:27  
Predicting the native subcellular compartment of a protein is an important step toward elucidating its function. Here we introduce LOCtree, a hierarchical system combining support vector machines (SVMs) and other prediction methods. LOCtree predicts the subcellular compartment of a protein by mimicking the mechanism of cellular sorting and exploiting a variety of sequence and predicted structural features in its input. Currently LOCtree does not predict localization for membrane proteins, since the compositional properties of membrane proteins significantly differ from those of non-membrane proteins. While any information about function can be used by the system, we present estimates of performance that are valid when only the amino acid sequence of a protein is known. When evaluated on a non-redundant test set, LOCtree achieved sustained levels of 74% accuracy for non-plant eukaryotes, 70% for plants, and 84% for prokaryotes. We rigorously benchmarked LOCtree in comparison to the best alternative methods for localization prediction. LOCtree outperformed all other methods in nearly all benchmarks. Localization assignments using LOCtree agreed quite well with data from recent large-scale experiments. Our preliminary analysis of a few entirely sequenced organisms, namely human (Homo sapiens), yeast (Saccharomyces cerevisiae), and weed (Arabidopsis thaliana) suggested that over 35% of all non-membrane proteins are nuclear, about 20% are retained in the cytosol, and that every fifth protein in the weed resides in the chloroplast.  相似文献   

14.
Membrane protein is an important composition of cell membrane. Given a membrane protein sequence, how can we identify its type(s) is very important because the type keeps a close correlation with its functions. According to previous studies, membrane protein can be divided into the following eight types: single-pass type I, single-pass type II, single-pass type III, single-pass type IV, multipass, lipid-anchor, GPI-anchor, peripheral membrane protein. With the avalanche of newly found protein sequences in the post-genomic age, it is urgent to develop an automatic and effective computational method to rapid and reliable prediction of the types of membrane proteins. At present, most of the existing methods were based on the assumption that one membrane protein only belongs to one type. Actually, a membrane protein may simultaneously exist at two or more different functional types. In this study, a new method by hybridizing the pseudo amino acid composition with multi-label algorithm called LIFT (multi-label learning with label-specific features) was proposed to predict the functional types both singleplex and multiplex animal membrane proteins. Experimental result on a stringent benchmark dataset of membrane proteins by jackknife test show that the absolute-true obtained was 0.6342, indicating that our approach is quite promising. It may become a useful high-through tool, or at least play a complementary role to the existing predictors in identifying functional types of membrane proteins.  相似文献   

15.
Cell membranes are vitally important to the life of a cell. Although the basic structure of biological membrane is provided by the lipid bilayer, membrane proteins perform most of the specific functions. Membrane proteins are putatively classified into five different types. Identification of their types is currently an important topic in bioinformatics and proteomics. In this paper, based on the concept of representing protein samples in terms of their pseudo-amino acid composition (Chou, K.C., 2001. Prediction of protein cellular attributes using pseudo amino acid composition. Proteins: Struct. Funct. Genet. 43, 246-255), the fuzzy K-nearest neighbors (KNN) algorithm has been introduced to predict membrane protein types, and high success rates were observed. It is anticipated that, the current approach, which is based on a branch of fuzzy mathematics and represents a new strategy, may play an important complementary role to the existing methods in this area. The novel approach may also have notable impact on prediction of the other attributes, such as protein structural class, protein subcellular localization, and enzyme family class, among many others.  相似文献   

16.
Proteases are vitally important to life cycles and have become a main target in drug development. According to their action mechanisms, proteases are classified into six types: (1) aspartic, (2) cysteine, (3) glutamic, (4) metallo, (5) serine, and (6) threonine. Given the sequence of an uncharacterized protein, can we identify whether it is a protease or non-protease? If it is, what type does it belong to? To address these problems, a 2-layer predictor, called "ProtIdent", is developed by fusing the functional domain and sequential evolution information: the first layer is for identifying the query protein as protease or non-protease; if it is a protease, the process will automatically go to the second layer to further identify it among the six types. The overall success rates in both cases by rigorous cross-validation tests were higher than 92%. ProtIdent is freely accessible to the public as a web server at http://www.csbio.sjtu.edu.cn/bioinf/Protease.  相似文献   

17.
Hu LL  Wan SB  Niu S  Shi XH  Li HP  Cai YD  Chou KC 《Biochimie》2011,93(3):489-496
Palmitoylation is a universal and important lipid modification, involving a series of basic cellular processes, such as membrane trafficking, protein stability and protein aggregation. With the avalanche of new protein sequences generated in the post genomic era, it is highly desirable to develop computational methods for rapidly and effectively identifying the potential palmitoylation sites of uncharacterized proteins so as to timely provide useful information for revealing the mechanism of protein palmitoylation. By using the Incremental Feature Selection approach based on amino acid factors, conservation, disorder feature, and specific features of palmitoylation site, a new predictor named IFS-Palm was developed in this regard. The overall success rate thus achieved by jackknife test on a newly constructed benchmark dataset was 90.65%. It was shown via an in-depth analysis that palmitoylation was intimately correlated with the feature of the upstream residue directly adjacent to cysteine site as well as the conservation of amino acid cysteine. Meanwhile, the protein disorder region might also play an import role in the post-translational modification. These findings may provide useful insights for revealing the mechanisms of palmitoylation.  相似文献   

18.
Lin WZ  Fang JA  Xiao X  Chou KC 《PloS one》2011,6(9):e24756
DNA-binding proteins play crucial roles in various cellular processes. Developing high throughput tools for rapidly and effectively identifying DNA-binding proteins is one of the major challenges in the field of genome annotation. Although many efforts have been made in this regard, further effort is needed to enhance the prediction power. By incorporating the features into the general form of pseudo amino acid composition that were extracted from protein sequences via the "grey model" and by adopting the random forest operation engine, we proposed a new predictor, called iDNA-Prot, for identifying uncharacterized proteins as DNA-binding proteins or non-DNA binding proteins based on their amino acid sequences information alone. The overall success rate by iDNA-Prot was 83.96% that was obtained via jackknife tests on a newly constructed stringent benchmark dataset in which none of the proteins included has ≥25% pairwise sequence identity to any other in a same subset. In addition to achieving high success rate, the computational time for iDNA-Prot is remarkably shorter in comparison with the relevant existing predictors. Hence it is anticipated that iDNA-Prot may become a useful high throughput tool for large-scale analysis of DNA-binding proteins. As a user-friendly web-server, iDNA-Prot is freely accessible to the public at the web-site on http://icpr.jci.edu.cn/bioinfo/iDNA-Prot or http://www.jci-bioinfo.cn/iDNA-Prot. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results.  相似文献   

19.
Zhang SW  Zhang YL  Yang HF  Zhao CH  Pan Q 《Amino acids》2008,34(4):565-572
The rapidly increasing number of sequence entering into the genome databank has called for the need for developing automated methods to analyze them. Information on the subcellular localization of new found protein sequences is important for helping to reveal their functions in time and conducting the study of system biology at the cellular level. Based on the concept of Chou’s pseudo-amino acid composition, a series of useful information and techniques, such as residue conservation scores, von Neumann entropies, multi-scale energy, and weighted auto-correlation function were utilized to generate the pseudo-amino acid components for representing the protein samples. Based on such an infrastructure, a hybridization predictor was developed for identifying uncharacterized proteins among the following 12 subcellular localizations: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracell, Golgi apparatus, lysosome, mitochondria, nucleus, peroxisome, plasma membrane, and vacuole. Compared with the results reported by the previous investigators, higher success rates were obtained, suggesting that the current approach is quite promising, and may become a useful high-throughput tool in the relevant areas.  相似文献   

20.
G protein-coupled receptors (GPCRs) are among the most frequent targets of therapeutic drugs. With the avalanche of newly generated protein sequences in the post genomic age, to expedite the process of drug discovery, it is highly desirable to develop an automated method to rapidly identify GPCRs and their types. A new predictor was developed by hybridizing two different modes of pseudo-amino acid composition (PseAAC): the functional domain PseAAC and the low-frequency Fourier spectrum PseAAC. The new predictor is called GPCR-2L, where "2L" means that it is a two-layer predictor: the 1st layer prediction engine is to identify a query protein as GPCR or not; if it is, the prediction will be automatically continued to further identify it as belonging to one of the following six types: (1) rhodopsin-like (Class A), (2) secretin-like (Class B), (3) metabotropic glutamate/pheromone (Class C), (4) fungal pheromone (Class D), (5) cAMP receptor (Class E), or (6) frizzled/smoothened family (Class F). The overall success rate of GPCR-2L in identifying proteins as GPCRs or non-GPCRs is over 97.2%, while identifying GPCRs among their six types is over 97.8%. Such high success rates were derived by the rigorous jackknife cross-validation on a stringent benchmark dataset, in which none of the included proteins had ≥40% pairwise sequence identity to any other protein in a same subset. As a user-friendly web-server, GPCR-2L is freely accessible to the public at http://icpr.jci.edu.cn/, by which one can obtain the 2-level results in about 20 s for a query protein sequence of 500 amino acids. The longer the sequence is, the more time it may usually need. The high success rates reported here indicate that it is a quite effective approach to identify GPCRs and their types with the functional domain information and the low-frequency Fourier spectrum analysis. It is anticipated that GPCR-2L may become a useful tool for both basic research and drug development in the areas related to GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号