首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tall fescue EST-SSR markers with transferability across several grass species   总被引:26,自引:0,他引:26  
Tall fescue (Festuca arundinacea Schreb.) is a major cool season forage and turf grass in the temperate regions of the world. It is also a close relative of other important forage and turf grasses, including meadow fescue and the cultivated ryegrass species. Until now, no SSR markers have been developed from the tall fescue genome. We designed 157 EST-SSR primer pairs from tall fescue ESTs and tested them on 11 genotypes representing seven grass species. Nearly 92% of the primer pairs produced characteristic simple sequence repeat (SSR) bands in at least one species. A large proportion of the primer pairs produced clear reproducible bands in other grass species, with most success in the close taxonomic relatives of tall fescue. A high level of marker polymorphism was observed in the outcrossing species tall fescue and ryegrass (66%). The marker polymorphism in the self-pollinated species rice and wheat was low (43% and 38%, respectively). These SSR markers were useful in the evaluation of genetic relationships among the Festuca and Lolium species. Sequencing of selected PCR bands revealed that the nucleotide sequences of the forage grass genotypes were highly conserved. The two cereal species, particularly rice, had significantly different nucleotide sequences compared to the forage grasses. Our results indicate that the tall fescue EST-SSR markers are valuable genetic markers for the Festuca and Lolium genera. These are also potentially useful markers for comparative genomics among several grass species.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

2.
Microsatellites or simple sequence repeats (SSRs) are highly useful molecular markers for plant improvement. Expressed sequence tag (EST)-SSR markers have a higher rate of transferability across species than genomic SSR markers and are thus well suited for application in cross-species phylogenetic studies. Our objectives were to examine the amplification of tall fescue EST-SSR markers in 12 grass species representing 8 genera of 4 tribes from 2 subfamilies of Poaceae and the applicability of these markers for phylogenetic analysis of grass species. About 43% of the 145 EST-SSR primer pairs produced PCR bands in all 12 grass species and had high levels of polymorphism in all forage grasses studied. Thus, these markers will be useful in a variety of forage grass species, including the ones tested in this study. SSR marker data were useful in grouping genotypes within each species. Lolium temulentum, a potential model species for cool-season forage grasses, showed a close relation with the major Festuca-Lolium species in the study. Tall wheat grass was found to be closely related to hexaploid wheat, thereby confirming the known taxonomic relations between these species. While clustering of closely related species was found, the effectiveness of such data in evaluating distantly related species needs further investigations. The phylogenetic trees based on DNA sequences of selected SSR bands were in agreement with the phylogenetic relations based on length polymorphism of SSRs markers. Tall fescue EST-SSR markers depicted phylogenetic relations among a wide range of cool-season forage grass species and thus are an important resource for researchers working with such grass species.  相似文献   

3.
Tall fescue (Festuca arundinacea Schreb.) is commonly grown as forage and turf grass in the temperate regions of the world. Here, we report the first genetic map of tall fescue constructed with PCR-based markers. A combination of amplified fragment length polymorphisms (AFLPs) and expressed sequence tag-simple sequence repeats (EST-SSRs) of both tall fescue and those conserved in grass species was used for map construction. Genomic SSRs developed from Festuca × Lolium hybrids were also mapped. Two parental maps were initially constructed using a two-way pseudo-testcross mapping strategy. The female (HD28-56) map included 558 loci placed in 22 linkage groups (LGs) and covered 2,013 cM of the genome. In the male (R43-64) map, 579 loci were grouped in 22 LGs with a total map length of 1,722 cM. The marker density in the two maps varied from 3.61 cM (female parent) to 2.97 (male parent) cM per marker. These differences in map length indicated a reduced level of recombination in the male parent. Markers that revealed polymorphism within both parents and showed 3:1 segregation ratios were used as bridging loci to integrate the two parental maps as a bi-parental consensus. The integrated map covers 1,841 cM on 17 LGs, with an average of 54 loci per LG, and has an average marker density of 2.0 cM per marker. Homoeologous relationships among linkage groups of six of the seven predicted homeologous groups were identified. Three small groups from the HD28-56 map and four from the R43-64 map are yet to be integrated. Homoeologues of four of those groups were detected. Except for a few gaps, markers are well distributed throughout the genome. Clustering of those markers showing significant segregation distortion (23% of total) was observed in four of the LGs of the integrated map.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
Switchgrass (Panicum virgatum L.) is a model cellulosic biofuel crop in the United States. Simple sequence repeat (SSR) markers are valuable resources for genetic mapping and molecular breeding. A large number of expressed sequence tags (ESTs) of switchgrass are recently available in our sequencing project. The objectives of this study were to develop new SSR markers from the switchgrass EST sequences and to integrate them into an existing linkage map. More than 750 unique primer pairs (PPs) were designed from 243,600 EST contigs and tested for PCR amplifications, resulting in 538 PPs effectively producing amplicons of expected sizes. Of the effective PPs, 481 amplifying informative bands in NL94 were screened for polymorphisms in a panel consisting of NL94 and its seven first-generation selfed (S1) progeny. This led to the selection of 117 polymorphic EST–SSRs to genotype a mapping population encompassing 139 S1 individuals of NL94. Of 83 markers demonstrating clearly scorable alleles in the mapping population, 79 were integrated into a published linkage map, with three linked to accessory loci and one unlinked. The newly identified EST–SSR loci were distributed in 17 of 18 linkage groups with 27 (32.5 %) exhibiting distorted segregations. The integration of EST–SSRs aided in reducing the average marker interval (cM) to 3.7 from 4.2, and reduced the number of gaps (each >15 cM) to 10 from 23. Developing new EST–SSRs and constructing a higher density linkage map will facilitate quantitative trait locus mapping and provide a firm footing for marker-assisted breeding in switchgrass.  相似文献   

5.
Development of 1,030 genomic SSR markers in switchgrass   总被引:1,自引:0,他引:1  
Switchgrass, Panicum virgatum L., a native to the tall grass prairies in North America, has been grown for soil conservation and herbage production in the USA and recently widely recognized as a promising dedicated cellulosic bioenergy crop. A large amount of codominant molecular markers including simple sequence repeats (SSRs) are required for the construction of linkage maps and implementation of molecular breeding strategies to develop superior switchgrass cultivars. The objectives of this study were (1) to identify SSR-containing clones and to design PCR primer pairs (PPs) in SSR-enriched genomic libraries, and (2) to validate and characterize the designed SSR PPs. Five genomic SSR enriched libraries were constructed using genomic DNA of ‘SL93 7 × 15’, a switchgrass genotype selected in an Oklahoma State University (OSU) southern lowland breeding population. A total of 3,046 clones from four libraries enriched in (CA/TG)n, (GA/TC)n, (CAG/CTG)n and (AAG/CTT)n SSR repeats were sequenced at the OSU Core Facility. From the sequences, we isolated 1,300 unique SSR-containing clones, from which we designed 1,398 PPs using SSR Locator V.1 software. Among the designed PPs, 1,030 (73.7%) amplified reproducible and strong bands with expected fragment size, and 802 detected polymorphic alleles, in SL93 7 × 15 and ‘NL94 16 × 13’, two parents of one mapping population. All of the four libraries contained a high rate of perfect SSR repeat types, ranging from 62.7 to 76.2%. Polymorphism of the effective SSR markers was also tested in two lowland and two upland switchgrass cultivars, encompassing ‘Alamo’ and ‘Kanlow’, and ‘Blackwell’ and ‘Dacotah’, respectively. The developed SSR markers should be useful in genetic and breeding research in switchgrass.  相似文献   

6.
To develop simple sequence repeat (SSR) markers for the hexaploid forage grass timothy (Phleum pratense L.), we used four SSR-enriched genomic libraries to isolate 1,331 SSR-containing clones. All four libraries contained a high percentage of perfect clones, ranging from 78.1% to 91.6%. From these clones, we developed 355 SSR markers when tested from 502 SSR primer pairs. Using all 355 SSR markers we tested one screening panel consisting of eight timothy clones to detect the level of polymorphism and identify a set of loci suitable for framework mapping. The SSR markers detected 90.4% polymorphism between the parents of a pseudo-testcross F1 population. These SSR markers will provide an ideal marker system to assist with gene targeting, QTL (quantitative trait locus) mapping, and marker-assisted selection in timothy.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

7.

Background  

Alfalfa (Medicago sativa) is a major forage crop. The genetic progress is slow in this legume species because of its autotetraploidy and allogamy. The genetic structure of this species makes the construction of genetic maps difficult. To reach this objective, and to be able to detect QTLs in segregating populations, we used the available codominant microsatellite markers (SSRs), most of them identified in the model legume Medicago truncatula from EST database. A genetic map was constructed with AFLP and SSR markers using specific mapping procedures for autotetraploids. The tetrasomic inheritance was analysed in an alfalfa mapping population.  相似文献   

8.
Tall fescue (Festuca arundinacea Schreb.) is an important turf and forage grass species worldwide. Fungal diseases present a major limitation in the maintenance of tall fescue lawns, landscapes, and forage fields. Two severe fungal diseases of tall fescue are brown patch, caused by Rhizoctonia solani, and gray leaf spot, caused by Magnaporthe grisea. These diseases are often major problems of other turfgrass species as well. In efforts to obtain tall fescue plants resistant to these diseases, we introduced the bacteriophage T4 lysozyme gene into tall fescue through Agrobacterium-mediated genetic transformation. In replicated experiments under controlled environments conducive to disease development, 6 of 13 transgenic events showed high resistance to inoculation of a mixture of two M. grisea isolates from tall fescue. Three of these six resistant plants also displayed significant resistance to an R. solani isolate from tall fescue. Thus, we have demonstrated that the bacteriophage T4 lysozyme gene confers resistance to both gray leaf spot and brown patch diseases in transgenic tall fescue plants. The gene may have wide applications in engineered fungal disease resistance in various crops.  相似文献   

9.
Simple sequence repeats (SSRs) have become one of the most popular molecular markers for population genetic studies. The application of SSR markers has often been limited to source species because SSR loci are too labile to be maintained in even closely related species. However, a few extremely conserved SSR loci have been reported. Here, we tested for the presence of conserved SSR loci in acanthopterygian fishes, which include over 14 000 species, by comparing the genome sequences of four acanthopterygian fishes. We also examined the comparative genome‐derived SSRs (CG‐SSRs) for their transferability across acanthopterygian fishes and their applicability to population genetic analysis. Forty‐six SSR loci with conserved flanking regions were detected and examined for their transferability among seven nonacanthopterygian and 27 acanthopterygian fishes. The PCR amplification success rate in nonacanthopterygian fishes was low, ranging from 2.2% to 21.7%, except for Lophius litulon (Lophiiformes; 80.4%). Conversely, the rate in most acanthopterygian fishes exceeded 70.0%. Sequencing of these 46 loci revealed the presence of SSRs suitable for scoring while fragment analysis of 20 loci revealed polymorphisms in most of the acanthopterygian fishes. Population genetic analysis of Cottus pollux (Scorpaeniformes) and Sphaeramia orbicularis (Perciformes) using CG‐SSRs showed that these populations did not deviate from linkage equilibrium or Hardy–Weinberg equilibrium. Furthermore, almost no loci showed evidence of null alleles, suggesting that CG‐SSRs have strong resolving power for population genetic analysis. Our findings will facilitate the use of these markers in species in which markers remain to be identified.  相似文献   

10.
Microsatellite [simple-sequence repeat (SSR)] markers were developed and positioned on the genetic map of tetraploid cotton. Three hundred and ninety-two unique microsatellite sequences, all but two containing a (CA/GT) repeat, were isolated, and the deduced primers were used to screen for polymorphism between the Gossypium hirsutum and G. barbadense parents of the mapping population analyzed in our laboratory. The observed rate of polymorphism was 56%. The 204 polymorphic SSRs revealed 261 segregating bands, which ultimately gave rise to 233 mapped loci. The updated status of our genetic map is now of 1,160 loci and 5,519 cM, with an average distance between two loci of 4.8 cM. The presence of a total of 466 microsatellite loci, with an average distance of 12 cM between two SSR loci, now provides wide coverage of the genome of tetraploid cotton and thus represents a powerful means for the production of a consensus map and for the effective tracking of QTLs.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00122-004-1612-1Communicated by C. Möllers  相似文献   

11.
A set of 398 simple sequence repeat markers (SSRs) have been developed and characterised for use with genetic studies of Brassica species. Small-insert (250–900 bp) genomic libraries from Brassica rapa, B. nigra, B. oleracea and B. napus, highly enriched for dinucleotide and trinucleotide SSR motifs, were constructed. Screening the clones with a mixture of oligonucleotide repeat probes revealed positive hybridisation to between 75% and 90% of the clones. Of these, 1,230 were sequenced. Primer pairs were designed for 398 SSR clones, and of these, 270 (67.8%) amplified a PCR product of the expected size in their focal and/or closely related species. A further screen of 138 primers pairs that produced a PCR product in B. napus germplasm found that 86 (62.3%) revealed length polymorphisms within at least one line of a test array representing the four Brassica species. The results of this screen were used to identify 56 SSRs and were combined with 41 SSRs that had previously shown polymorphism between the parents of a B. napus mapping population. These 97 SSR markers were mapped relative to a framework of RFLP markers and detected 136 loci over all 19 linkage groups of the oilseed rape genome.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by O. Savolainen  相似文献   

12.
Genetic linkage maps for two apricot cultivars have been constructed using AFLP, RAPD, RFLP and SSR markers in 81 F1 individuals from the cross 'Goldrich' x 'Valenciano'. This family segregated for resistance to 'plum pox virus' (PPV), the most-important virus affecting Prunus species. Of the 160 RAPD arbitrary primers screened a total of 44 were selected. Sixty one polymorphic RAPD markers were scored on the mapping population: 30 heterozygous in 'Goldrich', 19 heterozygous in 'Valenciano', segregating 1:1, and 12 markers heterozygous in both parents, segregating 3:1. A total of 33 and 19 RAPD markers were mapped on the 'Goldrich' and 'Valenciano' maps respectively. Forteen primer combinations were used for AFLPs and all of them detected polymorphism. Ninety five markers segregating 1:1 were identified, of which 62 were heterozygous in the female parent 'Goldrich' and 33 in the male parent 'Valenciano'. Forty five markers were present in both parents and segregated 3:1. A total of 82 and 48 AFLP markers were mapped on the 'Goldrich' and 'Valenciano' maps. Twelve RFLPs probes were screened in the population, resulting in five loci segregating in the family, one locus heterozygous for 'Valenciano' and four heterozygous for both, segregating 1:2:1. Of the 45 SSRs screened 17 segregated in the mapping family, resulting in seven loci heterozygous for the maternal parent and ten heterozygous for both, segregating 1:2:1 or 1:1:1:1. A total of 16 and 13 co-dominant markers were mapped in the female and male parent maps respectively. A total of 132 markers were placed into eight linkage groups on the 'Goldrich' map, defining 511 cM of the total map-length. The average distance between adjacent markers was 3.9 cM. A total of 80 markers were placed into seven linkage groups on the 'Valenciano' map, defining 467.2 cM of the total map-distance, with an average interval of 5.8 cM between adjacent markers. Thirty six marker loci heterozygous in both parents revealed straightforward homologies between five linkage groups in both maps. The sharka resistance trait mapped on linkage group 2. The region containing sharka resistance is flanked by two co-dominant markers that will be used for targeted SSR development employing a recently constructed complete apricot BAC library. SSRs tightly linked to sharka resistance will facilitate MAS in breeding for resistance in apricot.  相似文献   

13.
The genus Zoysia consists of 16 species that are naturally distributed on sea coasts and grasslands around the Pacific. Of these, Zoysia japonica, Zoysia matrella, and Zoysia tenuifolia are grown extensively as turfgrasses, and Z. japonica is also used as forage grass in Japan and other countries in East Asia. To develop simple sequence repeat (SSR) markers for zoysiagrass (Zoysia spp.), we used four SSR-enriched genomic libraries to isolate 1,163 unique SSR clones. All four libraries contained a high percentage of perfect clones, ranging from 67.1 to 96.0%, and compound clones occurred with higher frequencies in libraries A (28.6%) and D (11.6%). From these clones, we developed 1,044 SSR markers when we tested all 1,163 SSR primer pairs. Using all 1,044 SSR markers, we tested one screening panel consisting of eight Zoysia clones for testing PCR amplifications, from which five unrelated clones, among the eight, were used for polymorphism assessment, and found that the polymorphic information content ranged from 0 (monomorphic loci) to 0.88. Of the 1,044 SSR markers, 170 were segregated in our mapping population and we mapped 161 on existing amplified fragment length polymorphism-based linkage groups, using this mapping population. These SSR markers will provide an ideal marker system to assist with gene targeting, quantitative trait locus mapping, variety or species identification, and marker-assisted selection in Zoysia species.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

14.
Molecular variation within known genes controlling specific functions provide candidate gene-based markers which are tightly linked with the trait of interest. Unigene-derived microsatellite markers, with their unique identity and positions, offer the advantage of unraveling variation in the expressed component of the genome. We characterized ≥12-bp-long microsatellite loci from 13,899 unique sequences of sorghum [Sorghum bicolor (L.) Moench] available in the NCBI unigene database for their abundance and possible use in sorghum breeding. Analysis of 12,464 unigenes (≥200-bp) using MISA software identified 14,082 simple sequence repeats (SSRs) in 7,370 unigenes, from which 1,519 unigene SSR markers were developed. The average frequency of SSR was 1 per1.6 kb and 1.0 per 1.1 unigene; hexamers followed by trimers were found in abundance, of which 33.3% AT-rich and CCG repeats were the most abundant. Of the 302 unigene SSRs tested, 60 (19.8%) were polymorphic between the two parents, M35-1 and B35 of a recombinant inbred line (RIL) mapping population. A mapping population consisting of 500 RILs was developed using the above two parents, and a subset of random 245 RILs was used for genotyping with polymorphic SSRs. We developed a linkage map containing 231 markers, of which 228 (174 genomic and 54 genic) were microsatellites and three were morphological markers. Markers were distributed over 21 linkage groups, and spanned a genetic distance of 1235.5 cM. This map includes 81 new SSRs, of which 35 (21 unigene and 14 genomic) were developed in the present study and 46 from other studies. The order of the SSR markers mapped in the present study was confirmed physically by BLAST search against the whole-genome shotgun sequence of sorghum. Many unigene sequences used for marker development in this study include genes coding for important regulatory proteins and functional proteins that are involved in stress-related metabolism. The unigene SSR markers used together with other SSR markers to construct the sorghum genetic map will have applications in studies on comparative mapping, functional diversity analysis and association mapping, and for quantitative trait loci detection for drought and other agronomically important traits in sorghum.  相似文献   

15.
A simple sequence repeat (SSR)-based linkage map has been constructed for perennial ryegrass (Lolium perenne L.) using a one-way pseudo-testcross reference population. A total of 309 unique perennial ryegrass SSR (LPSSR) primer pairs showing efficient amplification were evaluated for genetic polymorphism, with 31% detecting segregating alleles. Ninety-three loci have been assigned to positions on seven linkage groups. The majority of the mapped loci are derived from cloned sequences containing (CA)n-type dinucleotide SSR arrays. A small number (7%) of primer pairs amplified fragments that mapped to more than one locus. The SSR locus data has been integrated with selected data for RFLP, AFLP and other loci mapped in the same population to produce a composite map containing 258 loci. The SSR loci cover 54% of the genetic map and show significant clustering around putative centromeric regions. BLASTN and BLASTX analysis of the sequences flanking mapped SSRs indicated that a majority (84%) are derived from non-genic sequences, with a small proportion corresponding to either known repetitive DNA sequence families or predicted genes. The mapped LPSSR loci provide the basis for linkage group assignment across multiple mapping populations.  相似文献   

16.
Genetic mapping using molecular markers such as restriction fragment length polymorphisms (RFLPs) has become a powerful tool for plant geneticists and breeders. Like many economically important polyploid plant species, detailed genetic studies of hexaploid tall fescue (Festuca arundinacea Schreb.) are complicated, and no genetic map has been established. We report here the first tall fescue genetic map. This map was generated from an F2 population of HD28-56 by Kentucky-31 and contains 108 RFLP markers. Although the two parental plants were heterozygous, the perennial and tillering growth habit, high degree of RFLP, and disomic inheritance of tall fescue enabled us to identify the segregating homologous alleles. The map covers 1274 cM on 19 linkage groups with an average of 5 loci per linkage group (LG) and 17.9 cM between loci. Mapping the homoeologous loci detected by the same probe allowed us to identify five homoeologous groups within which the gene orders were found to be generally conserved among homoeologous chromosomes. An exception was homoeologous group 5, in which only 2 of the 3 homoeologous chromosomes were identified. Using 12 genome-specific probes, we were able to assign several linkage groups to one of the three genomes (PG1G2) in tall fescue. All the loci detected by the 11 probes specific to the G1 and/or G2 genomes, with one exception, identified loci located on 4 chromosomes of two homoeologous groups (LG2a, LG2c, LG3a, and LG3c). A P-genome-specific probe was used to map a locus on LG5c. Comparative genome mapping with maize probes indicated that homoeologous group 3 and 2 chromosomes in tall fescue corresponded to maize chromosome 1. Difficulties and advantages of applying RFLP technology in polyploids with high levels of heterozygosity are discussed.Journal Series No. 12, 190  相似文献   

17.
I A Matus  P M Hayes 《Génome》2002,45(6):1095-1106
Genetic diversity can be measured by several criteria, including phenotype, pedigree, allelic diversity at marker loci, and allelic diversity at loci controlling phenotypes of interest. Abundance, high level of polymorphism, and ease of genotyping make simple sequence repeats (SSRs) an excellent molecular marker system for genetics diversity analyses. In this study, we used a set of mapped SSRs to survey three representative groups of barley germplasm: a sample of crop progenitor (Hordeum vulgare subsp. spontaneum) accessions, a group of mapping population parents, and a group of varieties and elite breeding lines. The objectives were to determine (i) how informative SSRs are in these three sets of barley germplasm resources and (ii) the utility of SSRs in classifying barley germplasm. A total of 687 alleles were identified at 42 SSR loci in 147 genotypes. The number of alleles per locus ranged from 4 to 31, with an average of 16.3. Crop progenitors averaged 10.3 alleles per SSR locus, mapping population parents 8.3 alleles per SSR locus, and elite breeding lines 5.8 alleles per SSR locus. There were many exclusive (unique) alleles. The polymorphism information content values for the SSRs ranged from 0.08 to 0.94. The cluster analysis indicates a high level of diversity within the crop progenitors accessions and within the mapping population parents. It also shows a lower level of diversity within the elite breeding germplasm. Our results demonstrate that this set of SSRs was highly informative and was useful in generating a meaningful classification of the germplasm that we sampled. Our long-term goal is to determine the utility of molecular marker diversity as a tool for gene discovery and efficient use of germplasm.  相似文献   

18.
Simple sequence repeats (SSRs) are valuable molecular markers in many plant species. In common wheat (Triticum aestivum L.), which is characteristic of its large genomes and alloploidy, SSRs are one of the most useful markers. To increase SSR marker sources and construct an SSR-based linkage map of appropriate density, we tried to develop new SSR markers from SSR-enriched genomic libraries and the public database. SSRs having (GA)n and (GT)n motifs were isolated from enriched libraries, and di- and tri-nucleotide repeats were mined from expressed sequence tags (ESTs) and DNA sequences of Triticum species in the public database. Of the 1,147 primer pairs designed, 842 primers gave accurate amplification products, and 478 primers showed polymorphism among the nine wheat lines examined. Using a doubled haploid (DH) population from an intraspecific cross between Kitamoe and Münstertaler (KM), we constructed an SSR-based linkage map that consisted of 464 loci: 185 loci from genomic libraries, 65 loci from the sequence database including ESTs, 213 loci from the SSR markers already reported, and 1 locus of morphological marker. Although newly developed SSR loci were distributed throughout all chromosomes, clustering of them around putative centromeric regions was found on several chromosomes. The total length of the KM map spanned 3,441 cM and corresponded to approximately 86% genome coverage. The KM map comprised of 23 linkage groups because two gaps of over 50 cM distance remained on chromosome 6A. This is a first report of SSR-based linkage map using single intraspecific population of common wheat. This mapping result suggests that it becomes possible to construct linkage maps with sufficient genome coverage using only SSR markers without RFLP markers, even in an intraspecific population of common wheat. Moreover, the new SSR markers will contribute to the enrichment of molecular marker resources in common wheat.  相似文献   

19.
利用微卫星标记评估大豆重组近交系NJRIKY   总被引:11,自引:1,他引:11  
分离群体的构建及其合理性评估是遗传作图等基因组研究的基础,利用 SSRs标记以对科丰1号为母本、南农1138-2为父本构建的大豆RILs群体NJRIKY进行了分析评估。随机选取覆盖大豆基因组的138对SSRs引物对两个亲本进行多态性筛选分析,86对具有多态性,多态率高达约62.23%,共计90个多态位点。进一步利用具多态性的SSRs位点对供试群体的分析表明不仅绝大多数位点符合1:1分离比,而且各家系也趋于纯合。该RISs群体各家系的基因型组成近似正态分布,是一种适于遗传作图及其他基因组研究理想的RILs群体  相似文献   

20.
Avicennia marina is an important mangrove species with a wide geographical and climatic distribution which suggests that large amounts of genetic diversity are available for conservation and breeding programs. In this study we compare the informativeness of AFLPs and SSRs for assessing genetic diversity within and among individuals, populations and subspecies of A. marina in Australia. Our comparison utilized three SSR loci and three AFLP primer sets that were known to be polymorphic, and could be run in a single analysis on a capillary electrophoresis system, using different- colored fluorescent dyes. A total of 120 individuals representing six populations and three subspecies were sampled. At the locus level, SSRs were considerably more variable than AFLPs, with a total of 52 alleles and an average heterozygosity of 0.78. Average heterozygosity for AFLPs was 0.193, but all of the 918 bands scored were polymorphic. Thus, AFLPs were considerably more efficient at revealing polymorphic loci than SSRs despite lower average heterozygosities. SSRs detected more genetic differentiation between populations (19 vs 9%) and subspecies (35 vs 11%) than AFLPs. Principal co-ordinate analysis revealed congruent patterns of genetic relationships at the individual, population and subspecific levels for both data sets. Mantel testing confirmed congruence between AFLP and SSR genetic distances among, but not within, population comparisons, indicating that the markers were segregating independently but that evolutionary groups (populations and subspecies) were similar. Three genetic criteria of importance for defining priorities for ex situ collections or in situ conservation programs (number of alleles, number of locally common alleles and number of private alleles) were correlated between the AFLP and SSR data sets. The congruence between AFLP and SSR data sets suggest that either method, or a combination, is applicable to expanded genetic studies of mangroves. The codominant nature of SSRs makes them ideal for further population-based investigations, such as mating-system analyses, for which the dominant AFLP markers are less well suited. AFLPs may be particularly useful for monitoring propagation programs and identifying duplicates within collections, since a single PCR assay can reveal many loci at once. Received: 3 October 2000 / Accepted: 19 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号