首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Comparative blood flow studies were performed in pregnant guinea pigs using radioactive microspheres to test the effects of different sphere sizes on blood flow measurements and the relationship between flows obtained intraoperatively and those performed after 5 days of recovery from anesthesia and surgery. We observed that 1.5% of the cardiac output was shunted through the microcirculation of the carcass, gut, skin and endomyometrium when 15 mu microspheres were used. Intraoperative measurements of heart rate, cardiac output and placental blood flow are significantly lower than measurements made after 5 days recovery. These reductions were ameliorated with the addition of a continuous infusion of isoproterenol and the deletion of atropine from the anesthetic.  相似文献   

2.
Discrepancies exist between experimental measurements of the systemic blood flow to sheep lung by use of microsphere techniques and flow probes on the bronchial artery. In these studies, we simultaneously measured the blood flow through the bronchial artery, using a transit time flow probe, and the systemic blood flow to left lung, using radioactive microspheres. All measurements were made on conscious sheep previously prepared with chronic catheterizations of the left atrium, aorta, and vena cava and a flow probe around the bronchial artery. Inflatable occluder cuffs were placed around the pulmonary and bronchoesophageal arteries. Bronchial artery blood flow in six sheep was 25.3 +/- 5.2 ml/min or 0.4% of the cardiac output. Systemic blood flow to left lung, measured with microspheres, was 54.1 +/- 14.2 ml/min. Calculated systemic blood flow to that portion of sheep lung perfused by the bronchial artery was 127.6 +/- 35.3 ml/min or 1.9% of cardiac output. Occlusion of the bronchoesophageal artery reduced bronchial artery flow to near zero, whereas total systemic blood to the lung was reduced by only 55%. Blood flow to the intraparenchymal cartilaginous airways was reduced 60-90% after occlusion of the bronchoesophageal artery. Sheep, like most mammals, have multiple and complex systemic arterial inputs to the lungs. We conclude that multiple branches of the bronchoesophageal artery provide most but not all of the systemic blood flow to the intraparenchymal cartilaginous airways but that over one-half of the total systemic blood flow to sheep lung comes from sources other than the common bronchial artery.  相似文献   

3.
The processes of serotonin and histamine absorption and release by the lungs were studied in dogs during 1 to 3.5 hour hypovolemic hypotension and during 24 hours after blood retains fusion. Absorption of biogenic amines by the lungs tended to increase in all the animals under hypovolemic hypotension. In the group of non-survivors the serotonin absorption by the lungs in the post-terminal period remained increased, while in the group of survivors it came down to normal soon, though the histamine release was increased. The above processes were aggravated in the group of animals whose lungs were affected by oleic acid. It resulted in the absorption of histamine instead of its release. The intensified absorption of biogenic amines by the lungs was accompanied by a quick fall in cardiac output, by the increase in resistance of systemic and pulmonary circulation.  相似文献   

4.
Radioactive microspheres, 15 or 50 micron in diameter, were used to estimate the distrubtion of cardiac output and the degree of shunting of microspheres through the systemic and pulmonary circulations in anaesthetized rats. Extraction of 15 micron spheres by the pulmonary capillaries was nearly 100% and the amounts of microspheres per gram of lung tissue were not significantly different in the various lobes of lung. After injection into the left ventricle, the proportion of microspheres shunted to the lungs was almost identical using 15 or 50 micron spheres. Similar results were observed after injection into the internal of external carotid artery. The distribution of cardiac output showed a significant difference between 15 and 50 micron spheres, the proportion of 50 micron spheres found in the stomach being higher, which suggests the existence in this organ of arteriovenous shunts larger than 15 micron. The rubidium method yielded higher fractions of cardiac output in the liver (hepatic artery), lung and skin whereas the microspheres distribution to the heart, spleen and digestive tract exceeded that of rubidium. The origins of these differences are discussed.  相似文献   

5.
Hypoplastic left heart syndrome is the most common lethal cardiac malformation of the newborn. Its treatment, apart from heart transplantation, is the Norwood operation. The initial procedure for this staged repair consists of reconstructing a circulation where a single outlet from the heart provides systemic perfusion and an interpositioning shunt contributes blood flow to the lungs. To better understand this unique physiology, a computational model of the Norwood circulation was constructed on the basis of compartmental analysis. Influences of shunt diameter, systemic and pulmonary vascular resistance, and heart rate on the cardiovascular dynamics and oxygenation were studied. Simulations showed that 1) larger shunts diverted an increased proportion of cardiac output to the lungs, away from systemic perfusion, resulting in poorer O2 delivery, 2) systemic vascular resistance exerted more effect on hemodynamics than pulmonary vascular resistance, 3) systemic arterial oxygenation was minimally influenced by heart rate changes, 4) there was a better correlation between venous O2 saturation and O2 delivery than between arterial O2 saturation and O2 delivery, and 5) a pulmonary-to-systemic blood flow ratio of 1 resulted in optimal O2 delivery in all physiological states and shunt sizes.  相似文献   

6.
Left ventricle (LV) function and systemic hemodynamic changes after coronary artery embolization by 15 microns radioactive microspheres were studied in anesthetized rats. Selective coronary embolization was produced by microsphere injection during ascending aorta occlusion in closed chest animal by using "L"-shaped wire. Maximal pressure (Pmax) developed was evaluated during ascending aorta occlusion. Coronary embolization evoked dose-dependent reduction in Pmax and dP/dtmax and then decrease in basal LV systolic pressure. dP/dt/P, with parallel increase in end diastolic LV pressure. Changes of cardiac output were bidirectional: after administration of relatively small amount of microspheres cardiac output increased. This method can be used for producing quantitative myocardial ischemia and we suggest that it may be a suitable model of the chronic heart failure.  相似文献   

7.
The circulation in anaesthetized rats with Yoshida ascites tumour was studied. Cardiac output was determined according to the reference flow method, while the distribution of cardiac output by labelled microspheres 15 mu in diameter. Arterial blood pressure decreased by 39 mm Hg and TPR by 23% at unaltered cardiac output. Blood flow of the brain and the coronaries increased by 39-43% while that of the kidney and the intestines decreased by 43 and 28%, respectively. The cardiac output fractions of the brain, the coronaries and the hepatic artery increased considerably, while that of the kidney decreased. The haematocrit decreased from 43 to 23%. It is assumed that part of the circulatory alterations (redistribution of cardiac output) were due to the anaemia and its consequences, while the others (arterial hypotension, lack of increase in cardiac output) should be regarded as an effect of a factor reaching the circulation from the cells of the ascites tumour.  相似文献   

8.
9.
Regional blood flow and hemodynamic variables during induced hypothermia were compared in six guinea pigs and four hedgehogs. Tracer microspheres were used for blood flow measurements, since this technique is more accurate than the earlier method (86Rb+ distribution) used for cardiac output distribution measurements in hibernators. Heart rate and blood pressure decreased with reduced temperature in a comparable fashion in the two species, while cardiac output was less affected in the hedgehogs than in the guinea pigs. Total peripheral resistance increased in both species. At 34 degrees C the hedgehogs had a higher myocardial blood flow per gram tissue than the guinea pigs and it was not reduced in the hedgehogs when the body temperature was lowered to 22 degrees C, whereas in the guinea pigs it was markedly reduced. The brown adipose tissue of the hedgehogs showed a fourfold increase in blood perfusion at 22 degrees C when compared with 34 degrees C. In the hedgehogs the fractional distribution of cardiac output to the myocardium increased with decreasing body temperature, while the renal fraction decreased. In the guinea pigs, on the other hand, the fractional distribution of cardiac output to the myocardium remained unchanged but increased to the kidneys.  相似文献   

10.
The effect of labour on cardiac output and uterine blood flow was measured in pregnant ewes at a mean gestation of 124 days using radioactive microspheres labelled with 169Yb and 85Sr. Labour was induced by a continuous infusion of ACTH into the foetal circulation. Cardiac ouput measured before ACTH infusion in seven ewes was 5234 +/- 175-9 ml./min (mean +/- S.E.) and total uterine blood flow was 732 +/- 57-9 ml./min (mean +/- S.E.). Measurements during labour in six ewes showed a significant increase in cardiac output to 6175 +/- 149-6 ml./min (P less than 0-005) but no significant change in uterine blood flow. However, the partition of blood flow was altered; thus myometrial flow increased by 67% from 114 +/- 15-4 ml./min to 190 +/- 13-2 ml./min (P less than 0-005) while placental blood flow decreased, although not significantly, from 618 +/- 55-9 ml./min to 575 +/- 40-7 ml./min. Similar changes were observed in one ewe in spontaneous labour at term and in another ewe receiving an infusion of 4 mg oestradiol 17beta over a 24 hr period. It is concluded that labour is not associated with any major alternation in total uterine blood flow although myometrial blood flow is increased. It is not known whether this is due to the rise in circulating oestrogens which occurs prior to parturition in the ewe, or to other factors such as the work of uterine muscle during labour.  相似文献   

11.
We determined the effect of breathing 9% CO2/10% O2/81% N2 (asphyxia) on cardiac output distribution (microspheres) in 4-5 day old unanesthetized, chronically instrumented piglets prior to and following intravenous indomethacin administration. Thirty minutes of asphyxia caused PaCO2 to increase from 35 +/- 2 mmHg to 66 +/- 2 mmHg, PaO2 to decrease from 73 +/- 4 mmHg to 41 +/- 1 mmHg, and pH to decrease from 7.52 +/- 0.05 to 7.21 +/- 0.07. Arterial pressure was increased slightly but cardiac output was not changed significantly. Asphyxia caused blood flow to the brain, diaphragm, liver, heart, and adrenal glands to increase while causing decreases in blood flow to the skin, small intestine, and colon. Blood flows to the stomach and kidneys tended to decrease, but the changes were not significant. Treatment with indomethacin during asphyxia did not alter arterial pressure or cardiac output but decreased cerebral blood flow to the preasphyxiated level and decreased adrenal blood flow about 20%. Indomethacin did not alter blood flow to any other systemic organ. At this time the piglet was allowed to breathe air for 2.5 hr undisturbed. Two and a half hours after indomethacin administration, blood flows to all organs returned to the preasphyxia control levels with the exception of cerebral blood flow which was reduced (93 +/- 13 to 65 +/- 7 ml/100 g X min). Three hours after indomethacin administration, the cerebral hyperemia caused by asphyxia was less (134 +/- 17 ml/100 g X min) than prior to indomethacin (221 +/- 15 ml/100 g X min). Indomethacin did not alter the asphyxia-induced changes to any other systemic organ.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Distribution of bronchial blood flow was measured in unanesthetized sheep by the use of two modifications of the microsphere reference sample technique that correct for peripheral shunting of microspheres: 1) A double microsphere method in which simultaneous left and right atrial injections of 15-microns microspheres tagged with different isotopes allowed measurement of both pulmonary blood flow and shunt-corrected bronchial blood flow, and 2) a pulmonary arterial occlusion method in which left atrial injection and transient occlusion of the left pulmonary artery prevented delivery to the lung of microspheres shunted through the peripheral circulation and allowed systemic blood flow to the left lung to be measured. Both methods can be performed in unanesthetized sheep. The pulmonary arterial occlusion method is less costly and requires fewer calculations. The double microsphere method requires less surgical preparation and allows measurement without perturbation of pulmonary hemodynamics. There was no statistically significant difference between bronchial blood flow measured with the two methods. However, total bronchial blood flow measured during pulmonary arterial occlusion (1.52 +/- 0.98% of cardiac output, n = 9) was slightly higher than that measured with the double microsphere method (1.39 +/- 0.88% of cardiac output, n = 9). In another series of experiments in which sequential measurements of bronchial blood flow were made, there was a significant increase of 15% in left lung bronchial blood flow during the first minute of occlusion of the left pulmonary artery. Thus pulmonary arterial occlusion should be performed 5 s after microsphere injection as originally described by Baile et al. (1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In the mammalian fetus the ductus arteriosus allows right ventricular output to be shunted away from the lungs to the systemic circulation. This study was performed to determine how closing the ductus arteriosus of the fetal sheep would affect the pulmonary circulation. Under halothane anaesthesia 6 near-term fetal sheep were delivered with the umbilical circulation intact. Catheters were placed in the right atrium, the pulmonary artery, and the aorta. Pulmonary blood flow was measured by injecting radioactive microspheres into the right atrium while a reference sample was withdrawn from the pulmonary artery. Closing the ductus arteriosus increased pulmonary arterial pressure by 22% from 51 +/- 3 to 62 +/- 3 mmHg and increased pulmonary blood flow disproportionately by 198% from 232 +/- 74 to 692 +/- 80 ml/min per 100g. Thus, pulmonary vascular resistance decreased by 75% from 0.451 +/- 0.65 to 0.095 +/- 0.010 mmHg 100g min/ml. These findings extend the observation that pressure and flow in the pulmonary circulation of the air-breathing lung do not have a linear relationship passing through the origin to include a striking example in the fluid-filled lung of the intact fetus. They also raise questions about the nature of the elevated vascular resistance in the fetal lung.  相似文献   

14.
We determined the effect of breathing 9% CO2/10% O2/81% N2 (asphyxia) on cardiac output distribution (microspheres) in 4–5 day old unanesthetized, chronically instrumented piglets prior to and following intravenous indomethacin administration. Thirty minutes of asphyxia caused PaCO2 to increase from 35 ± 2 mmHg to 66 ± 2 mmHg, PaO2 to decrease form 73 ± 4 mmHg to 41 ± 1 mmHg, and pH to decrease from 7.52 ± 0.05 to 7.21 ± 0.07. Arterial pressure was increased slightly but cardiac output was not changed significantly. Asphyxia caused blood flow to the brain, diaphragm, liver, heart, and adrenal glands to increase while causing decreases in blood flow to the skin, small intestine, and colon. Blood flows to the stomach and kidneys tended to decrease, but the changes were not significant. Treatment with indomethacin during asphyxia did not alter arterial pressure or cardiac output but decreased cerebral blood flow to the preasphyxiated level and decreased adrenal blood flow about 20%. Indomethacin did not alter blood flow to any other systemic organ. At this time the piglet was allowed to breathe air for 2.5 hr undisturbed. Two and a half hours after indomethacin administration, blood flows to all organs returned to the preasphyxia control levels with the exception of cerebral blood flow which was reduced (93 ± 13 to 65 ± 5 ml/100 g·min. Three hours after indomethacin administration, the cerebral hyperemia caused by asphyxia was less (134 ± 17b ml/100 g·min) than prior to indomethacin (221 ± 15 ml/100 g·min. Indomethacin did not alter the asphyxia-induced changes to any other systemic organ. We conclude that in newborn pigs, systemic treatment with indomethacin decreases cerebral blood flow and cerebral hyperemia in response to asphyxia, without affecting blood flow to any other systemic organ.  相似文献   

15.
The effects of stepwise isovolemic hemodilution on systemic and regional hemodynamics, oxygen flux, and circulating catecholamines were studied in six pigs anesthetized with midazolam and fentanyl. Reduction of the hematocrit from 28 to 9% resulted in doubling of the cardiac output, mainly due to an increase in stroke volume. Regional blood flows, measured using the radioactive microsphere technique, showed an increase in blood flow to all organs except liver (hepatic artery fraction) and adrenals, with a redistribution of cardiac output in favor of heart and brain (increase in blood flow 420 and 170%, respectively). Oxygen flux to most organs did not decrease until hematocrit decreased to 9%, while total body oxygen consumption was well maintained. Left ventricular oxygen consumption increased, but because left ventricular blood flow also increased, left ventricular extraction ratio did not increase. Circulating catecholamines did not play any role in these regulatory mechanisms.  相似文献   

16.
We present an in vivo method for analyzing the distribution kinetics of physiological markers into their respective distribution volumes utilizing information provided by the relative dispersion of transit times. Arterial concentration-time curves of markers of the vascular space [indocyanine green (ICG)], extracellular fluid (inulin), and total body water (antipyrine) measured in awake dogs under control conditions and during phenylephrine or isoproterenol infusion were analyzed by a recirculatory model to estimate the relative dispersions of transit times across the systemic and pulmonary circulation. The transit time dispersion in the systemic circulation was used to calculate the whole body distribution clearance, and an interpretation is given in terms of a lumped organ model of blood-tissue exchange. As predicted by theory, this relative dispersion increased linearly with cardiac output, with a slope that was inversely related to solute diffusivity. The relative dispersion of the flow-limited indicator antipyrine exceeded that of ICG (as a measure of intravascular mixing) only slightly and was consistent with a diffusional equilibration time in the extravascular space of approximately 10 min, except during phenylephrine infusion, which led to an anomalously high relative dispersion. A change in cardiac output did not alter the heterogeneity of capillary transit times of ICG. The results support the view that the relative dispersions of transit times in the systemic and pulmonary circulation estimated from solute disposition data in vivo are useful measures of whole body distribution kinetics of indicators and endogenous substances. This is the first model that explains the effect of flow and capillary permeability on whole body distribution of solutes without assuming well-mixed compartments.  相似文献   

17.
18.
Angiogenesis after pulmonary ischemia is initiated by reactive O(2) species and is dependent on CXC chemokine growth factors, and its magnitude is correlated with the number of lavaged macrophages. After complete obstruction of the left pulmonary artery in mice, the left lung is isolated from the peripheral circulation until 5-7 days later, when a new systemic vasculature invades the lung parenchyma. Consequently, this model offers a unique opportunity to study the differentiation and/or proliferation of monocyte-derived cells within the lung. In this study, we questioned whether macrophage subpopulations were differentially expressed and which subset contributed to growth factor release. We characterized the change in number of all macrophages (MHCII(int), CD11C+), alveolar macrophages (MHCII(int), CD11C+, CD11B-) and mature lung macrophages (MHCII(int), CD11C+, CD11B+) in left lungs from mice immediately (0 h) or 24 h after left pulmonary artery ligation (LPAL). In left lung homogenates, only lung macrophages increased 24 h after LPAL (vs. 0 h; p<0.05). No changes in proliferation were seen in any subset by PCNA expression (0 h vs. 24 h lungs). When the number of monocytic cells was reduced with clodronate liposomes, systemic blood flow to the left lung 14 days after LPAL decreased by 42% (p<0.01) compared to vehicle controls. Furthermore, when alveolar macrophages and lung macrophages were sorted and studied in vitro, only lung macrophages secreted the chemokine MIP-2α (ELISA). These data suggest that ischemic stress within the lung contributes to the differentiation of immature monocytes to lung macrophages within the first 24 h after LPAL. Lung macrophages but not alveolar macrophages increase and secrete the proangiogenic chemokine MIP-2α. Overall, an increase in the number of lung macrophages appears to be critical for neovascularization in the lung, since clodronate treatment decreased their number and attenuated functional angiogenesis.  相似文献   

19.
The objective of this study was to quantify the duration of the hemodynamic activity of N(G)-nitro-l-arginine methyl ester (l-NAME) in a variety of different tissues following a single bolus injection of this nitric oxide synthase inhibitor to healthy rats. l-NAME (15 micromol x kg(-1)) was injected (ip) into rats to produce maximal inhibition of endothelial cell NOS. Animals were subsequently anesthetized and blood flow was quantified using the radioactive microsphere/reference organ technique. At 1 h following a single bolus injection of l-NAME blood flow was reduced to the entire gastrointestinal tract, pancreas, and liver. Three hours following l-NAME administration, blood flow to the stomach and upper small intestine had returned to pretreatment levels; however, blood flow to the jejunum, ileal-jejunal junction, and colon remained significantly reduced. Splenic blood flow was significantly reduced and hepatic arterial blood flow was further reduced at this time as well. After 6 h following l-NAME administration, blood flow in all organs had completely recovered to control levels. Although cardiac index and total peripheral resistance had also returned to preinjection values at this time, mean arterial pressure remained elevated at 6 h posttreatment. Blood flow to the brain, lungs, and psoas muscle were unaffected by l-NAME administration at any time point. Taken together, these data demonstrate a differential regulation of vascular tone by NO in different vascular beds and, depending upon the organ system in question, the vasoactive activity of l-NAME may last from 3 to 6 h following a single bolus injection of this NOS inhibitor.  相似文献   

20.
Anaesthetized fetal guinea pigs near term were studied under conditions, where maternal placental flow of haemoglobin was maintained within the normal range. The rate of maternal fetal equilibration of intravenously injected 3H2O was found to be similar as in unanaesthetized animals (half time 4 min) indicating that fetal circulation was undisturbed under the present experimental conditions. Umbilical blood flow as determined by a modified 3H2O method was 0.13 ml . min-1 . g-1 of fetal body mass. Radioactive microspheres, injected into the fetal saphenous (jugular) vein, were distributed to the placenta, the lower body, the upper body and the lungs at a ratio of 31(47):27(39):30(6):12(8). From these data, cardiac output was calculated (0.38 ml . min-1 . g-1) and found to be almost equally distributed between the placenta, the lower body and the upper body. There was preferential streaming of the inferior vena caval blood to the upper body. There was no evidence for flow through a ductus venosus. The O2-saturation in the fetal carotid arterial blood was 59 +/- 4%. The O2-supply to the fetal tissues was estimated to be 3 times the oxygen consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号