首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A common feature shared by myosin-binding proteins from a wide variety of species is the presence of a variable number of related internal motifs homologous to either the Ig C2 or the fibronectin (Fn) type III repeats. Despite interest in the potential function of these motifs, no group has clearly demonstrated a function for these sequences in muscle, either intra- or extracellularly. We have completed the nucleotide sequence of the fast type isoform of MyBP-C (C protein) from chicken skeletal muscle. The deduced amino acid sequence reveals seven Ig C2 sets and three Fn type III motifs in MyBP-C. alpha-chymotryptic digestion of purified MyBP-C gives rise to four peptides. NH2-terminal sequencing of these peptides allowed us to map the position of each along the primary structure of the protein. The 28-kD peptide contains the NH2-terminal sequence of MyBP-C, including the first C2 repeat. It is followed by two internal peptides, one of 5 kD containing exclusively spacer sequences between the first and second C2 motifs, and a 95-kD fragment containing five C2 domains and three fibronectin type III motifs. The C-terminal sequence of MyBP-C is present in a 14- kD peptide which contains only the last C2 repeat. We examined the binding properties of these fragments to reconstituted (synthetic) myosin filaments. Only the COOH-terminal 14-kD peptide is capable of binding myosin with high affinity. The NH2-terminal 28-kD fragment has no myosin-binding, while the long internal 100-kD peptide shows very weak binding to myosin. We have expressed and purified the 14-kD peptide in Escherichia coli. The recombinant protein exhibits saturable binding to myosin with an affinity comparable to that of the 14-kD fragment obtained by proteolytic digestion (1/2 max binding at approximately 0.5 microM). These results indicate that the binding to myosin filaments is mainly restricted to the last 102 amino acids of MyBP-C. The remainder of the molecule (1,032 amino acids) could interact with titin, MyBP-H (H protein) or thin filament components. A comparison of the highly conserved Ig C2 domains present at the COOH- terminus of five MyBPs thus far sequenced (human slow and fast MyBP-C, human and chicken MyBP-H, and chicken MyBP-C) was used to identify residues unique to these myosin-binding Ig C2 repeats.  相似文献   

2.
The mRNA-binding site of annexin A2 resides in helices C-D of its domain IV   总被引:1,自引:0,他引:1  
Annexin A2 (AnxA2) is a Ca(2+)-binding and phospholipid-binding protein involved in different intracellular processes including exocytosis, endocytosis and membrane-cytoskeleton movements. We have previously identified AnxA2 as an mRNA-binding protein present in cytoskeleton-bound polysomes, that binds to a specific approximately 100 nucleotide region in the 3'-untranslated region of c-myc and its cognate mRNA. In the present study, we show by UV cross-linking assays and surface plasmon resonance analyses that the mRNA-binding site of AnxA2 resides in its domain IV. Furthermore, the interaction of full-length AnxA2 with the 3'-untranslated region of anxA2 mRNA is Ca(2+)-dependent. By contrast, the interaction is Ca(2+)-independent for the isolated domain IV of AnxA2, suggesting that the mRNA-binding site is masked in Apo-AnxA2 and gains exposure through a Ca(2+)-induced conformational change of AnxA2 generating a favourable mRNA-binding site. The AnxA2-mRNA interaction is specific and involves helices C and D in domain IV of AnxA2, since point mutagenesis of several charged and polar exposed residues of these helices in the full-length protein strongly reduce RNA binding. The interaction appears to be sequential involving an initial phase of recognition dominated by electrostatic interactions, most likely between lysine residues and the phosphate backbone of RNA, followed by a second phase contributing to the specificity of the interaction.  相似文献   

3.
We have cleaved protein S1, which is the largest and the most elongated protein of the Escherichia coli ribosome, using cyanogen bromide and isolated two fragments that retain the functional domains of the intact molecule. The fragments (denoted S1-F2a and S1-F2b) showed molecular weights of 24,000 and 22,500 by dodecyl sulphate/polyacrylamide gel electrophoresis. Fragment F2a is shown to be the N-terminal segment containing about 32% of the peptide chain length of S1. Fragment F2b is derived from another (probably C-terminal) region of S1.Fragment F2a binds to 30 S ribosomal subunits with a strength and specificity comparable to the binding of intact S1. It also binds to matrix-bound poly(U) but the binding is salt-sensitive, unlike the binding of intact S1. Fragment F2b binds only very weakly to poly(U) and does not bind to 30 S subunits. These results are discussed with respect to the ribosome binding domain(s) of protein S1 and the possible interdependence of the multiple functional domains in this large protein.  相似文献   

4.
Myosin-binding protein C (MyBP-C) binds to myosin with two binding sites, one close to the N terminus and the other at the C terminus. Here we present the solution structure of one part of the N-terminal binding site, the third immunoglobulin domain of the cardiac isoform of human MyBP-C (cC2) together with a model of its interaction with myosin. Domain cC2 has the beta-sandwich structure expected from a member of the immunoglobulin fold. The C-terminal part of the structure of cC2 is very closely related to telokin, the myosin binding fragment of myosin light chain kinase. Domain cC2 also contains two cysteines on neighboring strands F and G, which would be able to form a disulfide bridge in a similar position as in telokin. Using NMR spectroscopy and isothermal titration calorimetry we demonstrate that cC2 alone binds to a fragment of myosin, S2Delta, with low affinity (kD = 1.1 mM) but exhibits a highly specific binding site. This consists of the C-terminal surface of the C'CFGA' beta-sheet, which includes Glu(301), a residue mutated to Gln in the disease familial hypertrophic cardiomyopathy. The binding site on S2 was identified by a combination of NMR binding experiments of cC2 with S2Delta containing the cardiomyopathy-linked mutation R870H and molecular modeling. This mutation lowers the binding affinity and changes the arrangement of side chains at the interface. Our model of the cC2-S2Delta complex gives a first glimpse of details of the MyBP-C-myosin interaction. Using this model we suggest that most key interactions are between polar amino acids, explaining why the mutations E301Q in cC2 and R870H in S2Delta could be involved in cardiomyopathy. We expect that this model will stimulate future research to further refine the details of this interaction and their importance for cardiomyopathy.  相似文献   

5.
Salmonella FliI is the flagellar ATPase which converts the energy of ATP hydrolysis into the export of flagellar proteins. It forms a ring-shaped oligomer in the presence of ATP, its analogs, or phospholipids. The extreme N-terminal region of FliI has an unstable conformation and is responsible for the interaction with other components of the export apparatus and for regulation of the catalytic mechanism. To understand the role of this N-terminal region in more detail, we used multi-angle light-scattering, analytical ultracentrifugation, far-UV CD and biochemical methods to characterize a partially functional variant of FliI, missing its first seven amino acid residues (His-FliI(Delta1-7)), whose ATPase activity is about ten times lower than that of wild-type FliI. His-FliI(Delta1-7) is monomeric in solution. The deletion increased the content of alpha-helix, suggesting that the deletion stabilizes the unstable N-terminal region into an alpha-helical conformation. The deletion did not influence the K(m) value for ATP. However, unlike the wild-type, ATP and acidic phospholipids did not induce oligomerization of His-FliI(Delta1-7) or increase its ATPase activity. These results suggest that the deletion suppresses the oligomerization of FliI, and that a conformational change in the unstable N-terminal region is required for FliI oligomerization to effectively couple the energy of ATP hydrolysis to the translocation of flagellar proteins.  相似文献   

6.
The Swc4p protein, encoded by an essential gene, is shared by two chromatin-remodeling complexes in Saccharomyces cerevisiae cells: NuA4 (nucleosome acetyltransferase of H4) and SWR1. The SWR1 complex catalyzes ATP-dependent exchange of the nucleosomal histone H2A for H2AZ (Htz1p). The activity of NuA4 is responsible mainly for the acetylation of the H4 histone but also for the acetylation of H2A and H2AZ. In this work we investigated the role of the Swc4p protein. Using random mutagenesis we isolated a collection of swc4 mutants and showed that the essential function of Swc4p resides in its N-terminal part, within the first 269 amino acids of the 476-amino acid-long protein. We also demonstrated that Swc4p is able to accommodate numerous mutations without losing its functionality under standard growth conditions. However, when swc4 mutants were exposed to methyl methanesulfonate (MMS), hydroxyurea or benomyl, severe growth deficiencies appeared, pointing to an involvement of Swc4p in many chromatin-based processes. The mutants' phenotypes did not result from an impairment of histone acetylation, as in the mutant which bears the shortest isolated variant of truncated Swc4p, the level of overall H4 acetylation was unchanged.  相似文献   

7.
Fodrin (brain spectrin) binds calmodulin and is susceptible to proteolysis by calcium-dependent protease I (CDP-I, calcium-activated neutral protease I, or calpain I). Both events involve the central region of the alpha-fodrin subunit, and calmodulin binding enhances the sensitivity of fodrin to CDP-I mediated proteolysis. Fragments of fodrin, generated chemically or proteolytically, which retain calmodulin binding activity have been identified and analyzed by two-dimensional peptide mapping and by direct protein sequencing. Both CDP-I and calmodulin interact with the terminal portion of the eleventh repetitive unit in fodrin, which is at the center of the molecule. CDP-I cleavage occurs between Tyr104 and Gly105 and preserves the calmodulin binding activity of the carboxyl-terminal fragment. In contrast, chymotryptic cleavage at Trp120 reduces the ability of this fragment to bind calmodulin, and tryptic cleavage beyond Trp120 completely eliminates calmodulin binding activity. It is concluded that Ser-Lys-Thr-Ala-Ser-Pro-Trp-Lys-Ser-Ala-Arg-Leu-Met-Val-His-Thr-Val-Ala- Thr- Phe-Asn-Ser-Ile-Lys, a 24-residue peptide which bridges repeats 11 and 12 of brain alpha spectrin contains the high affinity calmodulin binding domain.  相似文献   

8.
The structural stability of the large cytoplasmic domain (H(4)-H(5) loop) of mouse alpha(1) subunit of Na(+)/K(+) ATPase (L354-I777), the number and the location of its binding sites for 2'-3'-O-(trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP) and p-nitrophenylphosphate (pNPP) were investigated. C- and N-terminal shortening revealed that neither part of the phosphorylation (P)-domain are necessary for TNP-ATP binding. There is no indication of a second ATP site on the P-domain of the isolated loop, even though others reported previously of its existence by TNP-N(3)ADP affinity labeling of the full enzyme. Fluorescein isothiocyanate (FITC)-anisotropy measurements reveal a considerable stability of the nucleotide (N)-domain suggesting that it may not undergo a substantial conformational change upon ATP binding. The FITC modified loop showed only slightly diminished phosphatase activity, most likely due to a pNPP site on the N-domain around N398 whose mutation to D reduced the phosphatase activity by 50%. The amino acids forming this pNPP site (M384, L414, W411, S400, S408) are conserved in the alpha(1-4) isoforms of Na(+)/K(+) ATPase, whereas N398 is only conserved in the vertebrates' alpha(1) subunit. The phosphatase activity of the isolated H(4)-H(5) loop was neither inhibited by ATP, nor affected by mutation of D369, which is phosphorylated in native Na(+)/K(+) ATPase.  相似文献   

9.
Posttranslational processing of vitamin K-dependent proteins includes gamma-carboxylation of specific glutamic acid residues to form gamma-carboxyglutamic acids. To determine whether carboxylation is directed by the propeptide sequence, homologous among the precursors of these proteins, alterations were made in the Factor IX propeptide cDNA. The extent of gamma-carboxylation of recombinant Factor IX was assessed using conformation-specific antibodies directed against the gamma-carboxyglutamic acid-dependent, metal-stabilized structure. Deletion of the propeptide (residues -18 to -1) abolished carboxylation, but not secretion, of Factor IX. Substitution of alanine for phenylalanine -16 or glutamic acid for alanine -10 also impaired carboxylation. These results indicate that the Factor IX propeptide participates in defining a recognition site that designates an adjacent glutamic acid-rich domain for gamma-carboxylation. The association of the propeptide with the gamma-carboxylation recognition site provides the first demonstration of a specific function served by a propeptide in posttranslational protein processing.  相似文献   

10.
There is no consensus on the mechanism of inhibition of actin-myosin ATPase activity by caldesmon. Various models are based on different assumptions for the number of actin monomers that constitute a caldesmon binding site. Differences in binding behavior may be due to variations in the assay, the range of caldesmon concentrations, the type of caldesmon, and the method of data analysis used. We have evaluated these factors by measuring binding in the presence and absence of tropomyosin with both intact caldesmon and a recombinant 35 kDa actin binding fragment and with actin initially in the polymerized state or monomeric state. In all cases caldesmon binding could be simulated with a model having one class of binding sites. However, the number of actin monomers constituting a site was variable. Binding to F-actin at 165 mM ionic strength was best described with 7 actin monomers per site. When caldesmon bound to actin during the polymerization of G-actin, the size of the binding site was 3. Binding of the expressed truncated fragment, Cad35, could be described with 3 monomers per site. A simple interpretation of the data is that caldesmon binds tightly to 2-3 actin monomers. Additional parts of caldesmon bind less tightly to actin, causing caldesmon to cover approximately 7 actin monomers. The appendix contains an analysis of several binding curves with multiple binding site models. There is no compelling evidence for two classes of binding sites.  相似文献   

11.
Phosphorylation of avian gizzard caldesmon by casein kinase II was investigated. The enzyme incorporates about 1 mol of phosphate per mol of caldesmon. All sites of phosphorylation are located in short chymotryptic peptides with Mr 25-27 kDa or in the short N-terminal peptide formed after cleavage of chicken gizzard caldesmon at Cys153. The primary structure of the tryptic peptide containing the main site of duck gizzard caldesmon phosphorylation is S-E-V-N-A-Q-N-X-V-A-E-D-E-T-K, where X is an unidentified residue, presumed to be phosphoserine. Thus, Ser73 is the main site phosphorylated by casein kinase II in avian gizzard caldesmon.  相似文献   

12.
We previously reported that caldesmon (CaD), together with tropomyosin (TM), effectively protects actin filaments from gelsolin, an actin-severing protein. To elucidate the structure/function relationship of CaD, we dissected the functional domain of CaD required for the protection. The basic C-terminal half of rat nonmuscle CaD (D3) inhibits gelsolin activity to the same degree as intact CaD, although a smaller C-terminal region of D3 does not. This smaller C-terminal region contains the minimum regulatory domain responsible for the inhibition of actomyosin ATPase, and for the binding to actin, calmodulin and TM. These results suggest that the domain responsible for the inhibition of gelsolin activity lies outside the minimum regulatory domain, and that the positive charge possessed by the C-terminal half of CaD is important for its interaction with actin. Moreover, while the D3 fragment promotes the aggregation of F-actin into bundles as reported previously, this bundle formation is inhibited by the acidic N-terminal half of CaD, as well as by poly-l-glutamate. It seems likely that the acidic N-terminal half of CaD neutralizes the superfluous basic feature of the C-terminal half. A comparison between D3 and calponin, another actin-binding protein that is also basic and has similar actin-regulatory activities, is also discussed.  相似文献   

13.
《The Journal of cell biology》1993,121(5):1075-1082
Mitosis-specific phosphorylation by cdc2 kinase causes nonmuscle caldesmon to dissociate from microfilaments during prometaphase. (Yamashiro, S., Y. Yamakita, R. Ishikawa, and F. Matsumura. 1990. Nature (Lond.). 344:675-678; Yamashiro, S., Y. Yamakita, H. Hosoya, and F. Matsumura. 1991. Nature (Lond.) 349:169-172). To explore the functions of caldesmon phosphorylation during cytokinesis, we have examined the relationship between the phosphorylation level, actin- binding, and in vivo localization of caldesmon in cultured cells after their release of metaphase arrest. Immunofluorescence studies have revealed that caldesmon is localized diffusely throughout cytoplasm in metaphase. During early stages of cytokinesis, caldesmon is still diffusely present and not concentrated in contractile rings, in contrast to the accumulation of actin in cleavage furrows during cytokinesis. In later stages of cytokinesis, most caldesmon is observed to be yet diffusely localized although some concentration of caldesmon is observed in cortexes as well as in cleavage furrows. When daughter cells begin to spread, caldesmon shows complete colocalization with F- actin-containing structures. These observations are consistent with changes in the levels of microfilament-associated caldesmon during synchronized cell division. Caldesmon is missing from microfilaments in prometaphase cells arrested by nocodazole treatment, as shown previously (Yamashiro, S., Y. Yamakita, R. Iskikawa, and F. Matsumura. 1990. Nature (Lond.). 344:675-678). The level of microfilament- associated caldesmon stays low (12% of that of interphase cells) when some cells start cytokinesis at 40 min after the release of metaphase arrest. When 60% of cells finish cytokinesis at 60 min, the level of microfilament-associated caldesmon is recovered to 50% of that of interphase cells. The level of microfilament-associated caldesmon is then gradually increased to 80% when cells show spreading at 120 min. Dephosphorylation appears to occur during cytokinesis. It starts when cells begin to show cytokinesis at 40 min and completes when most cells finish cytokinesis at 60 min. These results suggest that caldesmon is not associated with microfilaments of cleavage furrows at least in initial stages of cytokinesis and that dephosphorylation of caldesmon appears to couple with its reassociation with microfilaments. Because caldesmon is known to inhibit actomyosin ATPase and/or regulate actin assembly, its continued dissociation from microfilaments may be required for the assembly and/or activation of contractile rings.  相似文献   

14.
The hordeiviral movement protein encoded by the first gene of the triple gene block (TGBp1) of Poa semilatent virus (PSLV), interacts with viral genomic RNAs to form RNP particles which are considered to be a form of viral genome capable of cell-to-cell and long-distance transport in infected plants. The PSLV TGBp1 contains a C-terminal NTPase/helicase domain (HELD) and an N-terminal extension region consisting of two structurally and functionally distinct domains: an extreme N-terminal domain (NTD) and an internal domain (ID). This study demonstrates that transient expression of TGBp1 fused to GFP in Nicotiana benthamiana leaves results in faint but obvious fluorescence in the nucleolus in addition to cytosolic distribution. Mutagenesis of the basic amino acids inside the NTD clusters A 116KSKRKKKNKK125 and B 175KKATKKESKKQTK187 reveals that these clusters are indispensable for nuclear and nucleolar targeting of PSLV TGBp1 and may contain nuclear and nucleolar localization signals or their elements. The PSLV TGBp1 is able to bind to fibrillarin, the major nucleolar protein (AtFib2 from Arabidopsis thaliana) in vitro. This protein–protein interaction occurs between the glycine-arginine-rich (GAR) domain of fibrillarin and the first 82 amino acid residues of TGBp1. The interaction of TGBp1 with fibrillarin is also visualized in vivo by bimolecular fluorescence complementation (BiFC) during co-expression of TGBp1 or its deletion mutants, and fibrillarin as fusions to different halves of YFP in N. benthamiana plants. The sites responsible for nuclear/nucleolar localization and fibrillarin binding, have been located within the intrinsically disordered TGBp1 NTD. These data could suggest that specific functions of hordeivirus TGBp1 may depend on its interaction with nucleolar components.  相似文献   

15.
Common major gene inheritance of extreme overweight   总被引:10,自引:0,他引:10  
We studied 3925 individuals in 961 families to determine the mode of inheritance of overweight. As an index of overweight, we examined body mass index. Our analyses indicate that the most likely genetic model for susceptibility to overweight included moderate polygenic inheritance (34% of variance resulting from many genes with small effects) and common (21% frequency) recessively expressed major genes (a few genes with large effects on the individuals who possess them). Standard statistical criteria for accepting both polygenic and major gene inheritance were met, including tests of Mendelian transmission. These results suggest that recessive major gene inheritance of overweight may be common and that homozygosity for overweight susceptibility alleles often results in overweight. Clinical, biologic, and empirical observations all suggest genetic heterogeneity, that is, more than one predisposing gene.  相似文献   

16.
The calyptraeid gastropod Crepidula fornicata is native to the eastern coast of the United States but has now become an extremely successful invader along much of the European coastline. As the northern limit of its spread is thought to be determined by an inability of adults to tolerate prolonged exposure to low winter temperatures, this study sought to compare the fecundity of females collected from two sites along the Norwegian coastline with that of females collected from Rhode Island, USA. Few other studies have compared the fecundities of marine invertebrates from invasive populations with those found in native populations. For both populations studied, fecundities increased with increasing shell length. However, contrary to expectations, size‐related fecundities were significantly higher for Norwegian females than for Rhode Island females, with Norwegian females producing larger egg capsules and a greater number of embryos per capsule, but not a greater number of egg capsules per brood. Current evidence suggests that at the northern extreme of its invaded range, the fecundity of C. fornicata is increased rather than compromised.  相似文献   

17.
Caldesmon is known to bind to smooth muscle myosin. Ca2+/calmodulin-dependent phosphorylation of caldesmon completely blocks its interaction with myosin. Cleavage of caldesmon at its 2 cysteine residues by 2-nitro-5-thiocyanobenzoic acid (NTCB) occurs initially at one site to yield 108-kDa and 21.2-kDa peptides and subsequently at the second site within the 108-kDa peptide to yield 85-kDa and 23.5-kDa fragments. The 23.5-kDa peptide retains the ability to bind to myosin. The N-terminal (95 kDa) and C-terminal (42 kDa) chymotryptic peptides of caldesmon were isolated and digested with NTCB: the C-terminal actin- and calmodulin-binding peptide was not cleaved, indicating that it does not contain either of the cysteine residues, whereas the 95-kDa N-terminal peptide was cleaved at two sites to yield 56-kDa, 23.5-kDa, and 21.2-kDa fragments. The arrangement of NTCB fragments in caldesmon is, therefore: 21.2 kDa/23.5 kDa/85 kDa from N to C terminus. Digestion of phosphorylated caldesmon with NTCB suggested a single phosphorylation site in the 21.2-kDa peptide and three sites in the 23.5-kDa peptide. These results lead to the development of a model whereby caldesmon may cross-link actin to myosin and such cross-linking is blocked by phosphorylation of caldesmon. This mechanism may explain the formation of reversible "latch bridges" which permit force maintenance at low levels of myosin phosphorylation in intact smooth muscles.  相似文献   

18.
Isogawa Y  Kon T  Inoue T  Ohkura R  Yamakawa H  Ohara O  Sutoh K 《Biochemistry》2005,44(16):6190-6196
Myosin XVIII is the recently identified 18th class of myosins, and its members are composed of a unique N-terminal domain, a motor domain with an unusual sequence around the ATPase site, one IQ motif, a segmented coiled-coil region for dimerization, and a C-terminal globular tail. To gain insight into the functions of this unique myosin, we characterized its human homologue, MYO18A, focusing on the functional roles of the characteristic N-terminal domain that contains a PDZ module known to mediate protein-protein interaction. GFP-tagged full-length and C-terminally truncated MYO18A molecules that were expressed in HeLa cells exhibited colocalization with actin filaments. Chemical cross-linking of these molecules showed that they form stable dimers as expected from their putative coiled-coil tails. Cosedimentation of the various types of truncated MYO18A constructs with actin filaments indicated the presence of an ATP-insensitive actin-binding site in the N-terminal domain. Further studies on truncated constructs of the N-terminal domain indicated that this actin-binding site is located outside the PDZ module, but within the middle region of this domain, which does not show any homology with the known actin-binding motifs. These results imply that this dimeric myosin might stably cross-link actin filaments by two ATP-insensitive actin-binding sites at the N-terminal domains for higher-order organization of the actin cytoskeleton.  相似文献   

19.
The reactive site of alpha 1-antitrypsin is C-terminal, not N-terminal   总被引:2,自引:0,他引:2  
alpha 1-Antitrypsin recovered from trypsin-alpha 1-antitrypsin complexes was shown to be a mixture of two peptides which remained associated in 6 M guanidine and in 1% acetic acid, but were separated by SDS-polyacrylamide gel electrophoresis. The larger peptide had an Mr of 47 000 and gave low yields on end-group analysis; the smaller had an Mr of 4000 and was the C-terminal 36-residue fragment of alpha 1-antitrypsin. These results explain the consistent but erroneous finding of a reactive site near the N-terminus of alpha 1-antitrypsin, and confirm that the reactive site is 36 residues from the C-terminus.  相似文献   

20.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays a critical role in the trafficking of newly synthesized mannose 6-phosphate-containing acid hydrolases to the lysosome. The receptor contains two high affinity carbohydrate recognition sites within its 15-domain extracytoplasmic region, with essential residues for carbohydrate recognition located in domain 3 and domain 9. Previous studies have shown that these two sites are distinct with respect to carbohydrate specificity. In addition, expression of truncated forms of the CI-MPR demonstrated that domain 9 can be expressed as an isolated domain, retaining high affinity (Kd approximately 1 nm) carbohydrate binding, whereas expression of domain 3 alone resulted in a protein capable of only low affinity binding (Kd approximately 1 microm) toward a lysosomal enzyme. In the current report the crystal structure of the N-terminal 432 residues of the CI-MPR, encompassing domains 1-3, was solved in the presence of bound mannose 6-phosphate. The structure reveals the unique architecture of this carbohydrate binding pocket and provides insight into the ability of this site to recognize a variety of mannose-containing sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号