首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
The mRNA for CspA, a major cold shock protein in Escherichia coli, contains an unusually long (159 bases) 5' untranslated region (5'-UTR), and its stability has been shown to play a major role in cold shock induction of CspA. The 5'-UTR of the cspA mRNA has a negative effect on its expression at 37 degrees C but has a positive effect upon cold shock. In this report, a series of cspA-lacZ fusions having a 26- to 32-base deletion in the 5'-UTR were constructed to examine the roles of specific regions within the 5'-UTR in cspA expression. It was found that none of the deletion mutations had significant effects on the stability of mRNA at both 37 and 15 degrees C. However, two mutations (Delta56-86 and Delta86-117) caused a substantial increase of beta-galactosidase activity at 37 degrees C, indicating that the deleted regions contain a negative cis element(s) for translation. A mutation (Delta2-27) deleting the highly conserved cold box sequence had little effect on cold shock induction of beta-galactosidase. Interestingly, three mutations (Delta28-55, Delta86-117, and Delta118-143) caused poor cold shock induction of beta-galactosidase. In particular, the Delta118-143 mutation reduced the translation efficiency of the cspA mRNA to less than 10% of that of the wild-type construct. The deleted region contains a 13-base sequence named upstream box (bases 123 to 135), which is highly conserved in cspA, cspB, cspG, and cspI, and is located 11 bases upstream of the Shine-Dalgarno (SD) sequence. The upstream box might be another cis element involved in translation efficiency of the cspA mRNA in addition to the SD sequence and the downstream box sequence. The relationship between the mRNA secondary structure and translation efficiency is discussed.  相似文献   

7.
8.
9.
10.
11.
12.
Escherichia coli contains the CspA family, consisting of nine proteins (CspA to CspI), in which CspA, CspB, and CspG have been shown to be cold shock inducible and CspD has been shown to be stationary-phase inducible. The cspI gene is located at 35.2 min on the E. coli chromosome map, and CspI shows 70, 70, and 79% identity to CspA, CspB, and CspG, respectively. Analyses of cspI-lacZ fusion constructs and the cspI mRNA revealed that cspI is cold shock inducible. The 5'-untranslated region of the cspI mRNA consists of 145 bases and causes a negative effect on cspI expression at 37 degrees C. The cspI mRNA was very unstable at 37 degrees C but was stabilized upon cold shock. Analyses of the CspI protein on two-dimensional gel electrophoresis revealed that CspI production is maximal at or below 15 degrees C. Taking these results together, E. coli possesses a total of four cold shock-inducible proteins in the CspA family. Interestingly, the optimal temperature ranges for their induction are different: CspA induction occurs over the broadest temperature range (30 to 10 degrees C), CspI induction occurs over the narrowest and lowest temperature range (15 to 10 degrees C), and CspB and CspG occurs at temperatures between the above extremes (20 to 10 degrees C).  相似文献   

13.
14.
15.
16.
17.
Escherichia coli promoters that are more active at low temperature (15 to 20 degrees C) than at 37 degrees C were identified by using the transposon Tn5-lac to generate promoter fusions expressing beta-galactosidase (beta-Gal). Tn5-lac insertions that resulted in low-temperature-regulated beta-Gal expression were isolated by selecting kanamycin-resistant mutants capable of growth on lactose minimal medium at 15 degrees C but which grew poorly at 37 degrees C on this medium. Seven independent mutants were selected for further studies. In one such strain, designated WQ11, a temperature shift from 37 degrees C to either 20 or 15 degrees C resulted in a 15- to 24-fold induction of beta-Gal expression. Extended growth at 20 or 15 degrees C resulted in 36- to 42-fold-higher beta-Gal expression over that of cells grown at 37 degrees C. Treatment of WQ11 with streptomycin, reported to induce a response similar to heat shock, failed to induce beta-Gal expression. In contrast, treatment with either chloramphenicol or tetracycline, which mimics a cold shock response, resulted in a fourfold induction of beta-Gal expression in strain WQ11. Hfr genetic mapping studies complemented by physical mapping indicated that in at least three mutants (WQ3, WQ6, and WQ11), Tn5-lac insertions mapped at unique sites where no known cold shock genes have been reported. The Tn5-lac insertions of these mutants mapped to 81, 12, and 34 min on the E. coli chromosome, respectively. The cold-inducible promoters from two of the mutants (WQ3 and WQ11) were cloned and sequenced, and their temperature regulation was examined. Comparison of the nucleotide sequences of these two promoters with the regulatory elements of other known cold shock genes identified the sequence CCAAT as a putative conserved motif.  相似文献   

18.
Bacterial promoters of the extended -10 class contain a single consensus element, and the DNA sequence upstream of this element is not critical for promoter activity. Open promoter complexes can be formed on an extended -10 Escherichia coli galP1 promoter at temperatures as low as 6 degrees C, when complexes on most promoters are closed. Here, we studied the contribution of upstream contacts to promoter complex formation using galP1 and its derivatives lacking the extended -10 motif and/or containing the -35 promoter consensus element. A panel of E. coli RNA polymerase holoenzymes containing two, one, or no alpha-subunit C-terminal domains (alpha CTD) and either wild-type sigma 70 subunit or sigma 70 lacking region 4.2 was assembled and tested for promoter complex formation. At 37 degrees C, alpha CTD and sigma 70 region 4.2 were individually dispensable for promoter complex formation on galP1 derivatives with extended -10 motif. However, no promoter complexes formed when both alpha CTD and sigma 70 region 4.2 were absent. Thus, in the context of an extended -10 promoter, alpha CTD and sigma 70 region 4.2 interactions with upstream DNA can functionally substitute for each other. In contrast, at low temperature, alpha CTD and sigma 70 region 4.2 interactions with upstream DNA were found to be functionally distinct, for sigma 70 region 4.2 but not alpha CTD was required for open promoter complex formation on galP1 derivatives with extended -10 motif. We propose a model involving sigma 70 region 4.2 interaction with the beta flap domain that explains these observations.  相似文献   

19.
20.
CspA, the major cold shock protein of Escherichia coli, is dramatically induced immediately after cold shock. CspA production is transient and reduces to a low basal level when cells become adapted. Here we show that expression from multicopy plasmids of mutant cspA mRNAs bearing nonsense mutations in the coding region caused sustained high levels of the mutant mRNAs at low temperature, resulting in complete inhibition of cell growth ultimately leading to cell death. We demonstrate that the observed growth inhibition was caused by largely exclusive occupation of cellular ribosomes by the mutant cspA mRNAs. Such sequestration of ribosomes even occurs without a single peptide bond formation, implying that the robust translatability of the cspA mRNA is determined at the step of initiation. Further analysis demonstrated that the downstream box of the cspA mRNA was dispensable for the effect, whereas the upstream box of the mRNA was essential. Our system may offer a novel means to study sequence or structural elements involved in the translation of the cspA mRNA and may also be utilized to regulate bacterial growth at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号