首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effects of electrophoretically pure murine interferon (Mu-IFN-alpha beta) on the T suppressor pathway and on the T effector cell of delayed hypersensitivity (TDH) were investigated in BALB/c mice, in a 2,4-dinitrofluorobenzene (DNFB) contact-sensitivity model. Various T cell subpopulations, suppressor T cells of the afferent (Ts-aff) and efferent (Ts-eff) types, an auxiliary Ts (Ts-aux), as well as TDH were induced, and their function was assessed in transfer experiments. The results were as follows. At a dose of 5 X 10(3) U, IFN was shown to inhibit the Ts-aff response, when given to the donor animal shortly after induction of the Ts-aff subpopulation or when injected into the recipient 2 hr after spleen cell transfer. Pretreatment in vitro with IFN of the splenic cells to be transferred also abolished the Ts-aff response. Similar amounts of IFN were able to inhibit the generation of Ts-eff in the donor animals, whereas 10-fold-higher amounts were needed in vivo or in vitro to block the functional expression of Ts-eff in the recipient animal. Intravenous injection of IFN into recipients of Ts-eff on day 0 and 1 after sensitization inhibited the expression of the Ts-eff transferred 1 day before ear challenge. This suggests that the Ts-aux response required for the TDH suppression by Ts-eff is blocked by IFN. Secretion of a suppressor factor by Ts in vitro was not blocked by IFN. Treatment of the donor of suppressor factor-secreting Ts with IFN, however, blocked the induction of this Ts. The TDH were not sensitive to IFN even at amounts approximately 100 times higher than those used for the Ts inhibition in vivo as well as in vitro. These results demonstrate that low amounts of IFN may selectively block the suppressor pathway, because induction of these regulatory T cell subsets appears to be particularly sensitive to IFN. The exact mechanism of the IFN-mediated inhibition of Ts is not yet clear. The data suggest an important regulatory function of IFN in delayed-type hypersensitivity (DTH) reactions.  相似文献   

2.
Contact sensitivity (CS) reaction mediated by CD 4+8- Th 1 cells is under the control of several antigen-specific regulatory lymphocytes. Reaction is downregulated at the induction stage by T afferent suppressor T cells (Ts-aff) that prevent immunization and at the effector stage by efferent T suppressor cells (Ts-eff) that made immune Th 1 cells inoperative. Both suppressor cells are CD 4-8+ Th 1 effector cells and are protected against the suppressive action of Ts-eff cells by CD 4+8- contrasuppressor T cells (Tcs). As has been already shown there are also regulatory interactions between regulatory cells themselves and Ts-aff cells in addition to their effect on precursors of Th 1 cells, also preventing the induction of Ts-eff cells. The present experiments extend these findings and demonstrate that Ts-eff cells are also under negative control of Tcs lymphocytes. Likewise, antigen-specific factor produced by contrasuppressor T-T cell hybridoma, used in lieu of Tcs cells, impedes the activation of Ts-eff cells. In both cases regulation is aimed at the precursors of Ts-eff cells. Our experiments demonstrate that the outcome of immunization is dependent not only on the balance between immune cells and regulatory cells, but also on interactions between regulatory cells themselves.  相似文献   

3.
The influence that the isotype of Ag-specific antibody has on the induction of contact hypersensitivity (CS) has been investigated. Injection (i.v.) of mice with haptenated peritoneal exudate cells (PEC) pretreated with anti-hapten mAb of the IgG2a and IgG2b isotypes results in the activation of Ag-specific afferent acting Ts cells (Ts-aff). These suppressor cells are not generated when animals are injected with anti-hapten antibodies of other isotypes. The Ts-aff cells function to inhibit the generation of CS responses when injected into naive animals. Suppression is due to the induction of both Lyt-1+,2- I-J+ and Lyt-1-,2+ I-J+ T cells, both of which adhere to the lectin Vicia villosa. Attachment of both TNP and 4-ethoxymethylene-2-phenyloxazolone haptens to the same PEC, followed by treatment with an IgG2a anti-TNP antibody, generates Ts-aff cells specific for both 4-ethoxymethylene-2-phenyloxazolone and TNP. The MHC haplotype of the PEC is irrelevant, as allogeneic PEC will also induce Ts-aff cells when injected by using an identical protocol. Ts-aff cells cannot be generated in B cell-depleted mice, nor does the Ts-aff cells generated in normal mice suppress CS responses in B cell-depleted mice. These results show that Ag-antibody complexes bound on the surface of a PEC can induce potent afferent suppression in vivo. A possible general role for antibody isotypes in directing regulatory activities is discussed.  相似文献   

4.
Previous studies have shown that two types of virus-specific suppressor T cells (Ts) are induced in mice made tolerant with herpes simplex virus (HSV)-infected spleen cells (SC). One type of Ts blocks the afferent phase of the delayed hypersensitivity response to HSV (Ts-aff), and the other blocks the efferent or effector phase (Ts-eff). In this report we show that the induction requirements for these suppressor populations differ. Injection of SC infected for 6 h with HSV at a multiplicity of infection of 5 or less or treated with heat-inactivated virus induced only Ts-aff. Similar results were seen with SC incubated for 90 min in virus-free preparations containing only viral proteins. In contrast, the Ts-eff population was induced only by SC treated for 6 h with infectious HSV at a multiplicity of infection of 10. Collectively, these data indicate that Ts-aff are induced by adsorbed HSV antigens on SC, whereas Ts-eff are induced by nascent HSV antigens expressed on infected SC. In addition to their induction requirements, the two types of regulatory cells differ in their expression of effector function. Ts-eff but not Ts-aff require a cyclophosphamide-sensitive target cell in the immune recipient for suppressor function. The possible identity of this target cell and the significance of the different induction requirements between the two types of Ts are discussed.  相似文献   

5.
This paper describes a B “suppressor of suppressor” cell which blocks the production or action of the T-suppressor cell, Ts-eff (cs), which acts at the efferent stage of the contact sensitivity reaction. Ts-eff (cs) occur in mice 7 days after injecting picrylsulfonic acid (PSA) and are assayed by their ability to block the passive transfer of contact sensitivity in a 24-hr experiment. These Ts-eff (cs) cannot be demonstrated in mice painted with picryl chloride and injected with PSA 8 days later. In fact, 8 days after painting mice contain B cells which prevent the appearance of Ts-eff (cs) following the injection of PSA. Moreover, the serum of mice 12 days after painting contains antibody which inactivates Ts-eff (cs). This antibody is anti-idiotypic as shown by its absorption to and elution from insolubilized mouse anti-picryl antibody and the lack of effect of absorption with insolubilized picryl groups. The antibody belongs to the IgG2a class and requires an intact Fc moiety for its action.  相似文献   

6.
The interaction between Newcastle disease virus (NDV) and the suppressor cell circuit which regulates the induction phase of contact sensitivity reaction to picryl chloride (Pcl) was investigated. NDV infection impairs the activity of the T suppressor afferent cells (Ts-aff) which inhibit DNA synthesis in the draining lymph nodes of mice specifically sensitized with Pcl and the development of contact sensitivity. The inhibitory effect of NDV was evident when the virus was administered up to 2 days before or at the same time as the injection of picrylsulfonic acid; this effect required infectious virus, as NDV inactivated by ultraviolet irradiation failed to inhibit Ts-aff activity. Taken together with the previous finding that the T suppressor efferent cell is unaffected by NDV, the present results support the view that contact sensitivity reaction to picryl chloride is regulated by two distinct T-suppressor-cell circuits.  相似文献   

7.
The passive transfer of contact sensitivity (CS) by immune cells into normal animals requires the interaction of two distinct Ly-1+ T cells, one which is Vicia villosa lectin (VV)-nonadherent, the other which adheres to VV. Functional deletion of either cell type abrogates the adoptive transfer of CS into normal animals, whereas VV-nonadherent cells alone can transfer CS into animals pretreated with cyclophosphamide (Cy). An antigen-specific T suppressor factor, designated TNP-TsF, inhibits the transfer of CS into normal adoptive recipients. TNP-TsF mediates its suppressive activity by inducing an I-J+ subfactor (designated I-J2) from the assay population by the interaction of PC1-F (a TNP-binding subfactor of TNP-TsF) with antigen-primed Ly-2+ T cells. This I-J+ subfactor then complements TNBS-F (an antigen-nonbinding subfactor of TNP-TsF) to form an antigen-nonspecific effector molecule which suppresses DTH responses in an antigen-nonspecific fashion. We report here that TNP-TsF suppresses the adoptive transfer of CS into normal animals but not into animals pretreated with Cy. TNBS-F + I-J2, the effector complex of TNP-TsF, also suppresses the transfer of CS into normal but not Cy-treated animals. When the Ly-1 immune cells were separated into VV-adherent and -nonadherent populations, the TNBS-F + I-J2 suppressor complex suppressed the functional activity of the VV-adherent cell population, but not the VV-nonadherent cells. This suppressive activity correlates with the need for VV-adherent cells in the transfer of CS into normal but not Cy-treated recipients. When an I-J+ molecule (I-J1) from an SRBC-specific TsF was used in place of I-J2 to form a suppressor complex with TNBS-F, this TNBS-F + I-J1 TsF suppressed the transfer of CS into both normal and Cy-treated recipients. This difference in functional suppressive activity correlated with a difference in target cell specificity: TNBS-F + I-J1 suppressed the VV-nonadherent TDTH cell, whereas TNBS-F + I-J2 suppressed the VV-adherent T cell of CS. Immune cells which are transferred under conditions which do not require the VV-adherent cell for transfer are not suppressed by TNBS-F + I-J2 or TNP-TsF, but are suppressed by the TNBS-F + I-J1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
T cells (Ts-eff) induced in BALB/c mice by subcutaneous (sc) growth of syngeneic Meth A tumors can adoptively suppress the effector phase of delayed-type hypersensitivity (DTH) in Bacillus Calmette-Guérin (BCG)-primed and unprimed recipients which have been sensitized with irradiated Meth A cells but they do not inhibit the augmented DTH response in recipients inoculated with cyclophosphamide (CY) 2 days prior to sensitization. By reconstituting CY-treated immunized recipients with selected spleen cell populations, it has been demonstrated that Ts-eff suppress DTH by interacting with a second or auxiliary suppressor cell population present in immune but not normal spleens. These auxiliary suppressor cells (Ts-aux) are Thy+, Lyt 1-2+ and I-J+, phenotypically similar to Ts-eff. Their activity is not influenced by B-cell depletion. Unlike Ts-eff, Ts-aux do not bear receptors specific for Meth A cells. Ts-aux and Ts-eff share similar sensitivity to irradiation and high dose (100 mg/kg) CY but unlike Ts-eff, Ts-aux are cortisone sensitive, nondividing, nonadherent cells which are absent from the thymus. The phenotype and mechanism of action of Ts-aux resemble those of the auxiliary or Ts3 cells defined in models of contact sensitivity, DTH to simple haptens, and in vitro antibody responses.  相似文献   

9.
The spleens of mice bearing large M-1 fibrosarcomas have been shown to contain several populations of cells which nonspecifically suppress antibody synthesis by cocultured normal spleen cells. It has now been shown that the spleens of tumor-bearing mice also contain inducer cells which secrete soluble factors capable of activating suppressor T cells from unprimed precursor cells. The activated suppressor cells are Thy 1+, Lyt 1+2+ and secrete a soluble suppressive factor. They inhibit the in vitro generation of antibody-forming cells by cocultured normal spleen cells stimulated by T-cell-dependent antigens. They do not, however, suppress the antibody response to T-cell-independent antigens and do not inhibit antibody synthesis by cocultured nude mouse spleen cells cultured with T-cell-dependent antigens and exogenous helper factors. In addition, suppression is blocked if conditioned medium containing T-cell growth factors is added to the suppressor cell assays. These data suggest that cells in the spleens of tumor-bearing mice secrete inducing factors which activate suppressor cells. These activated suppressor cells in turn secrete soluble suppressor factors which inhibit antibody synthesis, possibly by interfering with the synthesis or release of T-cell growth factors.  相似文献   

10.

Background

CD8+ suppressor T cells exert antigen-specific suppression of the expression of hypersensitivity by activated T cells. Therefore, CD8+ suppressor T cells serve a major regulatory role for the control of active immunity. Accordingly, the number and/or activity of CD8+ suppressor T cells should be influenced by an immune response to the antigen. To test this hypothesis we used an adoptive transfer assay that measures the suppression of the expression of delayed-type hypersensitivity (DTH) by CD8+ suppressor T cells to quantify the antigen-specific suppression of DTH by these suppressor T cells.

Methods

Suppressor T cells were induced in the spleens of mice by the injection of antigen into the anterior chamber of an eye. Following this injection, the mice were immunized by the same antigen injected into the anterior chamber. Spleen cells recovered from these mice (AC-SPL cells) were titrated in an adoptive transfer assay to determine the number of AC-SPL cells required to effect a 50% reduction of antigen-induced swelling (Sw50) in the footpad of immunized mice challenged by antigen.

Results

Suppression of the expression of DTH is proportional to the number of AC-SPL cells injected into the site challenged by antigen. The number of AC-SPL cells required for a 50% reduction in DTH-induced swelling is reduced by injecting a cell population enriched for CD8+ AC-SPL cells. Immunizing the mice receiving intracameral antigen to the same antigen decreases the RSw50 of AC-SPL cells required to inhibit the expression of DTH.

Conclusions

The results provide the first quantitative demonstration that the numbers of antigen-specific splenic CD8+ suppressor T cells are specifically amplified by antigen during an immune response.  相似文献   

11.
Murine fibrosarcomas produce a factor that activates suppressor cells to inhibit expression of delayed-type hypersensitivity (DTH) responses to dinitrochlorobenzene (DNCB). This tumor-derived suppressor factor (TDSF) was partially purified by preparative isoelectric focusing of spent medium and 3 M KCl extracts of cultured methylcholanthrene-induced and spontaneous fibrosarcomas of C3H/He mice. Incubation of 1 micrograms/ml of a fraction, isoelectric pH less than 2.9, with normal syngeneic spleen cells for 1-6 hr at 37 degrees C induced suppressor cells that inhibited the primary DTH response to DNCB upon intraperitoneal transfer to normal C3H/HeJ mice. TDSF was not present in extracts of either syngeneic embryonic fibroblasts or normal spleen cells or in medium conditioned by normal peritoneal exudate cells but was present in 3 M KCl extracts of and the spent medium from four different cultured murine fibrosarcomas. TDSF activity was not restricted at the major histocompatibility complex. The suppressor cells inhibited the efferent limb of the DTH response because (1) hyporesponsive recipients of TDSF-treated spleen cells had splenic effector T cells capable of transferring DTH to DNCB into naive secondary recipients and (2) the ability of Lyt 1+,2- effector Tdth cells to transfer a secondary DTH response to DNCB was inhibited by co-incubation with macrophages or Lyt 1-,2+ T cells treated with TDSF. Preliminary biochemical analysis suggested that TDSF was an RNA- protein complex. Thus, several murine fibrosarcomas produced a soluble factor that activated splenic suppressor cells to depress the immune response to nonneoplastic antigens. These suppressor factors represent a novel group of regulatory molecules which may be ribonucleoprotein complexes.  相似文献   

12.
Suppressor T cell function in the spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rats was analyzed using syngeneic mixed lymphocyte reaction (SMLR) and concanavalin A (Con A) activation. A depressed SMLR was found in adult SHR but not in adult WKY. IL-2 synthesized by SHR was 40-fold lower than that of WKY, and the suppressor T cells generated in the SMLR were incapable of suppressing IgG synthesis. Precursors of cells that can be activated by Con A to become functional suppressor cells are reduced in adult SHR. Supernatant fluids derived from Con A-activated spleen cells from adult SHR failed to significantly inhibit IgG synthesis by cultures of syngeneic spleen cells compared to supernatant fluids from young SHR or WKY Con A-activated spleen cells. However, spleen cells from both adult SHR and WKY proliferated strongly and released equivalent amounts of IL-2 in response to Con A. Addition of exogenous IL-2 to the SMLR cultures in vitro restored the ability of SHR T cells to respond in the SMLR, with generation of cells capable of suppressing IgG synthesis. Administration of SHR with IL-2 in vivo also restored the suppressor T cell function in the SMLR. These results suggest a defective suppressor T cell activation and loss of suppressor T cell activity as the SHR age.  相似文献   

13.
Experiments were performed to test the hypothesis that prostaglandins are crucial to the ability of an antigen-specific T cell suppressor factor to deliver a suppressive signal. In the system employed, T suppressor cells release an antigen-specific factor (TsF) that suppresses the ability of effector cells to transfer contact sensitivity (CS) skin swelling responsiveness to adoptive recipients. Culture of TsF-producing cells in the presence of indomethacin caused production of an inactive TsF that could be reconstituted by incubation of this inactive factor with low concentrations of certain prostaglandins such as PGE2 or PGE1. Subsequently, nearly all the prostaglandins were removed by dialysis, and the reconstituted TsF then acted as an antigen-specific suppressor of CS effector cells. Neither the inactive factor nor prostaglandins were suppressive alone. Furthermore, the prostaglandins are crucial to the constitution of TNBSA-F, the non-antigen-binding subunit of the TsF that probably delivers the ultimate suppressive signal. These results provide a new type of antigen-specific role for prostaglandins in immunoregulation and indicate that simple, local, hormonal molecules in physiologic concentrations can have a crucial and long-lasting role in constituting the suppressive activity of antigen-specific regulatory macromolecules released by suppressor T cells.  相似文献   

14.
Two suppressor cell populations that interact to down-regulate in vivo development of the cytolytic T-cell (CTL) response to trinitrophenyl-modified syngeneic spleen cells (TNP-SC) have been further characterized. Suppressor cells induced by the iv injection of trinitrophenyl-modified syngeneic spleen cells possess Thy 1.2 antigen. Their precursors are insensitive to pretreatment of host animals with cyclophosphamide (CY). Suppressor cells that arise after dermal sensitization with trinitrochlorobenzene are also Thy 1.2 antigen positive but their precursors are sensitive to pretreatment with CY. These characteristics of the two suppressor T cells (Ts) are identical to those of the two Ts that are generated by similar methodologies and that together suppress contact sensitivity (CS) to picryl chloride. Neither the CS nor CTL response was suppressed when host animals possessed only one set of Ts. In contrast to suppression of CS at the efferent phase, development of CTL was suppressed only when the two Ts were present early during sensitization (afferent phase). Since the results point to several similarities between the two sets of Ts that are active in the down-regulation of the CS and CTL responses, it is suggested that the two dissimilar immune responses directed to the same hapten, namely CS and CTL, may be controlled by the same suppressor cells. Since it appears that the two sets of Ts interact to affect different phases of the CS and CTL responses, down-regulation of each must be accomplished through different mechanisms.  相似文献   

15.
Intragastric administration of the hapten trinitrochlorobenzene (TNCB) suppresses development of contact sensitivity (CS) to attempted epicutaneous sensitization with TNCB. Suppression induced by feeding TNCB is hapten specific and can be transferred to normal animals with lymphoid cells from fed mice. The lymphoid cells in hapten-fed mice that cause suppression of CS have been identified as Thy-1.2-positive cells in spleen and mesenteric nodes. The suppression with Peyer's patch cells from hapten-fed mice appears to be attributable to cells bearing Thy-1.2 antigen (T cell) and to cells with surface Ig (B cell). Feeding TNCB induces an efferent-acting suppressor T cell (Ts eff), as well as an intermediary acceptor T cell (T acc) with which it interacts to block adoptive transfer of CS with immune cells. Ts eff emanating from hapten-fed mice was identified by its specificity for the hapten, insensitivity to pretreatment with cyclophosphamide (CY), ability to produce soluble suppressor factor (SSF), and requirement for T acc to be functional. The presence of T acc in hapten-fed mice, on the other hand, was confirmed by its sensitivity to treatment with CY, interaction with Ts eff or SSF, and the ability to produce nonspecific inhibitor of TDTH cells. Thus, the suppressor T cells that are induced by administering the hapten intragastrically appear to function much like the cells of the suppressor T cell cascade that are induced by giving hapten via parenteral routes.  相似文献   

16.
Our earlier studies have demonstrated that intragastric administration of the hapten trinitrochlorobenzene (TNCB) 2 to 3 weeks prior to attempting sensitization with epidermally applied hapten can abrogate development of systemic contact sensitivity (CS). In this paper, we have examined whether onset of tolerance following intragastric administration of the hapten is preceded by development of hapten-specific CS. Indeed, CS was found to be present 5 days after feeding TNCB and in most experiments the response decreased significantly by Days 10 to 12. The kinetics of development of CS by the oral and epidermal routes were strikingly similar except that the magnitude of reactivity (up to 5 days) in orally sensitized mice was somewhat less than that of epidermally sensitized mice. With the exception of Peyer's patches (PP), effector cells of CS were recovered from such gut-associated lymphoid tissues as mesenteric lymph nodes (MLN), lamina propria, and lymphocytes that are present in the intraepithelial compartment of the intestinal wall. These cells as well as spleen cells of TNCB-fed mice were able to adoptively transfer CS to naive mice. The capacity of MLN and spleen cells of TNCB-fed mice to confer CS adoptively was abrogated after treating cells with anti-Thy 1.2 and anti-Lyt 1.1 antibodies plus complement thereby identifying them as T lymphocytes. Although CS decreased by 10-12 days after feeding TNCB, the decline was reversed by pretreating mice with cyclophosphamide (CY) 2 days before giving the hapten. Whereas spleen cells from animals fed hapten 5 days earlier transferred CS readily, those from mice fed hapten 12 days earlier did not. However, when 12-day spleen cells were depleted of Lyt 2+ cells their ability to adoptively transfer CS was restored. These observations indicate that feeding TNCB to mice initially produces CS, mediated by Thy 1.2+, Lyt 1.1+ lymphocytes. CS is subsequently down-regulated by activation of Lyt 2+ suppressor cells, precursors of which are sensitive to CY.  相似文献   

17.
The membrane phenotype of T cells involved in delayed hypersensitivity (DH), protective immunity, and suppression of delayed hypersensitivity to herpes simplex virus (HSV) has been determined. T cells from immune lymph nodes transferring DH and antiviral immunity to normal recipients were characterized as Lyt 1+2-. There appeared to be no detectable antiviral role for Lyt 1-2+ cells in the transferred cell suspension. Splenic T cells suppressing the induction of DH to HSV were characterized as being both Lyt 1+2- and Lyt 1-2+ 4 weeks after their induction. At earlier times, i.e., after 7 days, the suppression was mediated solely by the Lyt 1+2- population. Thereafter, a progressive increase in the contribution of the Lyt 1-2+ suppressor was observed. Both the early and later phases of suppression were due to I-J positive cells. The nature of the two suppressor cell types is discussed in relation to suppressor cell "cascades" and to the pathogenesis of herpes simplex virus infection.  相似文献   

18.
The kinetics and quality of the alloimmune reaction were studied in CBA (H-2k) mice treated for passive enhancement of tumor allografts (Sa 1 indigenous of A/J (H-2a or H-2k/d) mice). Serum samples of treated animals were tested for their biological properties relevant to different antibody isotypes in vitro (hemagglutination, complement-dependent cytotoxicity, and anaphylaxis, i.e., mast cell degranulation involving all main Ig isotypes; IgM, IgG2, and IgG1, IgE, respectively) as well as in vivo (allograft enhancement). Spleen cells from these treated animals were examined for their capacity to interfere with the rejection of tumor allografts by adoptive transfers into syngeneic recipients. In vitro, 51Cr release cytolysis assays were performed in order to test their cytolytic and regulatory activities in comparison to rejecting control animals. It has been shown that: grafted mice, pretreated for passive enhancement, kept their grafts longer and synthetized anaphylactic antibodies (mainly IgG1) earlier and at higher titers than normal serum controls, which rejected the same Sa 1 allografts. Mice with enhanced tumors synthetized cytotoxic antibodies (mainly IgG2) later than rejecting controls. Serum samples from treated and control animals, harvested 10 days (early sera) and 30 days (late sera) after grafting, were injected with a "normal dose" (0.2 ml) and a "high" dose (0.4 ml) to new CBA recipients grafted with Sa 1. Early immune sera were only enhancing at high doses when derived from animals previously treated for enhancement (at the low dose both immune sera were enhancing). Late sera, presenting both complement-fixing, cytotoxic (predominantly IgG2), and IgG1 anaphylactic alloantibodies in the two groups, induced enhancement in all cases, but more strongly when derived from the group treated for Sa 1 enhancement. Adoptive transfer of spleen cells from animals treated for passive enhancement were able either to inhibit the accelerated rejection (Day 10) or to promote enhancement of Sa 1 allogeneic cells (Day 30) while similar cells taken (Day 10 and Day 30) from control graft-rejecting mice transferred accelerated rejection. Among the transferred T-cell sub-populations, the suppressive effect was mediated by Lyt 2 T cells. In vitro, these spleen cells showed a weaker cytolytic activity than those of allograft-rejecting mice. Moreover, they were able to regulate the cytolytic activity of cytotoxic effector cells from specifically immunized CBA mice.  相似文献   

19.
Antigen-specific, IgE isotype-selective suppression is induced following treatment of mice with a high-molecular-weight glutaraldehyde-polymerized ovalbumin preparation (OA-POL). The results show that the suppression is mediated by Lyt 1+,2,3- cells residing in the spleen. Adoptive transfer experiments indicate that Lyt 2,3+ or Lyt 1,2,3+ cells are not required for the establishment of suppression by these Lyt 1+,2,3- suppressor T cells (Ts). Treatment of OA-POL-induced Ts cells with anti-I-Jk serum and complement does not affect their ability to suppress. In marked contrast, spleen cells from animals treated with a single course of OA-POL almost 300 days previously, were shown to contain boosterable memory suppressor T cells (Tsm) which display the Lyt 1-,2,3+ phenotype. The activity of both Ts and Tsm cells appears to result from stimulation by determinants common to native OA and OA-POL rather than by idiotypic determinants expressed on anti-OA antibodies.  相似文献   

20.
CAF1 mice injected iv with polyvinylpyrrolidone (PVP) coupled to syngeneic spleen cells (PVP-SC) and challenged several days later with 0.25 μg PVP produced fewer PVP-specific IgM plague-forming cells (PFC) than mice injected with Mock-SC. Both 10,000 and 360,000 MW PVP could induce unresponsiveness after coupling to SC. The unresponsiveness induced by PVP-SC was shown to be mediated, at least in part, by antigen-specific suppressor T cells (TS). The PVP-specific TS were I-J positive and belonged to the Lyt 1+ 2+ subset of T cells. The Ts precursors were sensitive to 20 mg/kg cyclophosphamide (Cy) and to antilymphocyte serum (ALS). Kinetics studies suggested that unresponsiveness induced by PVP-SC may be of two types since unresponsiveness in the intact animal appeared earlier and did not last as long as detectable TS activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号