首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Bacteriophage attack on lactic fermentation bacteria (LFB) is costly to the dairy industry because it results in product loss. One mechanism used by LFB to protect themselves from bacteriophage attack is restriction of foreign DNA. Three plasmids, pER16, pER35, and pER36, from three different strains of the thermotolerant dairy fermentation bacterium Streptococcus thermophilus were sequenced. One of these plasmids, pER35, isolated from S. thermophilus ST135, encoded a type IC restriction-modification (R-M) system very similar to those encoded on plasmids pIL2614 in Lactococcus lactis subsp. lactis and pND861 in Lactococcus lactis biovar diacetylactis. The high degree of identity between the R-M systems encoded on pER35, pIL2614, and pND861 indicated the potential for horizontal transfer of these genes between different species of lactic fermentation bacteria. Similar to the functional R-M system encoded on pIL2614 that protects the mesophilic L. lactis subsp. lactis against phage attack, the R-M system on pER35 most likely functions in the same role in S. thermophilus ST135. The plasmid pER16 was found to encode the specificity subunit of the R-M system, but not the R or M subunits. In addition, all three plasmids encoded proteins that are present on other S. thermophilus plasmids, including a protein for rolling-circle replication (RepA) and a low-molecular-weight stress protein (Hsp). The presence of a complete R-M system encoded on a plasmid in S. thermophilus, a species that often lacks plasmids, is novel and may be beneficial for protecting S. thermophilus from bacteriophage attack under dairy fermentation conditions.  相似文献   

4.
Restriction-modification (R-M) was discovered because it provides bacteria with immunity to phage infection. But, is phage-mediated selection the sole mechanism responsible for the evolution and maintenance of these ubiquitous and multiply evolved systems? In an effort to answer this question, we have performed experiments with laboratory populations of E. coli and phage and computer simulations. We consider two ecological situations whereby phage-mediated selection could favor R-M immunity; i) when bacteria with a novel R-M system invade communities of phage-sensitive bacteria in which there are one or more species of phage, and ii) when bacteria colonize bacterial-free habitats in which phage are present. The results of our experiments indicate that in established communities of bacteria and phage, the advantage R-M provides an invading population of bacteria is ephemeral. Within short order, mutants resistant (refractory) to the phage evolve in the dominant population and subsequently in the invading population. The outcome of competition then depends on the relative fitness of the resistant states of these bacterial clones, rather than R-M. As a consequence of sequential selection for independent mutants, this rapid evolution of resistance occurs even when two and three species of phage are present. While in our experiments resistance also evolved when bacteria colonized new habitats in which phage were present, a novel R-M system greatly augmented the likelihood of their becoming established. We interpret the results of this study as support for the hypothesis that the latter, colonization selection, may play an important role in the evolution and maintenance of restriction-modification. However, we also see these results and other observations we discuss as questioning whether protection against phage is the unique biological role of restriction-modification.  相似文献   

5.
Phase variation, the high-frequency on/off switching of gene expression, is a common feature of host-adapted bacterial pathogens. Restriction-modification (R-M) systems, which are ubiquitous among bacteria, are classically assigned the role of cellular defence against invasion of foreign DNA. These enzymes are not obvious candidates for phase variable expression, a characteristic usually associated with surface-expressed molecules subject to host immune selection. Despite this, numerous type III R-M systems in bacterial pathogens contain repetitive DNA motifs that suggest the potential for phase variation. Several roles have been proposed for phase variable R-M systems based on DNA restriction function. However, there is now evidence in several important human pathogens, including Haemophilus influenzae, Neisseria meningitidis and Neisseria gonorrhoeae, that these systems are 'phasevarions' (phase variable regulons) controlling expression of multiple genes via a novel epigenetic mechanism.  相似文献   

6.
7.
Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level.  相似文献   

8.
DNA methytransferases (MTs) in bacteria are best understood in the context of restriction-modification (R-M) systems, which act as bacterial immune systems against incoming DNA including phages, but have also been described as selfish elements. But several orphan MTs, which are not associated with any restriction enzyme, have also been characterized and may protect against parasitism by R-M systems. The occurrence of MTs in these two contexts, namely as part of R-M systems or as orphans, is poorly understood. Here we report the results of a comparative genomic survey of DNA MTs across ~1000 bacterial genomes. We show that orphan MTs overwhelm R-M systems in their occurrence. In general, R-M MTs are poorly conserved, whereas orphans are nearly as conserved within a genus as any average gene. However, oligonucleotide usage and conservation patterns across genera suggest that both forms of MTs might have been horizontally acquired. We suggest that many orphan MTs might be 'degradation' products of R-M systems, based on the properties of orphan MTs encoded adjacent to highly diverged REs. In addition, several fully degraded R-M systems exist in which both the MT and the RE are highly divergent from their corresponding reference R-M pair. Despite their sporadic occurrence, conserved R-M systems are present in strength in two highly transformable genera, in which they may contribute to selection against integration of foreign DNA.  相似文献   

9.
Three genes coding for a type I R-M system related to the class C enzymes have been identified on the chromosome of Lactococcus lactis strain IL1403. In addition, plasmids were found that encode only the HsdS subunit that directs R-M specificity. The presence of these plasmids in IL1403 conferred a new R-M phenotype on the host, indicating that the plasmid-encoded HsdS is able to interact with the chromosomally encoded HsdR and HsdM subunits. Such combinational variation of type I R-M systems may facilitate the evolution of their specificity and thus reinforce bacterial resistance against invasive foreign unmethylated DNA.  相似文献   

10.
Analysis of restriction and modification activities in lactate-utilizing bacteria belonging to the Megasphaera elsdenii and Mitsuokella multiacida species revealed the presence of GATC-specific, MboI isospecific, restriction-modification (R-M) systems in all strains tested. While restriction endonucleases isolated from M. elsdenii strains were found to be sensitive to Dam methylation, enzymes from M. multiacida cleaved DNA irrespective of Dam methylation. The comparison of type II R-M systems specificities in three closely related lactate-utilizing ruminal bacterial species indicated complete lack of restriction and/or modification enzymes previously characterized from Selenomonas ruminantium in tested M. elsdenii and M. multiacida strains. R-M systems are believed to represent the main defense tool against phage infection. Based on the results of our experiments it could be assumed that M. elsdenii and M. multiacida use the different strategy for bacteriophage protection compared to S. ruminantium.  相似文献   

11.
Multicomponent Type III protein secretion systems transfer gram-negative bacterial virulence factors directly from the bacterial cytoplasm to the cytoplasm of a host eukaryotic cell in a process that may involve a single energy-coupled step. Extensive evidence supports the conclusion that the genetic apparatuses that encode these systems have been acquired independently by different gram-negative bacteria, presumably by lateral transfer. In this paper we conduct phylogenetic analyses of currently sequenced constituents of these systems and their homologues. The results reveal the relative relatedness of these systems and show that they evolved with little or no exchange of constituents between systems. This fact suggests that horizontal transmission of the genes encoding these systems always occurred as a unit without the formation of hybrid gene clusters. Moreover, homologous flagellar proteins show phylogenetic clustering that suggests that the flagellar systems and Type III protein secretory systems diverged from each other following very early duplication of a gene cluster sharing many (but not all) genes. Phylogenies of most or all of the flagellar proteins follow those of the source organisms with little or no lateral gene transfer suggesting that homologous flagellar proteins are true orthologues. We suggest that the flagellar apparatus was the evolutionary precursor of Type III protein secretion systems.  相似文献   

12.
Recognition sites for type II restriction and modification enzymes in genomes of several bacteria are recognized as semi-palindromic motifs and are avoided at a significant degree. The key idea of contrast word analysis with respect to RMS recognition sites, is that under-represented words are likely to be selected against. Starting from over- or underrepresented words corresponding to RMS recognition sites in specific clades, the specificity of unknown R-M systems can be highlighted. Among the known restriction enzymes, that are described in the REBASE database of restriction and modification systems, many of their recognition sites are still uncharacterized. Eventually, this motivates studies aimed at assessing horizontal transferring events of RMS in micro-organisms through the analysis of word usage biases in well-determined genomic regions. A probabilistic model is built on a first-order Markovian chain. Statistics on the k-neighborhood of a word is carried out to assess the biological significance of a genomic motif. Efficient word counting procedures have been implemented and statistics are used for the assessment of the significance of individual words in large sequences. On the basis of the set of most avoided words, and in accordance to the IUPAC coding standards, suggestions are made regarding potential recognition sequences. In certain cases, a comparison of avoided palindromic words in taxonomically related bacteria shows a pattern of relatedness of their R-M systems. For strengthening this analysis, the primary protein structure of all type II R-M systems known in REBASE have been blasted against the nr-GENBANK database. The combination of these analyses has revealed some interesting examples of possible horizontal transfer events of R-M systems.  相似文献   

13.
Bacteriophages encode auxiliary metabolic genes that support more efficient phage replication. For example, cyanophages carry several genes to maintain host photosynthesis throughout infection, shuttling the energy and reducing power generated away from carbon fixation and into anabolic pathways. Photodamage to the D1/D2 proteins at the core of photosystem II necessitates their continual replacement. Synthesis of functional proteins in bacteria requires co-translational removal of the N-terminal formyl group by a peptide deformylase (PDF). Analysis of marine metagenomes to identify phage-encoded homologs of known metabolic genes found that marine phages carry PDF genes, suggesting that their expression during infection might benefit phage replication. We identified a PDF homolog in the genome of Synechococcus cyanophage S-SSM7. Sequence analysis confirmed that it possesses the three absolutely conserved motifs that form the active site in PDF metalloproteases. Phylogenetic analysis placed it within the Type 1B subclass, most closely related to the Arabidopsis chloroplast PDF, but lacking the C-terminal α-helix characteristic of that group. PDF proteins from this phage and from Synechococcus elongatus were expressed and characterized. The phage PDF is the more active enzyme and deformylates the N-terminal tetrapeptides from D1 proteins more efficiently than those from ribosomal proteins. Solution of the X-ray/crystal structures of those two PDFs to 1.95 Å resolution revealed active sites identical to that of the Type 1B Arabidopsis chloroplast PDF. Taken together, these findings show that many cyanophages encode a PDF with a D1 substrate preference that adds to the repertoire of genes used by phages to maintain photosynthetic activities.  相似文献   

14.
Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then termed orphan MTases, they are believed to be mainly involved in regulatory activities in the bacterial cell. Genomes of various lytic and lysogenic phages have been shown to encode multi- and mono-specific orphan MTases that have the ability to confer protection from restriction endonucleases of their bacterial host(s). The ability of a phage to overcome R-M and other phage-targeting resistance systems can be detrimental to particular biotechnological processes such as dairy fermentations. Conversely, as phages may also be beneficial in certain areas such as phage therapy, phages with additional resistance to host defenses may prolong the effectiveness of the therapy. This minireview will focus on bacteriophage-encoded MTases, their prevalence and diversity, as well as their potential origin and function.  相似文献   

15.

Background  

Type I restriction-modification (R-M) systems are the most complex restriction enzymes discovered to date. Recent years have witnessed a renaissance of interest in R-M enzymes Type I. The massive ongoing sequencing programmes leading to discovery of, so far, more than 1 000 putative enzymes in a broad range of microorganisms including pathogenic bacteria, revealed that these enzymes are widely represented in nature. The aim of this study was characterisation of a putative R-M system EcoA0ORF42P identified in the commensal Escherichia coli A0 34/86 (O83: K24: H31) strain, which is efficiently used at Czech paediatric clinics for prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants.  相似文献   

16.
Many promiscuous plasmids encode the antirestriction proteins ArdA (alleviation of restriction of DNA) that specifically affect the restriction activity of heterooligomeric type I restriction-modification (R-M) systems in Escherichia coli cells. In addition, a lot of the putative ardA genes encoded by plasmids and bacterial chromosomes are found as a result of sequencing of complete genomic sequences, suggesting that ArdA proteins and type I R-M systems that seem to be widespread among bacteria may be involved in the regulation of gene transfer among bacterial genomes. Here, the mechanism of antirestriction action of ArdA encoded by IncI plasmid ColIb-P9 has been investigated in comparison with that of well-studied T7 phage-encoded antirestriction protein Ocr using the mutational analysis, retardation assay and His-tag affinity chromatography. Like Ocr, ArdA protein was shown to be able to efficiently interact with EcoKI R-M complex and affect its in vivo and in vitro restriction activity by preventing its interaction with specific DNA. However, unlike Ocr, ArdA protein has a low binding affinity to EcoKI Mtase and the additional C-terminal tail region (VF-motif) is needed for ArdA to efficiently interact with the type I R-M enzymes. It seems likely that this ArdA feature is a basis for its ability to discriminate between activities of EcoKI Mtase (modification) and complete R-M system (restriction) which may interact with unmodified DNA in the cells independently. These findings suggest that ArdA may provide a very effective and delicate control for the restriction and modification activities of type I systems and its ability to discriminate against DNA restriction in favour of the specific modification of DNA may give some advantage for efficient transmission of the ardA-encoding promiscuous plasmids among different bacterial populations.  相似文献   

17.
18.
19.
Bifidobacterium animalis subsp. lactis CNCM I-2494 is a component of a commercialized fermented dairy product for which beneficial effects on health has been studied by clinical and preclinical trials. To date little is known about the molecular mechanisms that could explain the beneficial effects that bifidobacteria impart to the host. Restriction-modification (R-M) systems have been identified as key obstacles in the genetic accessibility of bifidobacteria, and circumventing these is a prerequisite to attaining a fundamental understanding of bifidobacterial attributes, including the genes that are responsible for health-promoting properties of this clinically and industrially important group of bacteria. The complete genome sequence of B. animalis subsp. lactis CNCM I-2494 is predicted to harbour the genetic determinants for two type II R-M systems, designated BanLI and BanLII. In order to investigate the functionality and specificity of these two putative R-M systems in B. animalis subsp. lactis CNCM I-2494, we employed PacBio SMRT sequencing with associated methylome analysis. In addition, the contribution of the identified R-M systems to the genetic accessibility of this strain was assessed.  相似文献   

20.
As natural killers of bacteria, bacteriophages have forced bacteria to develop a variety of defence mechanisms. The alteration of host receptors is one of the most common bacterial defence strategies against phage infection, which completely blocks phage attachment but comes at a potential fitness cost to the bacteria. Here, we report the cost‐free, transient emergence of phage resistance in Salmonella enterica subspecies enterica serovar Typhimurium through a phase‐variable modification of the O‐antigen. Phage SPC35 typically requires BtuB as a host receptor but also uses the Salmonella O12‐antigen as an adsorption‐assisting apparatus for the successful infection of S. Typhimurium. The α‐1,4‐glucosylation of galactose residues in the O12‐antigen by phase variably expressed O‐antigen glucosylating genes, designated the LT 2 gtrABC1 cluster, blocks the adsorption‐assisting function of the O12‐antigen. Consequently, it confers transient SPC35 resistance to Salmonella without any mutations to the btuB gene. This temporal switch‐off of phage adsorption through phase‐variable antigenic modification may be widespread among Gram‐negative bacteria‐phage systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号