首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg2+-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.  相似文献   

2.
Summary The metabolism of carbohydrates during differentiation (sclerotization) of Physarum flavicomum was studied using the radiorespirometric technique. After about 36 h in a sclerotization (starvation) medium the metabolism declined to a level characteristic of the dormant state. Sclerotia incubated in complete growth medium quickly reverted to a metabolically active state and by 9 h they regained about 50% of their metabolic potential.Sclerotia metabolize carbohydrates by the Embden-Meyerhof-Parnas (EMP)-tricarboxylic acid and the pentose phosphate (PP) pathways. Compared to growing plasmodia the activity of the EMP is reduced to a greater extent than the PP in sclerotia. Also, EMP-produced triose phosphates are not well equilibrated: there is a greater yield of 14CO2 from the C-4 of glucose than from the C-3; the C-3 is incorporated into the lipid fraction to a greater extent than the C-4.The metabolism of carbohydrates by sclerotia is stimulated by cyclic-3-5-adenosine monophosphate.  相似文献   

3.
Synopsis Many recognised species of coral reef fishes exhibit two or more colour variants, but it is unknown whether these represent genetically identical phenotypes, genetic polymorphisms or closely related species. We tested between these alternatives for two colour morphs of the coral reef fish, Pseudochromis fuscus, from Lizard Island (Great Barrier Reef). A molecular analysis using mtDNA did not detect any genetic differentiation between co-occurring ‘yellow’ and ‘brown’ colour morphs. A previous study proposed that these two colour morphs are aggressive mimics of yellow and brown damselfishes. Here, a manipulative field experiment was used to evaluate whether the colour dimorphism in P. fuscus is a phenotypic response to the presence of two different model species. Colonies of either yellow or brown damselfish species were established on different patch reefs, and each of the two different P. fuscus morphs was then placed on the different reefs. Contrary to expectations, all yellow individuals that stayed on the reefs changed to brown, regardless of the model species. No brown individuals changed to the yellow colouration. However, P. fuscus were more likely to emigrate from, or suffer higher mortality on, patch reefs where they were not matched with similarly coloured models. Clearly, yellow and brown P. fuscus are members of a single species with sufficient phenotypic plasticity to switch from yellow to brown colouration.  相似文献   

4.
Sclerotia were formed in agar culture by a fungus with clamp connections isolated from rice husks at Tsukuba, Japan. The sclerotia were brown, globose to ellipsoidal, small, up to 200 μm in diameter, and composed of external rind tissue and internal medulla tissue. Such tiny sclerotia have not been commonly reported among basidiomycetous fungi in the literature. The fungus was identified as Coprinopsis cinerea on the basis of morphological characteristics together with molecular analyses. Three reference strains of C. cinerea formed sclerotia similarly under identical cultural conditions.  相似文献   

5.
Rhizoctonia solani AG-3 is a soilborne plant pathogen that forms resting vegetative structures called sclerotia. These compact structures are crucial to the pathogen’s survival and pathogenesis. The metabolic changes occurring during sclerotia development were monitored using proton nuclear magnetic resonance (1H NMR) spectroscopy and gas chromatography–mass spectrometry (GC-MS). The validation, discrimination, and the establishment of correlative relationships between metabolite signals were performed by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The results of the analyses suggested that out of the 116 compounds that were simultaneously analyzed and compared using GC-MS, α-α-trehalose, d-glucose, 9-(Z)-octadecenoic and 9,12-octadecadienoic acids, xylitol, and glucitol were key metabolites that were highly dependent on the developmental stage of the sclerotia contributing to their discrimination and classification. Furthermore, the application of 1H NMR and GC-MS metabolic fingerprinting on the same biological sample provided complementary information illustrating the value of this integrated approach in the study of metabolic changes in fungal structures.  相似文献   

6.
Protein synthesized by growing plasmodia of Physarum flavicomum was steadily degraded when the plasmodia were induced to differentiate (form sclerotia). Protein synthesis occurred during the initial one-fifth (9 h) of the 48 h differentiation period, but most of this protein was also degraded shortly after its synthesis. Amino acids were primary catabolites during the differentiation process, and catabolism was extensive, even in the presence of dextrose. Glutamic acid was catabolized at a rate about two and a half or three times greater, respectively, than that observed for valine and arginine. Active transport systems for amino acids appeared to be present and to remain functional in P. flavicomum during differentiation. Amino acids included in the sclerotization media were rapidly accumulated into the cell pool and protein fractions. Intracellular amino acids were actively retained and were not released into the medium during differentiation. Differentiation of this Myxomycete, therefore, is characterized by a change in the metabolism of the sclerotizing plasmodium to an autolytic type, as cellular proteins and amino acids are actively catabolized during the formation of the dormant sclerotia.  相似文献   

7.
Differentiation of flower colour is thought to be one of the most important factors promoting plant speciation. We describe the intraspecific variation of flower colour and its distribution in Limonium wrightii. We conducted a survey on 36 islands in the northwestern Pacific and discriminated six morphs of flower colour variation. Two flower colour morphs, pink and yellow, were most frequently observed, and their geographical distributions were basically allopatric. These two morphs were in contact in a narrow zone on Okinoerabu Island, located in the middle region of the Ryukyu Archipelago. In addition, orange, white, and ivory flower morphs were also found in this zone. The geographical distribution of pink and yellow morphs showed a “leapfrog” pattern; the distribution of pink flowers was divided into two areas, intercalated by the distribution of the yellow flower morph. The orange morph may have resulted from hybridization between the pink and yellow flower morphs.  相似文献   

8.
Pistachio is a popular snack food. Aflatoxin contamination of pistachio nuts is a serious problem for many producing countries. The development of biological control methods based on ecological parameters is an environmentally friendly approach. Thirty-eight Aspergillus flavus isolates collected from a pistachio orchard in California (CA) were analyzed for production of aflatoxin (AF), cyclopiazonic acid (CPA), vegetative compatibility groups (VCGs), and mating types. All aflatoxigenic isolates produced both AFB1 and CPA. The most toxigenic one was CA28 which produced 164 μg AFB1 per 5 ml PDA fungal culture and small sclerotia (S strain, sclertoium size less than 400 μm). The other aflatoxigenic strains produce AFB1 ranging from 1.2 μg to 80 μg per 5 ml fungal culture. Twenty-one percent of the CA isolates produced AFB1, 84% produced CPA and half formed sclerotia on at least one of three tested media. The 38 CA isolates formed 26 VCGs, 6 of which had two or more isolates and 20 contained single isolates. The S strain isolates belong to 4 different VCGs. Genomic profiling by a retrotransposon DNA probe revealed fingerprint patterns that were highly polymorphic. The predicted VCGs (Pred-VCGs) based on a similarity coefficient >80% matched the VCGs of multiple isolates determined by complementation. All isolates within a VCG had the same mating-type gene of either MAT1-1 or MAT1-2. Uncorrected and VCG-corrected MAT1-1 and MAT1-2 among the isolates were equally distributed.  相似文献   

9.
4 S4]3 +  and the reduced [Fe4S4]2 +  clusters in the high-potential iron protein I from Ectothiorhodospira halophila were measured in a temperature range from 5 K to 240 K. EPR measurements and 57Fe electron-nuclear double resonance (ENDOR) experiments were carried out with the oxidized protein. In the oxidized state the cluster has a net spin S = 1/2 and is paramagnetic. As common in [Fe4S4]3 +  clusters, the M?ssbauer spectrum was simulated with two species contributing equally to the absorption area: two Fe3 +  atoms couple to the “ferric-ferric” pair, and one Fe2 +  and one Fe3 +  atom give the “ferric-ferrous pair”. For the simulation of the M?ssbauer spectrum, g-values were taken from EPR measurements. A-tensor components were determined by 57Fe ENDOR experiments that turned out to be a necessary source of estimating parameters independently. In order to obtain a detailed agreement of M?ssbauer and ENDOR data, electronic relaxation has to be taken into account. Relaxing the symmetry condition in a way that the electric field gradient tensor does not coincide with g- and A-tensors yielded an even better agreement of experimental and theoretical M?ssbauer spectra. Spin-spin and spin-lattice relaxation times were estimated by pulsed EPR; the former turned out to be the dominating mechanism at T = 5 K. Relaxation times measured by pulsed EPR and obtained from the M?ssbauer fit were compared and yield nearly identical values. The reduced cluster has one additional electron and has a diamagnetic (S = 0) ground state. All the four irons are indistinguishable in the M?ssbauer spectrum, indicating a mixed-valence state of Fe2.5 +  for each. Received: 15 February 1999 / Accepted: 31 August 1999  相似文献   

10.
Life Cycle of <Emphasis Type="Italic">Plasmodiophora brassicae</Emphasis>   总被引:1,自引:0,他引:1  
Plasmodiphora brassicae is a soil-borne obligate parasite. The pathogen has three stages in its life cycle: survival in soil, root hair infection, and cortical infection. Resting spores of P. brassicae have a great ability to survive in soil. These resting spores release primary zoospores. When a zoospore reaches the surface of a root hair, it penetrates through the cell wall. This stage is termed the root hair infection stage. Inside root hairs the pathogen forms primary plasmodia. A number of nuclear divisions occur synchronously in the plasmodia, followed by cleavage into zoosporangia. Later, 4–16 secondary zoospores are formed in each zoosporangium and released into the soil. Secondary zoospores penetrate the cortical tissues of the main roots, a process called cortical infection. Inside invaded roots cells, the pathogen develops into secondary plasmodia which are associated with cellular hypertrophy, followed by gall formation in the tissues. The plasmodia finally develop into a new generation of resting spores, followed by their release back into soil as survival structures. In vitro dual cultures of P. brassicae with hairy root culture and suspension cultures have been developed to provide a way to nondestructively observe the growth of this pathogen within host cells. The development of P. brassicae in the hairy roots was similar to that found in intact plants. The observations of the cortical infection stage suggest that swelling of P. brassicae-infected cells and abnormal cell division of P. brassicae-infected and adjacent cells will induce hypertrophy and that movement of plasmodia by cytoplasmic streaming increases the number of P. brassicae-infected cells during cell division.  相似文献   

11.
12.
Six kinds of heat-released soluble cell-wall fragments (elicitors) were prepared respectively from Neurospora crassa, Monascus purpureus, Sporobolomyces roseus, Rhodotorula rubra, Nocardia corallina N89 and Actinoplanes tuftoflagellus A05. When Penicillium sp. PT95 was grown on corn meal (CM) solid medium containing appropriate amounts of elicitors, both its sclerotia biomass and the amount of carotenoid accumulated in sclerotia were enhanced significantly (P < 0.01). Every one of the elicitors except that fromM. purpureus could also increase significantly the β-carotene fraction of total pigment (P < 0.01). Among elicitors tested, the elicitor (150 μg/g CM) originating from R. rubra gave a maximum value of sclerotia biomass, reaching 15.90 g/100g CM; the elicitor (100 μg/g CM) from M. purpureus gave the highest total carotenoid of 14,446 μg/100 g CM and β-carotene yield of 10,112 μg/100 g CM, which were respectively 2.76 and 2.72 times higher than that of control. Experimental results also showed that the elicitor from M. purpureus could inhibit effectively the occurrence of sectoring during solid-state fermentation of strain PT95. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The phyllodocid polychaete Notophyllum foliosum occurs in two colour morphs in Swedish and Norwegian waters, one palish yellow to grey form with black patches that is restricted to deeper waters and often associated with reefs of the deep-water coral Lophelia pertusa, and one usually yellow-orange form with black patches and white spots that is usually encountered on more shallow bottoms. We have sampled the two forms from sympatric occurrences in Norway, and the shallow form from the Swedish west coast. Phylogenetic and haplotype analyses based on the mitochondrial cytochrome c oxidase subunit I (COI) gene and the nuclear internal transcribed spacer region (ITS1-5.8SrDNA-ITS2) unequivocally indicate that the two forms represent different species. We apply the name N. foliosum (Sars, 1835) to the ‘shallow form’, and propose N. crypticum n. sp. for the ‘deep form’. A lectotype is fixed for N. foliosum.  相似文献   

14.
Summary The effects of heat shock on the protoplasmic streaming, respiration and leakage of plasmodial constituents absorbing at 260 nm (products of nucleic acid metabolism), 280 nm (products of protein metabolism), and 415 nm (the yellow pigments of the plasmodia) were studied in plasmodia of the myxomycete Physarum polycephalum.Plasmodia grown on a semidefined medium displayed a lower primary thermoresistance of the protoplasmic streaming, and had a lower Q 10 coefficient of the heat injury of this function compared to those grown on rolled oats. They are able to repair thermal injuries during heating. The primary thermoresistance of the protoplasmic streaming is not changed during the mitotic cycle.A 10 min heating at 32°C lowers the rate of protoplasmic streaming and results in a leakage of plasmodial pigments. After a 10 min exposure at 37–38°C the protoplasmic streaming is stopped, the respiration reduced, and products of nucleic acid metabolism are detectable in the heating fluid. Leakage of protein metabolits was observed after 10 min heatshocks at 41°C. A heating of the plasmodia to 47–50°C caused the highest level of leaked substances and the complete cessation of respiration.In contrast to higher plants, the respiration and leakage of the pigments are thermolabile indicators of the condition of Physarum polycephalum plasmodia.  相似文献   

15.
Indian mustard (Brassica juncea (L.) Czern.) is a promising plant species for phytoremediation of heavy metal polluted soils. However, genetic variability of metal tolerance in Indian mustard has not been studied. We evaluated intraspecific variation of Cd tolerance of this species by screening 64 varieties in hydroponics. The tolerance index (TI), calculated as percentage of root length of Cd-treated (7 μM CdCl2) over untreated control seedlings, significantly varied from 34 to 79%, depending on the variety. Information about phenotypic and economic traits of the studied varieties was taken from the literature and subjected to a cluster analysis. The varieties were distributed into three clusters and most of the varieties characterized by the highest TI values (TI > 65%) were grouped together in one cluster. Moreover, TI negatively correlated with the following characteristics: yellow seed colour (R = −0.35, P = 0.005), total oil content (R = −0.33, P = 0.008), oleic acid (R = −0.25, P = 0.047) and linoleic acid (R = −0.36, P = 0.004) contents in seeds. The results showed the presence of significant variability for Cd tolerance in Indian mustard. The knowledge about correlations between Cd tolerance and phenotypic characteristics of plants might be utilized for rapid selection of cultivars to be used for phytoremediation of polluted soils.  相似文献   

16.
Cloning and disruption of Rga1, the gene encoding the G protein α subunit in the rice sheath blight fungus Rhizoctonia solani, was investigated. The deduced primary structure of the Rga1-encoded protein showed high identity to those of Gα subunits from other filamentous fungi. Disruption of Rga1 led to decreased vegetative growth and pathogenicity. The Rga1 disruptant showed altered colony morphology. In addition, the sclerotia formation ability of the disruptant was completely lost. These results suggest that the Gα subunit encoded by Rga1 is involved in a signal transduction pathway in R. solani that controls growth, development and pathogenicity.  相似文献   

17.
Soluble ammonia monooxygenase (AMO) from Nitrosomonas europaea was purified to homogeneity and metals in the active sites of the enzyme (Cu, Fe) were analyzed by electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were obtained for a type 2 Cu(II) site with g|| = 2.24, A|| = 18.4 mT and g = 2.057 as well as for heme and non heme iron present in purified soluble AMO from N. europaea. A second type 2 Cu(II) EPR signal with g|| = 2.29, A|| = 16.1 mT and g = 2.03 appeared in the spectrum of the ferricyanide oxidized enzyme and was attributed to oxidation of cuprous sites. Comparison of EPR-detectable Cu2+ with total copper determined by inductively coupled plasma-mass spectrometry (ICP-MS) suggests that there are six paramagnetic Cu2+ and three diamagnetic Cu1+ per heterotrimeric soluble AMO (two paramagnetic and one diamagnetic Cu per αβγ-protomer). A trigonal EPR signal at g = 6.01, caused by a high-spin iron, indicative for cytochrome bound iron, and a rhombic signal at g = 4.31, characteristic of specifically bound Fe3+ was detectable. The binding of nitric oxide in the presence of reductant resulted in a ferrous S = 3/2 signal, characteristic of a ferrous nitrosyl complex. Inactivation of soluble AMO with acetylene did neither diminish the ferrous signal nor the intensity of the Cu2+-EPR signal.  相似文献   

18.
Over the past 20+ years, fish with elevated concentrations of mercury (Hg) have been observed in remote lake districts, including the Adirondack region of New York. Across eastern North America studies have also reported a negative correlation between fish Hg concentration and lake pH. Recent controls in emissions of sulfur dioxide (SO2) have resulted in some improvement in the acid–base status of acid-impacted surface waters including Adirondack lakes. In addition, there has been an apparent decrease in atmospheric Hg deposition. A synoptic survey of 25 lakes in the Adirondacks was conducted in 1992–1993 to analyze spatial patterns of Hg in the water column and yellow perch (Perca flavescens). The same cluster of 25 lakes was resurveyed in 2005–2006 to evaluate if changes in lake concentrations of Hg species or fish Hg have occurred. We observed a varied response of changes in water chemistry and fish Hg concentrations. In twelve of the resurveyed lakes the yellow perch had lower Hg concentrations, six lakes had yellow perch with higher Hg concentrations, and in seven lakes yellow perch Hg concentrations did not change significantly (α = 0.05). Four variables appear to influence the change in yellow perch Hg concentrations in the Adirondacks: watershed area, elevation, change in pH, and change in fish body condition. We hypothesize that as the acidity in lakes is attenuated, the lakes may become more productive and/or water quality conditions less stressful to fish leading to increasing fish body condition. As fish body condition improves, fish exhibit “growth dilution” of tissue contaminants leading to lower fish Hg concentrations.  相似文献   

19.
The spread of invasive species is an increasing problem world wide. The invasive slug Arion lusitanicus has spread to most parts of Europe, where it often is considered as a serious pest. There is a need for better knowledge of its ecophysiology to be able to predict the effect of climatic factors, such as temperature and humidity on the population dynamics and abundance. The aim of the present study was to assemble data on the water balance and drought tolerance of eggs and juveniles of A. lusitanicus. Both eggs and juveniles had little capacity to prevent evaporative water loss and lost water when the ambient humidity fell below 99.8 and 99.5%, respectively. The water conductance of the cuticle of juveniles was 242 μg cm−2 h−1 mmHg−1 and resembles that of other slug species. Both eggs and juveniles of A. lusitanicus tolerate a substantial water loss. There was no difference in water loss resistance between eggs and juveniles, but the eggs were slightly more tolerant to water loss than the juveniles. The percent water loss causing 50% mortality was 72% for the juveniles and 81% for the eggs. Despite A. lusitanicus’ tolerance of substantial water loss, its survival depends on humid habitats.  相似文献   

20.
Dinitrosyl iron complexes (DNICs) with various thiol ligands, the known donors of nitric oxide, markedly inhibited aidB gene expression in E. coli cells by destroying the [4Fe-4S]2+ center of its regulator protein Fnr. Therewith, the cells accumulated DNICs in the protein-bound form, identified by the EPR signal with g = 2.04 and g = 2.014. Subsequent addition of sulfur sources L-cysteine or N-acetylcysteine, DTT as well as Na2S to the DNIC-treated cells significantly restored the reporter gene expression. Simultaneously, the above-specified EPR signal was partly or completely replaced with a narrower signal (g = 2.032, g = 2.02) identical to that of DNICs with persulfide (R-S-S) ligands, which result from interaction of S2− with thiols; inorganic sulfide proved to be the most efficient agent. These data corroborate the central role of S2− in recovery of the protein [4Fe-4S] center disrupted by the NO donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号