首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms regulating stomatal response following exposure to low (5°C) soil temperature were investigated in aspen ( Populus tremuloides Michx.) seedlings. Low soil temperature reduced stomatal conductance within 4 h, but did not alter shoot xylem pressure potential within 24 h. The xylem sap composition was altered and its pH increased from 6.5 to 7.1 within the initial 4 h of the low temperature treatment. However, the increase in abscisic acid (ABA) concentration in xylem sap was observed later, after 8 h of treatment. These changes were accompanied by a reduction in the electrical conductivity and an increase in the osmotic potential of the xylem sap. The timing of physiological responses to low soil temperature suggests that the rapid pH change of the xylem sap and accompanying changes in ion concentration were the initial factors which triggered stomatal closure in low temperature-treated seedlings, and that the role of the more slowly accumulating ABA was likely to reinforce the stomatal closure. When leaf discs were exposed to xylem sap extracted from low soil temperature-treated plants, stomatal aperture was negatively correlated with ABA and positively correlated with K+ concentrations of the xylem sap. The stomatal opening in the leaf discs linearly increased in response to exogenous KCl concentrations when K+ concentrations were in the similar range to those detected in the xylem sap. The lowest concentration of exogenous ABA to induce stomatal closure was several-fold higher compared with the concentration present in the xylem sap.  相似文献   

2.
Plants grown in containers frequently suffer from difficulties in managing their water status due to either insufficient or too much water. In the case of the latter, little information is available regarding how container-grown woody plants respond to anaerobic media. The aims of this work were therefore to use Forsythia as a model woody plant system to provide a mechanistic understanding of the physiological events and their timing during soil flooding. Exposure of pot-grown Forsythia to root hypoxia had a dramatic effect on leaf growth and stomatal conductance. Within 24 h of flooding a decline in leaf growth rate was detected along with a reduction in stomatal conductance. The effects of hypoxia appear initially with older leaves, but if flooding is prolonged (>2 days) younger expanding leaves are affected. These responses and their timing have not been described for woody perennial plants but appear comparable to those described for herbaceous plants such as tomato and castor bean. Measurements of stem and leaf tissue and during flooding showed large time dependent increases in the concentrations of acetaldehyde and ethanol; products associated with anaerobic respiration. Both of these chemicals were shown to be root-derived and are produced in a significant amount only as flooding time increases and the decline in leaf growth and conductance become apparent. Xylem sap was collected at a range of flow rates to measure whole root system conductance and determine changes in delivery of sap flux constituents. Calculated delivery rates of acetaldehyde and ethanol changed little with sap flow, particularly in well-drained control plants, while root hydraulic conductance declined when measured, 4 days after flooding. However, neither acetaldehyde nor ethanol, when used in a detached leaf transpiration bioassay, at physiologically realist concentrations (as determined from sap collection) failed to induce a dramatic reduction in leaf transpiration rates. The reasons for this discrepancy are discussed.  相似文献   

3.
In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.  相似文献   

4.
The effect of differences in applied pressure and time of sampling on pH values of xylem sap collected using the leaf pressurization technique was examined in two grapevine varieties originating from contrasting habitats (Vitis vinifera L., cvs. Sabatiano and Mavrodafni) after subjecting them to drought. Three fractions of xylem sap exudates were collected from each leaf according to differences in applied pressure; fractions (I), (II) and (III) corresponding to 1 MPa, 2 MPa and 2.5 MPa pressure, respectively. The pH values in fraction (I) were significantly lower than those in fractions (II) and (III). The sap pH values in fraction (III) seemed to better correspond to changes in leaf apoplastic pH. The time of sampling was found to strongly influence xylem pH values. In particular, a positive relationship between predawn xylem pH values and soil drying was observed. Conversely, xylem pH values measured later during the day (i.e. at 8:00, 9:00 and 10:00 am) were not significantly affected by the reduction in soil water availability in both varieties. It is suggested that the most suitable period for sap sampling in order to better discriminate drought effects on xylem sap pH is at predawn. Furthermore, there were significant differences in pH values as well as in the sensitivity of stomatal conductance to pH between the two varieties. These differences might be related to strategy differences between grapevine varieties for adaptation to drought.  相似文献   

5.
Abstract. Stomatal conductance, leaf water potential, soil water potential and concentration of abscisic acid (ABA) in the xylem sap were measured on maize plants growing in the field, in two treatments with contrasting soil structures. Soil compaction affected the stomatal conductance, but this effect was no longer observed if the soil water potential was increased by irrigation. Differences in leaf water potential did not account for the differences in conductance between treatments. Conversely, the relationship between stomatal conductance and concentration of ABA in the xylem sap was consistent during the experiment. The proposed interpretation is that stomatal conductance was controlled by the root water potential via an ABA message. Control of the stomatal conductance by the leaf water potential or by an effect of mechanical stress on the roots is unlikely.  相似文献   

6.
Xylem sap collected from Populus trichocarpa × Populus deltoides using root pressure was estimated to contain more than 100 proteins. Ninety-seven of these proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). These proteins were classified into 10 functional categories including metabolism, signaling, stress response and cell wall functions. The majority of xylem sap proteins were metabolic enzymes involved in processes including translation, proteolysis, and glycolysis. Stress-related proteins were also prevalent. In contrast to xylem sap proteins collected from annual plants, the majority of poplar xylem sap proteins do not appear to be classically secreted since only 33 proteins were predicted to have an N-terminal signal peptide targeting them to the secretory pathway. Of the remaining 64 proteins, 27 were predicted to be secreted non-classically. While a number of proteins identified here have been previously reported in xylem sap proteomes of annual plants, many xylem sap proteins were identified in poplar which may reflect functions specific to perennial plants.  相似文献   

7.
Sunflower plants ( Helianihus animus cv. Tall Single Yellow} were grown in the greenhouse in drain pipes (100 mm inside diameter and 1 m long) rilled with John Innes No. 2 compost. When the fifth leaf had emerged, half of the plants were left unwatered for 6 days, rewatered for 2 days and then not watered for another 12 days. Measurements of water relations and abaxial stomatal conductance were made at each leaf position at regular intervals during the experimental period. Estimates were also made of soil water potentials along the soil profile and of ABA concentrations in xylem sap and leaves.
Soil drying led to some reduction in stomatal conductance alter only 3 days but leaf turgors were not reduced until day 13 (6 days after rewatering). When the water relations of leaves did change, older leases became substantially dehydrated while high turgors were recorded in younger leaves. Leaf ABA content measured on the third youngest leaf hardly changed over the first 13 days of the experiment, despite substantial soil drying, while xylem ABA concentrations changed very significantly and dynamically as soil water status varied, even when there was no effect of soil drying on leaf water relations. We argue that the highest ABA concentrations in the xylem, found as a result of substantial soil drying, arise from synthesis in both the roots and the older leaves, and act to delay the development of water deficit in younger leases.
In other experiments ABA solutions were watered on to the root systems of sunflower plants to increase ABA concentrations in xylem sap. The stomatal response to applied ABA was quantitatively very similar to that to ABA generated as a result of soil drying. There was a log-linear relationship between the reduction of leaf conductance and the increase of ABA concentration m xylem sap.  相似文献   

8.
Transpiration inhibition by stored xylem sap from well-watered maize plants   总被引:3,自引:0,他引:3  
There is increasing evidence that a chemical signal exists in xylem sap of plants subjected to water deficits which influences physiological responses in plant shoots. An important method of studying this signal is the transpiration response of excised leaves exposed to xylem sap collected from plants. However, Munns et al [Plant, Cell & Environment 16, 867–877] cautioned that transpiration inhibition is observed when xylem sap collected from wheat and barley is stored before determining physiological activity. The objective of the study reported here was to determine if transpiration inhibition develops in maize sap collected from well-watered plants when the sap is stored under various conditions. It was found that storage of maize sap collected from well-watered plants for only 1 d at -20°C resulted in the development of substantial transpiration inhibition in bioassay leaves. Storage of sap at 4°C resulted in the development of the effect after 2 weeks, while storage at ?86°C showed only small transpiration inhibition after 3 weeks. The major source of the transpiration inhibition was the development of a substance in the stored sap that resulted in physical blockage of the transpiration stream in bioassay leaves. However, a small signal component may also have developed in the stored sap. Because of the possibility of ionic activity under freezing conditions at ?20°C, calcium was studied for its potential involvement in the transpiration inhibition. However, the calcium concentrations found to inhibit transpiration were nearly an order of magnitude larger than the calcium concentrations observed in xylem sap.  相似文献   

9.
Abstract. Maize seedlings ( Zea mays L. John Innes F1 hybrid) were grown in a greenhouse in l-m-long tubes of soil. When the plants were well established, water was withheld from half of the tubes. Control plants were watered every day during the 20-d experimental period. The soil drying treatment resulted in a substantial restriction of stomatal conductance and a limitation in shoot growth, even though there was no detectable difference in the water relations of watered and unwatered plants. From day 7 of the soil drying treatment, xylem ABA concentrations (measured using the sap exuded from detopped plants) were substantially increased in unwatered plants compared to values recorded with sap from plants watered every day. Measurements of water potential through the profile of unwatered soil suggest that xylem ABA concentrations reflects the extent of soil drying. Leaf ABA content was a much less sensitive indicator of the effect of soil drying and during the whole of experimental period there was no significant difference between ABA concentration in leaves of well watered and unwatered plants. In a second set of experiments, ABA was fed to part of the roots of potted maize plants to manipulate xylem ABA concentration. These manipulations suggested that the increases in ABA concentration in xylem sap, which resulted from soil drying, were adequate to explain the observed variation in stomatal conductance and might also explain the restriction in leaf growth rate. These results are discussed in the light of recent work which suggests that stomatal responses to soil drying are partly attributable to an as-yet unidentified inhibitor of stomatal opening.  相似文献   

10.
To evaluate whether abscisic acid (ABA) in the xylem sap playsan important role in controlling stomatal aperture of field-grownPrunus persica trees under drought conditions, stomatal conductance(g) and xylem ABA concentrations were monitored both in irrigatedand non-irrigated trees, on two consecutive summer days (threetimes a day). Stomata1 conductance of non-irrigated trees hada morning maximum and declined afterwards. The changes in gduring the day, rather than resulting from variations in theconcentrations of ABA in the xylem sap or the delivery rateof this compound to the leaves, were associated with changesin the relationship between g and xylem ABA. The stomata ofwater-stressed trees opened during the first hours of the day,despite the occurrence of a high concentration of ABA in thexylem sap. However, stomatal responsiveness to ABA in the xylemwas enhanced throughout the day. As a result, a tight inverserelationship between g and the logarithm of xylem ABA concentrationwas found both at midday and in the afternoon. A similar relationshipbetween g and ABA was found when exogenous ABA was fed to leavesdetached from well-watered trees. These results indicate thatABA derived from the xylem may account for the differences ing observed between field-grown peach trees growing with differentsoil water availabilities. Several possible explanations forthe apparent low stomatal sensitivity to xylem ABA in the morning,are discussed, such as high leaf water potential, low temperatureand high cytokinin activity. Key words: Prunus persica L., stomata, xylem ABA, water deficits, root-to-shoot communication  相似文献   

11.
When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.  相似文献   

12.
The xylem in plants has mainly been described as a conduit for water and minerals, but emerging evidence also indicates that the xylem contains protein. To study the proteins in xylem sap, we characterized the identity and composition of the maize xylem sap proteome. The composition of the xylem sap proteome in maize revealed proteins related to different phases of xylem differentiation including cell wall metabolism, secondary cell wall synthesis, and programmed cell death. Many proteins were found to be present as multiple isoforms and some of these isoforms are glycosylated. Proteins involved in defense mechanisms were also present in xylem sap and the sap proteins were shown to have antifungal activity in bioassays.  相似文献   

13.
Sunflower plants [Helianthus annuus L.) were subjected to soil drought. Leaf conductance declined with soil water content even when the shoot was kept turgid throughout the drying period. The concentration of abscisic acid in the xylem sap increased with decreasing soil water content. No general relation could be established between abscisic acid concentration in the xylem sap and leaf conductance due to marked differences in the sensitivity of leaf conductance of individual plants to abscisic acid from the xylem sap. The combination of these results with data from Gollan, Schurr & Schulze (1992, see pp. 551–559, this issue) reveals close connection of the effectiveness of abscisic acid as a root to shoot signal to the nutritional status of the plant.  相似文献   

14.
Hydraulic conductance of stem and petioles increased in response to an increase in xylem sap ion concentration, and decreased in response to a decrease in the ion concentration in six temperate deciduous tree species. The ion sensitivity of hydraulic conductance of stem and petioles was higher than the ion sensitivity of the stem alone. The ion sensitivity was lowest in the earliest developmental stages of the xylem, and had a seasonal maximum in the second half of summer. The ion sensitivity was highest in slow-growing species and lowest in fast-growing species. The ion sensitivity correlated negatively with mean radius of xylem conduits, hydraulic conductance of stem and petioles, hydraulic conductance of leaf laminae, and stomatal conductance, and positively with response of the hydraulic conductance of leaf laminae to HgCl2, and stomatal response to a decrease in leaf water potential or abscisic acid. It was concluded that the high ion sensitivity of xylem hydraulic conductance is a relevant characteristic of slow growth and a conservative water use strategy.  相似文献   

15.
Changes in the malate and mannitol composition of ash leaf (Fraxinus excelsior L.) xylem sap were studied in response to water deficit. Xylem sap was collected by the pressure method from the petiole of leaves sampled on irrigated and non-irrigated ash seedlings. As the leaf water potential decreased from -0.3 to -3.0 MPa, there was a significant increase in malate and mannitol xylem concentrations, and a concomitant decrease in maximal stomatal conductance. The functional significance of the increased malate and mannitol concentrations was investigated by using a transpiratory bioassay with mature detached leaves which exhibited, for stomatal conductance, the typical pattern showed by expanded leaves during dark/light transitions. Supplying detached leaves with mannitol in a range of concentrations found in the xylem sap had no effect on stomatal movements, but malate, for concentrations between 0.5 and 3 mM, was effective in preventing stomatal opening. The ability of malate to inhibit stomatal opening appeared to be rather non-specific. Two structural malate analogues, citrate and aspartate or an unrelated anion, shikimate, also inhibited this process. Given the drought-induced increase in xylem malate concentrations, and the fact that the range of malate levels required to close stomata was very similar to that of the concentrations found in the xylem sap, it has been hypothesized that malate is involved in the stomatal closure of ash leaves under drying conditions.Key words: Fraxinus excelsior: L., malate, mannitol, xylem sap, stomata, water deficit.   相似文献   

16.
Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml−1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.  相似文献   

17.
Linking xylem diameter variations with sap flow measurements   总被引:1,自引:0,他引:1  
Measurements of variation in the diameter of tree stems provide a rapid response, high resolution tool for detecting changes in water tension inside the xylem. Water movement inside the xylem is caused by changes in the water tension and theoretically, the sap flow rate should be directly proportional to the water tension gradient and, therefore, also linearly linked to the xylem diameter variations. The coefficient of proportionality describes the water conductivity and elasticity of the conducting tissue. Xylem diameter variation measurements could thus provide an alternative approach for estimating sap flow rates, but currently we lack means for calibration. On the other hand, xylem diameter variation measurements could also be used as a tool for studying xylem structure and function. If we knew both the water tension in the xylem and the sap flow rate, xylem conductivity and/or elasticity could be calculated from the slope of their relationship. In this study we measured diurnal xylem diameter variation simultaneously with sap flow rates (Granier-type thermal method) in six deciduous species (Acer rubrum L., Alnus glutinosa Miller, Betula lenta L., Fagus Sylvatica L. Quercus rubra L., and Tilia vulgaris L.) for 7–91 day periods during summers 2003, 2005 and 2006 and analyzed the relationship between these two measurements. We found that in all species xylem diameter variations and sap flow rate were linearly related in daily scale (daily average R 2 = 0.61–0.87) but there was a significant variation in the daily slopes of the linear regressions. The largest variance in the slopes, however, was found between species, which is encouraging for finding a species specific calibration method for measuring sap flow rates using xylem diameter variations. At a daily timescale, xylem diameter variation and sap flow rate were related to each other via a hysteresis loop. The slopes during the morning and afternoon did not differ statistically significantly from each other, indicating no overall change in the conductivity. Because of the variance in the daily slopes, we tested three different data averaging methods to obtain calibration coefficients. The performance of the averaging methods depended on the source of variance in the data set and none of them performed best for all species. The best estimates of instantaneous sap flow rates were also given by different averaging methods than the best estimates of total daily water use. Using the linear relationship of sap flow rate and xylem diameter variations we calculated the conductance and specific conductivity of the soil–xylem–atmosphere water pathway. The conductance were of the order of magnitude 10−5 kg s−1 MPa−1 for all species, which compares well with measured water fluxes from broadleaved forests. Interestingly, because of the large sap wood area the conductance of Betula was approximately 10 times larger than in other species.  相似文献   

18.
Differences in maximum leaf conductance in grapevine plants growing in soils with contrasting water availabilities during mid-summer in Portugal could be accounted for by differences in the concentration of ABA in xylem sap. This conclusion is reinforced by the observation that the relationship between leaf conductance and endogenous ABA concentration can be mimicked by the application of exogenous ABA to leaves detached from irrigated plants. During the day, leaf conductance decreased after a morning peak, even when the leaves remained in a constant environment at a moderate temperature and leaf-to-air vapour pressure difference. This decline in leaf conductance was not a consequence of an increase in the xylem ABA concentration or the rate of delivery of this compound by the transpiratory stream. The afternoon depression in leaf conductance was associated with an apparent limitation in stomatal opening potential, which persisted even when detached leaves were fed with water and rehydrated. The reason for this inhibition has still to be identified.  相似文献   

19.
The extent of interference from xylem sap in an enzyme-linked immunosorbent assay was determined for a woody perennial [ Populus trichocarpa Torr. & Gray x P deltoides Bart, ex Marsh (Hybrid 1l–ll)] and a herbaceous annual ( Phasesolus vulgaris L. cv. Contender). Crude xylem sap collected from excised roots from both species interfered with the assay for zeatin riboside. Assays for zeatin riboside in xylem sap collected from Popidus overestimated endogenous levels, and added standards could not be accurately measured from a range of sap dilutions. When Phaseolus plants were grown under various nutrient regimens, interference in the assay was dependent on nutrient availability. Of xylem sap components (inorganic minerals, amino acids and sucrose) which may vary with environmental conditions or among species, only sucrose interfered at the concentrations tested. Since the pH of xylem sap varies it was necessary to buffer samples prior to analysis. Partial purification using anion exchange columns and Sep-Paks cffectively eliminated interference. These results demonstrate that estimates of plant growth regulators in xylem sap by the ELISA (enzyme-linked immunosorbant assay) method can be influenced by species and environmental conditions such as plant nutritional status.  相似文献   

20.
Chitinase in cucumber xylem sap   总被引:2,自引:0,他引:2  
A chitinase activity was detected in fractions of xylem sap collected from the cut surface of cucumber stems. A 28-kDa acidic protein was purified from the active fractions and its N-terminal amino acid sequence was found to be identical to that of a chitinase gene. Cucumber roots produce and secrete an acidic chitinase, one of the PR proteins, into xylem sap and deliver it to aboveground organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号