首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neuronal cells in primary culture from 1-day-old brains of normotensive, Wistar-Kyoto strain (WKY) and spontaneously hypertensive (SH) rats have been utilized to study the expression of alpha 1-adrenergic receptors. Binding of a selective alpha 1 antagonist, [125I]2-[beta-(4-hydroxy-3-iodophenyl)-ethylaminomethyl]-tetralone ([125I]HEAT) to neuronal membranes prepared from primary brain cultures of WKY and SH rats was 75-80% specific, rapid, and time-dependent although the binding was 1.5-2 times higher in neuronal membranes from SH rat brain cultures. Kinetic analysis of the association and dissociation data demonstrated no significant differences between rat strains. Competition-inhibition experiments provided IC50 values for various antagonists and agonists in the following order: prazosin less than phentolamine less than yohimbine less than phenylephrine less than norepinephrine less than propranolol, suggesting that [125I]HEAT bound selectively to alpha 1-adrenergic receptors. Scatchard analysis of the binding data provided straight lines for both strains of rats, indicating the presence of a homogeneous population of binding sites. It also showed that the increase in the binding in neuronal cells from SH rat brains over those from normotensive WKY controls was a result of an increase in the number of alpha 1-adrenergic receptors. Incubation of neuronal cultures from both strains of rats with phenylephrine, an alpha 1-adrenergic agonist, caused a time- and dose-dependent decrease in the binding of [125I]HEAT. This decrease was due to a decrease in the number of alpha 1-adrenergic receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
Abstract: The glutamate transporters in the plasma membranes of neural cells secure termination of the glutamatergic synaptic transmission and keep the glutamate levels below toxic concentrations. Astrocytes express two types of glutamate transporters, GLAST (EAAT1) and GLT1 (EAAT2). GLT1 predominates quantitatively and is responsible for most of the glutamate uptake activity in the juvenile and adult brain. However, GLT1 is severely down-regulated in amyotrophic lateral sclerosis, a progressive neurodegenerative disease. Furthermore, selective loss of this transporter occurs in cultured astroglia. Expression of GLAST, but not of GLT1, seems to be regulated via the glutamate receptor signalling. The present study was undertaken to examine whether neuronal factors, other than glutamate, influence the expression of astroglial glutamate transporters. The expression of GLT1 and GLAST was examined in primary cultures of cerebellar granule neurons, cortical neurons, and astrocytes under different experimental conditions, including those that mimic neuron-astrocyte interactions. Pure astroglial cultures expressed only GLAST, whereas astrocytes grown in the presence of neurons expressed both GLAST (at increased levels) and GLT1. The induction of GLT1 protein and its mRNA was reproduced in pure cortical astroglial cultures supplemented with conditioned media from cortical neuronal cultures or from mixed neuron-glia cultures. This treatment did not change the levels of GLAST. These results suggest that soluble neuronal factors differentially regulate the expression of GLT1 and GLAST in cultured astroglia. Further elucidation of the molecular nature of the secreted neuronal factors and corresponding signalling pathways regulating the expression of the astroglial glutamate transporters in vitro may reveal mechanisms important for the understanding and treatment of neurological diseases.  相似文献   

5.
AII (angiotensin II) is a vasoactive peptide that plays an important role in the development of liver fibrosis mainly by regulating profibrotic cytokine expression such as TGF‐β (transforming growth factor‐β). Activated HSCs (hepatic stellate cells) are the major cell type responsible for ECM (extracellular matrix) deposition during liver fibrosis and are also a target for AII and TGF‐β actions. Here, we studied the effect of AII on the mRNA levels of TGF‐β isoforms in primary cultures of rat HSCs. Both quiescent and activated HSCs were stimulated with AII for different time periods, and mRNA levels of TGF‐β1, TGF‐β2 and TGF‐β3 isoforms were evaluated using RNaseI protection assay. The mRNA levels of all TGF‐β isoforms, particularly TGF‐β2 and TGF‐β3, were increased after AII treatment in activated HSCs. In addition, activated HSCs were able to produce active TGF‐β protein after AII treatment. The mRNA expression of TGF‐β isoforms induced by AII required both ERK1/2 and Nox (NADPH oxidase) activation but not PKC (protein kinase C) participation. ERK1/2 activation induced by AII occurs via AT1 receptors, but independently of either PKC and Nox activation or EGFR (epidermal growth factor receptor) transactivation. Interestingly, AII has a similar effect on TGF‐β expression in quiescent HSCs, although it has a smaller but significant effect on ERK1/2 activation in these cells.  相似文献   

6.
The ability of Sendai virosomes or LipofectinTM to introduce an AAV vector into primary rat brain astroglial cultures was characterized. The pJDT95npy vector was constructed by inserting rat NPY cDNA downstream from the indigenous AAV p5, p19 and p40 promoters in pJDT95. LipofectinTM-mediated transfection with pJDT95npy (10 g) resulted in pronounced expression of several NPY mRNA species: p5-driven (3.3 kb), p19-driven (2.7 kb) and p40-driven (0.6, 0.8, 1.1, and 1.8 kb). Exposure to virosomally encapsulated pJDT95npy (50 or 100 ng) resulted in transient expression of some p40-driven mRNA species (0.8 and 1.8 kb). Neither method produced astroglia cells which synthesized mature NPY immunoreactivity. This demonstrates that an AAV-derived vector can drive gene expression in astroglia, that Sendai virosomes can infuse vectors into astroglia, but that the amount of DNA infused in this manner may limit long term expression.  相似文献   

7.
Neuronal cells from Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rat brains were established in culture to compare the expression of angiotensin II (Ang II) specific receptors and their regulation by norepinephrine (NE). Neurons from SH rat brains possess twice more Ang II specific receptors and expressed a proportional increase in Ang II stimulated [3H]-NE uptake compared with WKY neurons. NE caused a dose-dependent decrease in125I-Ang II binding in WKY neurons, an effect not observed when neurons from SH rat brains were incubated with NE. These observations suggest that the lack of NE-induced downregulation of Ang II receptors in neuronal cultures is genetically regulated.  相似文献   

8.
Abstract: The type 1 angiotensin II (All) receptor (AT1-R) has been implicated in the physiological actions mediated by All in the brain. In view of the reported hyperactivity of the brain All system in the spontaneously hypertensive rat (SHR), we compared the expression of AT,-R mRNAs in the brains of normotensive [Wistar Kyoto (WKY)] and SHR animals. Northern blot analysis showed about three- and ∼20-fold increases in the levels of AT1-R mRNAs from the hypothalamus and brainstem areas, respectively, of the SHR compared with the WKY rat brain. This was attributable to greater levels of both AT,1A- and AT,1B-R mRNA subtypes in these areas from the SHR. These observations suggest that increased All receptor levels in SHR brain may, in part, be a result of increased expression of the AT1-R gene.  相似文献   

9.
Manganese superoxide dismutase (MnSOD) is an antioxidant enzyme that reduces superoxide anion to hydrogen peroxide in cell mitochondria. MnSOD is overexpressed in normal aging brain and in various central nervous system disorders; however, the mechanisms mediating the upregulation of MnSOD under these conditions remain poorly understood. We previously reported that cysteamine (CSH) and other pro-oxidants rapidly induce the heme oxygenase-1 (HO-1) gene in cultured rat astroglia followed by late upregulation of MnSOD in these cells. In the present study, we demonstrate that antecedent upregulation of HO-1 is necessary and sufficient for subsequent induction of the MnSOD gene in neonatal rat astroglia challenged with CSH or dopamine, and in astroglial cultures transiently transfected with full-length human HO-1 cDNA. Treatment with potent antioxidants attenuates MnSOD expression in HO-1-transfected astroglia, strongly suggesting that intracellular oxidative stress signals MnSOD gene induction in these cells. Activation of this HO-1-MnSOD axis may play an important role in the pathogenesis of Alzheimer disease, Parkinson disease and other free radical-related neurodegenerative disorders. In these conditions, compensatory upregulation of MnSOD may protect mitochondria from oxidative damage accruing from heme-derived free iron and carbon monoxide liberated by the activity of HO-1.  相似文献   

10.
11.
Angiotensin II (AII) is a major regulator of cardiovascular function and fluid homeostasis. Recently, the cDNA for an AII receptor (AT1) was cloned from rat smooth muscle and bovine adrenal. To search for AII receptor subtypes, we amplified rat adrenal cortex cDNA by PCR using primers based on the AT1 receptor. The product was distinct from the AT1 receptor as indicated by restriction enzyme analysis and DNA sequencing. A full-length cDNA clone (2.2 kilobase pairs) encoding a novel AII receptor (AT3) was obtained by screening an adrenal cortex library. The AT3 cDNA encodes a Mr 40,959 protein with 95% amino acid identity to the rat smooth muscle receptor, but the overall nucleotide similarity is 71% due to low homology in the 5'- (58%) and 3'- (62%) untranslated regions. Expressed AT3 receptors in Xenopus oocytes and COS-7 cells mediate agonist-induced Ca2+ mobilization but are pharmacologically distinct from the AT1 receptors. AT3 mRNA is most abundant in the adrenal cortex and pituitary and differs from AT1 mRNA in its tissue distribution. The structural features of the AT3 receptor, including two additional potential phosphorylation sites for protein kinase C, could be related to the distinctive binding properties of the adrenal and vascular receptors and to their differential regulation during altered sodium intake.  相似文献   

12.
13.
Proinflammatory cytokines, pathological iron deposition, and oxidative stress have been implicated in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). HO-1 mRNA levels and mitochondrial uptake of [(55)Fe]Cl(3)-derived iron were measured in rat astroglial cultures exposed to interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha (TNF-alpha) alone or in combination with the heme oxygenase-1 (HO-1) inhibitors, tin mesoporphyrin (SnMP) or dexamthasone (DEX), or interferon beta1b (INF-beta). HO-1 expression in astrocytes was evaluated by immunohistochemical staining of spinal cord tissue derived from MS and control subjects. IL-1beta or TNF-alpha promoted sequestration of non-transferrin-derived (55)Fe by astroglial mitochondria. HO-1 inhibitors, mitochondrial permeability transition pore (MTP) blockers and antioxidants significantly attenuated cytokine-related mitochondrial iron sequestration in these cells. IFN-beta decreased HO-1 expression and mitochondrial iron sequestration in IL-1beta- and TNF-alpha-challenged astroglia. The percentage of astrocytes coexpressing HO-1 in affected spinal cord from MS patients (57.3% +/- 12.8%) was significantly greater (p < 0.05) than in normal spinal cord derived from controls subjects (15.4% +/- 8.4%). HO-1 is over-expressed in MS spinal cord astroglia and may promote mitochondrial iron deposition in MS plaques. In MS, IFN-beta may attenuate glial HO-1 gene induction and aberrant mitochondrial iron deposition accruing from exposure to proinflammatory cytokines.  相似文献   

14.
Localization of aldolase C mRNA in brain cells   总被引:4,自引:0,他引:4  
The expression of aldolase C and aldolase A mRNA was assessed by Northern blot hybridization using RNAs purified from cultured rat and mouse brain neurons and astroglial cells. Neurons were found to contain about 4-fold more aldolase C mRNA and about twice as much aldolase A mRNA than astroglia. Analysis of the cellular localization of aldolase C mRNA by in situ hybridization to brain slices showed a predominantly neuronal labeling with an irregular distribution. A strong signal was observed in Purkinje cell somata and a weaker signal in subpopulations of neurons in cerebral cortex, striatum, hippocampus, hypothalamic nuclei and primary olfactory cortex.  相似文献   

15.
The human angiotensin II (AII) type 1a receptor gene and its upstream control sequence has been cloned from a human leukocyte genomic library. The promoter element CAAT and TATA sequences were found at -602 and -538, respectively, upstream from the translational initiation site. The deduced protein sequence is homologous to rat and bovine AT1a receptors (94.7% and 95.3% identity). The expressed gene exhibited high-affinity AII and Dup753 binding and was functionally coupled to inositol phosphate turnover. Northern analysis of human tissues showed AT1 receptor mRNA expression in placenta, lung, heart, liver, and kidney. Using 5' untranslated and coding sequence as probes in a Southern blot analysis, it was established that another AT1 subtype exists in the human genome.  相似文献   

16.
17.
Primary cultures of neonatal murine brain have been reported to express multiple receptors that regulate adenylate cyclase activity. Since for the most part these results were obtained with mixed cell cultures, it has been difficult to define receptor profiles for specific cell types. With this concern in mind a series of studies has been initiated designed to identify specific receptors present on highly purified, immunocytochemically defined astroglia derived from the cerebral cortices of neonatal rats. In this study the capacity of a variety of peptide hormones to regulate cyclic AMP metabolism in these cells was examined. Fibroblasts derived from the meninges represent a predictable source of contamination in primary CNS culture. Thus, to assign more clearly specific receptors to the astroglial cell population, receptor-mediated regulation of cyclic AMP accumulation was also examined in fibroblasts. Cyclic AMP accumulation in astroglia was stimulated by catecholamines (acting at beta 1-adrenergic receptors), prostaglandin E1, vasoactive intestinal polypeptide, alpha-melanocyte-stimulating hormone, and adrenocorticotropin. Bombesin, luteinizing hormone-releasing hormone, neurotensin, thyrotropin-releasing hormone, somatostatin, secretin, and vasopressin did not significantly increase cyclic AMP levels in these cultures. Catecholamines, acting at alpha 2-adrenergic receptors, and somatostatin inhibited agonist-stimulated cyclic AMP accumulation. In meningeal cell cultures catecholamines (acting at beta 2- and alpha 2-adrenergic receptors) and prostaglandin E1 regulated cyclic AMP levels. However, vasoactive intestinal peptide did not stimulate and somatostatin did not inhibit cyclic AMP accumulation in these cells.  相似文献   

18.
In order to elucidate the relationship between homocysteine and the fibrinolytic system, we examined the effect of homocysteine on plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (tPA) gene expression and protein secretion in cultured human vascular endothelial and smooth muscle cells in vitro. PAI-1 mRNA and secreted protein levels were both enhanced by homocysteine in a dose dependent manner, with significant stimulation of PAI-1 secretion observed at concentrations greater than 0.5 mM homocysteine. In contrast, secretion and mRNA expression of tPA were not significantly altered by homocysteine stimulation. Secretion of TGFbeta (transforming growth factor beta) and TNFalpha (tumor necrosis factor alpha), possible regulators of PAI-1 expression and secretion, were not stimulated by treatment with 1.0 mM homocysteine. These results suggests that hyperhomocysteinemia-induced atherosclerosis and/or thrombosis may be caused by homocysteine-induced stimulation of PAI-1 gene expression and secretion in the vasculatures by a mechanism independent from paracrine-autocrine activity of TGFbeta and TNFalpha.  相似文献   

19.
Ang-(1-7) is an effector peptide of the renin-angiotensin system with several distinct actions that are likely mediated by a specific receptor. Regulatory effects of angiotensin (Ang) peptides, Ang-(1-7) and Ang II, on Ang receptor subtype 1 (AT1) mRNA expression were investigated in vascular smooth muscle cells (VSMC) from four University of Akron (Akr) rat strains (WKY, SHR and two backcross consomic lines SHR/y and SHR/a), and in SHR and WKY cells from Charles River Laboratories (Crl). In WKY/Akr and SHR/Akr, Ang-(1-7) treatment increased the levels of AT1 mRNA. This effect was inhibited by the specific Ang-(1-7) antagonist, A-779, in WKY/Akr but not SHR/Akr. Ang II had no effect in Akr cells, but it down-regulated AT1 mRNA in WKY/Crl and SHR/Crl VSMC. Ang-(1-7) did not affect AT1 mRNA levels in Crl lines. In conclusion, Ang-(1-7) regulates the AT1 receptor either directly or indirectly in a strain-specific fashion. The Ang-(1-7) antagonist, A-779, blocks the actions of Ang-(1-7) only in VSMC from WKY/Akr rats, suggesting either that the binding sites for Ang-(1-7) have different properties in SHR/Akr and WKY/Akr cell lines, or that some of the effects of Ang-(1-7) are not receptor mediated. Further, we found differences between Akr cells and Crl cells that are consistent with their genetic heterogeneity.  相似文献   

20.
K L Grove  C F Deschepper 《Life sciences》1999,64(20):1811-1818
Functional angiotensin IV (Ang IV) receptors (denoted AT4) are localized to the outer stripe of the medulla in the rat kidney, and may play a critical role in salt homeostasis. The purpose of this study was to determine if AT4 receptor binding in the kidney is differently regulated in the salt-sensitive spontaneously hypertensive (SH) rat compared to Wistar Kyoto (WKY) controls. AT4 receptor binding was determined using in vitro receptor autoradiography. AT4 receptor binding in the outer stripe of the medulla was similar in WKY and SH rats maintained on a 1% salt diet. A high salt diet (8%) resulted in a statistically significant increase (28%) in AT4 receptor binding in kidneys from WKY rats. However, there was no change in AT4 receptor binding in the kidneys of SH rats fed the same diet. The present data indicate that AT4 binding sites are regulated by salt intake. In addition, regulation of this receptor may be impaired in the kidneys of SH rats, explaining in part the salt-sensitivity of this strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号