首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the epidermis of Travisia forbesii was described using light and electron microscopy. The epidermis is a highly modified variant of the normal one-layer polychaete epithelium. It consists of basal epidermal cells and an external layer of closely sited papillae consisting of glandular and supportive epidermal cells, and extensive electron-transparent intercellular spaces. The papillae are embedded in the thick cuticle. Each papilla has a peduncle, which is formed by one cell that penetrates the inner cuticle layer to the basal epidermal cells. A fold of basement membrane forms the core of the peduncle and ends in the base of a papilla. All epidermal cells are connected to each other with apical cell junctions and to the basement membrane with hemidesmosomes, so the epithelium is continuous and uninterrupted. The epidermis has an intra-epidermal neuron plexus. The structure of the papillae is compared with papillae and tubercles of other polychaetes, and the possible functional significance and phylogenetic implications of these structures are discussed.  相似文献   

2.
The rectum of the ant Formica nigricans is composed of six ovoid rectal papillae inserted into a rectal pouch. The wall of the rectal pouch is made up of a flat epithelium of simple rectal cells lined by cuticle, and surrounded by a circular muscle layer. Each rectal papilla is comprised by a simple columnar epithelium of principal cells facing the lumen, and a simple cuboid epithelium of secondary cells towards the hemolymph; a group of 20-25 slender junctional cells lies laterally between both epithelia enclosing an intrapapillar sinus. The muscle layer of the rectal wall also surrounds the base of the papillae. Principal cells do not exhibit extensive infoldings at the apical and basal plasma membranes. Lateral membranes, in contrast, develop highly folded mitochondria-scalariform junction complexes enclosing very narrow intercellular canaliculi between adjacent cells. These canaliculi open to wider intercellular sinuses that ultimately drain into the intrapapillar sinus at the sites of entry of tracheal cells. The lateral plasma membranes do not link to the apical or basal plasma membrane, thus originating a syncytium throughout the principal cells. The apical plasma membrane of secondary cells shows invaginations in relation with an apical tubulovacuolar system, bearing portasomes to the cytoplasmic side of the membrane. Secondary cells unite by convoluted septate junctions, and basolateral infoldings are also developed. These ultrastructural traits, some of them different from those found in other insects, are discussed and examined in relation to their role in water and solute absorption. A route for rectal transport in F. nigricans is proposed.  相似文献   

3.
Summary The coxal organs of different Geophilomorpha were studied by scanning and by transmission electron microscopy.1) The coxae of the last trunk-segment contain pores in different arrangements and numbers. They are the openings of the coxal organs.2) The coxal organs are formed by four different cell types: the main epithelium consists of radially arranged transporting cells, surrounded by junctional cells, gland cells, and the cells of the pore channel.3) The cells of the transporting epithelium show an enlargement of the apical and basal surface. Deep and narrow extracellular channels of the apical infoldings are closely associated by mitochondria (plasmalemma-mitochondrial complexes). The epithelium is covered by a prominent cuticle with a spacious subcuticle.4) A distinct mucous layer covers the cuticle of the transporting epithelia, and is secreted by the gland cells.5) A small cellular sheath separates the epithelium of the coxal organ against the haemolymph.6) The possible function of the coxal organs in ion and fluid transport is discussed.  相似文献   

4.
Summary The dorsal integument of the girdle of the chiton Mopalia muscosa is covered by a chitinous cuticle about 0.1 mm in thickness. Within the cuticle are fusiform spicules composed of a central mass of pigment granules surrounded by a layer of calcium carbonate crystals. Tapered, curved chitinous hairs with a groove on the mesial surface pass through the cuticle and protrude above the surface. The spicules are produced by specialized groups of epidermal cells called spiniferous papillae and the hairs are produced by trichogenous papillae. Processes of pigment cells containing green granules are scattered among the cells of each type of papilla and among the common epidermal cells.The wall or cortex of each hair is composed of two layers. The cortex surrounds a central medulla that contains matrix material of low density and from 1 to 20 axial bundles of dendrites. The number of bundles within the medulla varies with the size of the hair. Each bundle contains from 1 to 25 dendrites ensheathed by processes of supporting cells. The dendrites and supporting sheath arise from epidermal cells of the central part of the papilla. At the base of each trichogenous papilla are several nerves that pass into the dermis. Two questions remain unresolved. The function of the hairs is unknown, and we have not determined whether the sensory cells are primary sensory neurons or secondary sensory cells.  相似文献   

5.
Animals construct a layered skin to prevent dehydration and pathogen entrance. The barrier function of the skin relies on the extensive cross-linking of specialised components. In insects, for instance, epidermal cells produce an apical extracellular cuticle that consists of a network of proteins, chitin and lipids. We have identified mutations in the Drosophila gene coding for the δ-aminolevulinate synthase (Alas) that cause massive water loss. The cuticle of alas mutant larvae detaches from the epidermis and its basal region is frayed suggesting that an Alas dependent pathway is needed to organise the contact between the cuticle and the epidermis and anchor the cuticle to the apical surface of epidermal cells. Concomitantly, reduction of Alas function results in weakening of the extracellular dityrosines network in the cuticle, whereas glutamyl-lysine isopeptide bonds are not affected. The lateral septate junctions of epidermal cells that serve as a paracellular plug are intact, as well. Taken together, we hypothesise that Alas activity, which initiates heme biosynthesis in the mitochondrion, is needed for the formation of a dityrosine-based barrier that confers resistance to the internal hydrostatic pressure protecting both the cuticle from transcellular infiltration of body fluid and the animal from dehydration. We conclude that at least two modules--an apical protein-chitin lattice and the lateral septate junctions, act in parallel to ensure Drosophila skin impermeability.  相似文献   

6.
The organization of the rectal pads is described in cockroaches belonging to the Groups Blattoidea (Periplaneta americana, Blatta orientalis) and Blaberoidea (Supella supellectilium, Blaberus craniifer). In the Blattoidea, each pad is composed of two layers (principal and basal cells) and is surrounded by very narrow junctional cells supporting the sclerotized cuticle of the pad frame; basally, the junctional cells abut on to the basal cells. In the Blaberoidea, the basal cell layer is discontinuous, the basal cells being interspersed between extensions of the junctional cells beneath the pad. The ultrastructural features of each cell type is described, with special reference to the intercellular junctions, which exhibit unusual complexity. Four types of junction are recognized: desmosomes (belt and spot desmosomes), gap junctions, septate junctions and scalariform (ladder-like) junctions. The last are usually closely associated with mitochondria, forming mitochondrial-scalariform junction complexes (MS). The distribution of these junctions is examined in relation to the partitioning of extracellular spaces, and to the problem of fluid transport.  相似文献   

7.
The infective third-stage juvenile of Trichostrongylus colubriformis is surrounded by its own cuticle as well as the incompletely moulted cuticle of the second-stage juvenile, which is referred to as the sheath. The sheath comprises an outer epicuticle, an amorphous cortical zone, a fibrous basal zone and an inner electron-dense layer. The basal zone of the sheath consists of three layers of fibres; the fibres are parallel within each layer, but the fibre direction of the middle layer is at an angle to that of the inner and outer layers. The cuticle comprises a complex outer epicuticle, an amorphous cortical zone and a striated basal zone. The lateral alae of the cuticle and the sheath are aligned and overlie the lateral hypodermal cords. The lateral alae of the sheath consist of two wing-like expansions of the cortical zone with associated specializations of the inner electron-dense layer which form a groove. The cuticular lateral alae consist of two tube-like expansions of the cortical zone. The lateral alar complex of the cuticle and the sheath may maximise locomotory efficiency and prevent rotation of the juvenile within the sheath.  相似文献   

8.
The two epithelial monolayers of the insect wing undergo striking morphogenetic changes during the course of adult development, but the exact interactions between these monolayers were not evident until the ultrastructure of the cells was carefully examined. The interaction of the dorsal monolayer with the ventral monolayer continually changes as the two initially separate monolayers first lose their pupal basal laminae and then come together along a sharp interface to form microtubule-associated junctions. As blood space between the two monolayers expands 2 days later, new adult basal laminae and cuticle form. Concomitantly the epithelial cells stretch along their apicobasal axes to create a thin cellular M layer halfway between the dorsal and ventral surfaces of the wing that represents the site where connections between the monolayers are maintained at specialized basal junctions. The elongated processes of each monolayer that make up this M layer first fasciculate and then span the space separating the two monolayers, but only at relatively widely-spaced intervals. During later stages of adult development, dense aggregates of microtubules appear in these epithelial processes and presumably contract as cells dramatically shorten along their apicobasal axes during expansion of the wing. Examination of the ultrastructure of the developing adult wing has revealed how certain cellular events can account for the mechanics of cuticle and wing expansion after adult emergence.  相似文献   

9.
Jarial MS 《Tissue & cell》1987,19(4):559-575
The ultrastructure of the anal organ of the full-grown larva of Drosophila melanogaster is described. The thin cuticle is characterized by epicuticular depressions which contain particulate material. In AgNO(3)-treated larvae, silver grains tend to penetrate the cuticle at the epicuticular depressions. At the basal surface, the epithelial cells exhibit narrow, parallel membrane infoldings which bear a particulate coat on the cytoplasmic surface. The infoldings are also attached around the cytoplasmic surface of endocuticular tubercles, thereby greatly increasing the absorptive surface area. At the apical surface, the membrane invaginations, which are closely associated with mitochondria, anastomose freely and extend deeply into the cytoplasm. The lateral membranes are linked by desmosomes and septate junctions. They are highly folded, are closely associated with mitochondria, and enclose intercellular channels and spaces. The epithelial cells are rich in mitochondria, glycogen particles and tracheoles. Numerous vesicles, multivesicular bodies, lysosome-like dense bodies and sparse endoplasmic reticulum are found in the cytoplasm. In concentrated medium, the epithelial cells show complete absence of the membrane infoldings and invaginations and reduction in the number of mitochondria. The ultrastructural features of the anal organ are consistent with its function in ion transport.  相似文献   

10.
Summary The papilla basilaris of scincid lizards is relatively long, slightly curved or bowed, and characteristically has an apical terminal expansion. A limbus-attached tectorial membrane is present but is apparently not continuous with the tectorial material covering the hair cells of the papilla. The hair cells of the apical expansion are covered by a thick spongy mass of tectorial material, while the hair cells above (dorsal to) the apical region are covered by thickened tectorial material that is in the form of uniquely sculptured, twisted or folded drape-like masses (sallets). The surface of the basal (dorsal) quarter of the papilla is unusual in that it is concave rather than convex. The expanded terminals of the hair cell kinocilia are also unusual in being arrowhead-shaped.Kinocilial orientation of the non-apical papillary hair cells is simply bidirectional; the hair cells on each side of the papillary axial midline are oriented toward the midline. Kinocilial orientation of the hair cells of the apical expansion is more complex with the peripheral neural and abneural rows both being abneurally directed, and the central rows being at first neural in orientation, but becoming abneurally oriented as the apical tip is approached. At the apical tip region, most all hair cells are abneurally oriented.I would like to thank Ms Maria Maglio for her skill in handling the technical aspects of the electron microscope, Mr. David Akers for expert photographic assistance, and Ms. Michiko Kasahara for aid in all aspects of the work. Research sponsored by United States Public Health Service Grant NS-09231.  相似文献   

11.
MORPHOLOGICAL AND FUNCTIONAL ASPECTS OF AN INSECT EPIDERMAL GLAND   总被引:2,自引:2,他引:0       下载免费PDF全文
The sternal gland of primitive termites of the genus Zootermopsis (Z. nevadensis or Z. angusticollus) (Hagen) seems more organized than that of higher termites, in being comprised of three cell layers. It is also studded with about 200 campaniform sensilla. Below the meshwork cuticle of the gland lies a layer of columnar epithelial cells whose apical surfaces form a brush border, and whose basal surfaces are sculptured into a basketwork into which the second layer fits. Below the brush border are small microtubule-associated pits and coated vesicles. No channels can be seen either within or, except for the sensilla, between the cells. The second cell layer probably secretes the trail-following pheromone. Numerous electron-lucent droplets and large channels containing lipid micelles are found in the cytoplasm here, but the channels cannot be traced out of the secretory layer. The third layer consists of large pyriform cells. The campaniform sensilla are composed of three cells: the sensory cell proper whose dendrite carries a modified 9 + 0 sensory process, an accessory supporting cell that secretes an electron-opaque sheath, and an enveloping cell. At the cell borders of the sensillum, regions of septate and tight junction appear. There are also septate junctions between columnar cells and possibly tight junctions between columnar and secretory cells that would open an intracellular and molecular pathway to the endocuticle. The campaniform sensilla may be part of a feedback control system that determines the amount of pheromone deposited during trail laying.  相似文献   

12.
Histiostoma feroniarum, like other histiostomatid mites, possesses peculiar ring organs that are visible under the light microscope as ventrally located, characteristic rings of sclerotized cuticle. The ring organ is composed of three elements: a disc of modified cuticle, ring organ cells located underneath the disc, and an "empty" chamber frequently visible between the cuticular disc and the cells. The cuticle of the disc is not perforated and differs from the surrounding unmodified cuticle as revealed by special staining developed for light microscopy and by electron microscopy. The ring organ cells show a polarity, with a practically smooth apical surface and an extremely folded basal membrane. The basal invaginations reach the apical cell portion, where they form tubular canaliculi distributed beneath the apical cell membrane. The cytoplasm contains many mitochondria, which are usually in contact with the cell membrane invaginations. Structurally, the ring organ cells closely resemble the transport cells described in osmoregulatory organs both in water-inhabiting and terrestrial arthropods. Thus, our results support earlier suggestions of an osmoregulatory function performed by sclerotized rings (=ring organs), as an adaptation to aqueous environments. A possible homology with similar organs of other mites is discussed.  相似文献   

13.
The ultrastructural features of the principal cell in the epididymal epithelium of the monkey epididymis are suggestive of the cell carrying out a dual function of absorption and secretion. Both these functions occur on the luminal surface of the cell as well as on the lateral and basal aspects of the cell which face the intercellular spaces. Transmision Electron Microscopic studies of epididymal tissues following their impregnation with lanthanum nitrate indicated that the intercellular spaces are effectively sealed-off from the luminal space by the apically situated tight junctions between adjoining principal cells. The intercellular spaces are contiguous with the perivascular spaces of the subepithelial blood capillaries. It is suggested that the absorptive and secretory functions occuring on the apical surface of cells may be related to the creation of an appropriate intraluminal milieu for the maturation of spermatozoa while the occurrence of these functions in the intercellular spaces may represent an exchange of substances between the principal cells and the subepithelial capillaries.  相似文献   

14.
The ultrastructure of the sheath, cuticle and hypodermis of the microfilaria of Cardianema sp, is described from electron micrographs of in utero- and blood-stages. The trilaminiar sheath invests the microfilaria throughout development in utero and it acquires a superficial coat after the microfilaria enters the blood stream of its reptile host. The cuticle consists of external and internal cortex, fibrillar and subfibrillar layers. The cuticle is attached to the hypodermis without the intervention of a basal lamina. The structure of the external cortex is modified in the annular furrows in the cuticle. The cellular hypodermis forms a complete subcuticular layer, although over much of the circumference the cells exist as thin cytoplasmic processes and where these overlap there are extensive tight junctions. The case for classifying the microfilaria of Cardianema a first stage larva is advanced and a functional but speculative, role for the sheath is proposed.  相似文献   

15.
Locke M 《Tissue & cell》1985,17(6):901-921
Epidermal cells in Calpodes and other insects form basal processes or feet that at first extend axially and later shorten at the same time as the larval segment shortens to the pupal shape. The feet grow into spaces at the surfaces of other cells to make a basal interlacing meshwork of cellular extensions that are combined mechanically by their desmosomal attachments to cell bodies above and to the basal lamina below. Microtubules and microfilaments are linked to these junctions by a reticular fibrous matrix. Gap junctions on the feet may couple cells that are several cell bodies removed from one another. The meshwork is also a sieve separating the hemolymph from the spaces between cells to form an intercellular compartment. Entry to the intercellular compartment is through the sieve made by the negatively charged basolateral cell surfaces that can prevent the entry of positively charged molecules such as cationic ferritin. As the cells become columnar, coincident with the metamorphic change in segment shape, the feet shorten and pack more densely together. At this time the basal lamina buckles axially as if responding to contraction of the feet. Segment shape change involves cell rearrangement and relative cell movement, necessitating the transient loss of plasma membrane plaque attachments to the cuticle apically and the loss of junctions laterally. Gap junctions involute in characteristic vacuoles. The metamorphic reduction in cell surface area coincides with the loss of basolateral membrane in smooth tubes and vesicles and the turnover of the apical surface in multivesicular bodies. New apical plasma membrane plaques and new lateral and basal junctions stabilize the cells in their pupal positions.  相似文献   

16.
Smith DS 《Tissue & cell》1969,1(3):443-484
The dipteran haltere incorporates large numbers of regularly disposed mechanoreceptors providing the sensory input enabling the vibrating haltere to function as a gyroscopic organ of equilibrium. Campaniform sensilla of the basal and scapal regions have been investigated by light and transmission electron microscopy, and these observations are augmented by scanning electron studies of the cuticle overlying the groups of sensilla. Each sensillum possesses a specialized fan-shaped terminal containing a complex and ordered association of microtubules and filaments. The transmission of stress to this region via the cuticle, and its possible role in transduction is considered. The fine structure of apical and basal sections of the distal sensory process and associated sheath cells is described; the functional significance of the distribution of mitochondria and other components is discussed. The organization of haltere chordotonal sensilla is described briefly, and compared with other mechanoreceptors with particular reference to microtubules and scolopale structures.  相似文献   

17.
The hindgut of the semi-terrestrial tardigrade, Milnesium tardigradum was examined with light and electron microscopy. The hindgut consists of a cloaca and an anterior hindgut. It is delineated anteriorly by the pylorus into which four Malpighian tubules empty and posteriorly, by a broad cloacal slit. A single oviduct enters the hindgut at the junction between the cloaca and the anterior hindgut. Two pairs of muscles insert on the cloaca and anterior hindgut respectively. Electron microscopic observations demonstrate that the anterior hindgut is a specialized transporting epithelium. The luminal surface is covered by a thin layer of cuticle which penetrates into channel-like invaginations. Numerous mitochondria are concentrated apically. The basal and lateral surfaces are also folded. The cells are joined apically by deep tight junctions and a simple basal lamina lines the entire hindgut. The cloaca which receives the contents of the gut and Malpighian tubules as well as gametes of the reproductive tract is a transitional organ that exhibits several characteristics of the hypodermis and anterior hindgut. The cuticle of the cloaca changes sequentially from the complex structure of the integument to a simple layer of the anterior hindgut. The function of the hindgut is discussed with emphasis on the possible response of the anterior hindgut to a hypoosmotic habitat, evaporative water loss during the induction of anhydrobiosis and low oxygen tension.  相似文献   

18.
Ciliated cells in the rostral epidermis of amphioxus have been serial sectioned and examined in the electron microscope. The cells have a basal axonic process, which can be traced to the subcutaneous nepve-bundles, and hence these cells are primary sensory cells. Apically only the cilium, which takes its origin from an invagination, and a surrounding corolla of microvilli are exposed to the surface. Cross-striated filament bundles closely associate with a basal body and accessory centriole. One such bundle continues into the central part of the cell, while another bundle is attached at the lateral membrane. Between adjoining cells there are apical zonulae adhaerentes, and also poorly developed septate junctions. In addition, a third cell junction is described. Rod-like structures in the surface interdigitations are shown to be continuous with a peripheral layer of microfilaments. The choanocyte-like appearance of the ciliated cells and their resemblance to similar cells in various invertebrates are discussed.  相似文献   

19.
The papillae basilares of 12 species of lizards from seven different families were studied by SEM. The iguanids, Sceloporus magister and S. occidentalis, have typical “iguanid type” papillae with central short-ciliated unidirectional hair cell segments and apical and basal long-ciliated bidirectional hair cell segments. These species of Sceloporus are unique among iguanids in that the bidirectional segments consist of but two rows of hair cells. The agamids, Agama agama and Calotes nigrolabius, have an “agamid-anguid type” papilla consisting of an apical short-ciliated unidirectional hair cell segment and a longer basal bidirectional segment. Agama agama is unusual in having a few long-ciliated hair cells at the apical end of the apical short-ciliated segment. The agamid, Uromastix sp., has an “iguanid type” papilla with a central short-ciliated unidirectional segment and apical and basal bidirectional segments. The anguid, Ophisaurus ventralis, has an “iguanid” papillar pattern with the short-ciliated segment centrally located. All the short-ciliated hair cells of the above species are covered by a limbus-attached tectorial network or cap and the long-ciliated hair cells, only by loose tectorial strands. The lacertids, Lacerta viridis and L. galloti, have papillae divided into two separate segments. The shorter apical segment consists of opposingly oriented, widely separated short-ciliated cells covered by a heavy tectorial membrane. The apical portion of the longer basal segment consists of unidirectionally oriented hair cells, while the greater part of the segment has opposingly oriented hair cells. The xantusiids, Xantusia vigilis and X. henshawi, have papillae made up of separate small apical segments and elongated basal segments. The apical hair cells are largely, but not exclusively, unidirectional and are covered by a heavy tectorial cap. The basal strip is bidirectional and the hair cells are covered by sallets. The kinocilial heads are arrowhead-shaped. The papilla of the cordylid, Cordylus jonesii, is very similar to that of Xantusia except that the apical segment is not completely separated from the basal strip. The papilla of the Varanus bengalensis is divided into a shorter apical and a longer basal segment. The hair cells of the entire apical and the basal three quarters of the basal segment are opposingly oriented, not with reference to the midpapillary axis but randomly to either the neural or abneural direction. The apical quarter of the basal segment contains unidirectional, abneurally oriented hair cells. The entire papilla is covered by a dense tectorial membrane. The functional correlations of the above structural variables are discussed.  相似文献   

20.
Genetic and embryological experiments have established the Caenorhabditis elegans adult hermaphrodite gonad as a paradigm for studying the control of germline development and the role of soma-germline interactions. We describe ultrastructural features relating to essential germline events and the soma-germline interactions upon which they depend, as revealed by electron and fluorescence microscopy. Gap junctions were observed between oocytes and proximal gonadal sheath cells that contract to ovulate the oocyte. These gap junctions must be evanescent since individual oocytes lose contact with sheath cells when they are ovulated. In addition, proximal sheath cells are coupled to each other by gap junctions. Within proximal sheath cells, actin/myosin bundles are anchored to the plasma membrane at plaque-like structures we have termed hemi-adherens junctions, which in turn are closely associated with the gonadal basal lamina. Gap junctions and hemi-adherens junctions are likely to function in the coordinated series of contractions required to ovulate the mature oocyte. Proximal sheath cells are fenestrated with multiple small pores forming conduits from the gonadal basal lamina to the surface of the oocyte, passing through the sheath cell. In most instances where pores occur, extracellular yolk particles penetrate the gonadal basal lamina to directly touch the underlying oocytes. Membrane-bounded yolk granules were generally not found in the sheath cytoplasm by either electron microscopy or fluorescence microscopy. Electron microscopic immunocytochemistry was used to confirm and characterize the appearance of yolk protein in cytoplasmic organelles within the oocyte and in free particles in the pseudocoelom. The primary route of yolk transport apparently proceeds from the intestine into the pseudocoelom, then through sheath pores to the surface of the oocyte, where endocytosis occurs. Scanning electron microscopy was used to directly visualize the distal tip cell which extends tentacle-like processes that directly contact distal germ cells. These distal tip cell processes are likely to play a critical role in promoting germline mitosis. Scanning electron microscopy also revealed thin filopodia extending from the distal sheath cells. Distal sheath filopodia were also visualized using a green fluorescent protein reporter gene fusion and confocal microscopy. Distal sheath filopodia may function to stretch the sheath over the distal arm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号