首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 605 毫秒
1.
Eight extracellular enzymes and their corresponding natural substrates were studied in an acid polyhumic lake. Highest activities were found for phosphatases (100–150 nmol 1−1 h−1), glucosidase (70–120 nmol 1−1 h−1), and aminopeptidases (20–30 nmol l−1 h−1), Significant relationships were found for natural polymeric substrate composition, variation and enzyme activities. Identified carbohydrates and amino acids contributed 1–5% to the DOC pool and are assumed to undergo significant processing by microbial glycosidases and aminopeptidases. Measured enzymes are partially modified in their activity by lake water acidity, temperature and humic matter. Extracellular enzymes are regarded as important regulators in microbial detritus processing and substrate utilization.  相似文献   

2.
Changes in volume of intestinal brush border membrane vesicles of the European eel Anguilla anguilla were measured as vesicles were exposed to media with different osmotic pressures. Preparing the vesicles in media of low osmotic pressure allowed the effects of a small hydrostatic pressure to become a significant factor in the osmotic equilibration. By applying LaPlace's law to relate pressure and volume and assuming a linear relation between membrane tension and area expansion, we estimate an initial membrane tension at 4.02 × 10−5 N cm−1 and an area compressibility elastic modulus at 0.87 × 10−3 N cm−1. The elastic modulus estimate falls in the low range of values reported for membranes from other tissues in other species. This lower modulus quantitatively accounts for why eel intestinal vesicles show measurable changes in volume in hypotonic media while rabbit kidney vesicles do not. Received: 28 January 1999/Revised: 15 June 1999  相似文献   

3.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and γ-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5′-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme “marker” for the renal basal-lateral membrane.  相似文献   

4.
Cholesterol is a prominent modulator of the integrity and functional activity of physiological membranes and the most abundant sterol in the mammalian brain. DHCR24-knock-out mice lack cholesterol and accumulate desmosterol with age. Here we demonstrate that brain cholesterol deficiency in 3-week-old DHCR24−/− mice was associated with altered membrane composition including disrupted detergent-resistant membrane domain (DRM) structure. Furthermore, membrane-related functions differed extensively in the brains of these mice, resulting in lower plasmin activity, decreased β-secretase activity and diminished Aβ generation. Age-dependent accumulation and integration of desmosterol in brain membranes of 16-week-old DHCR24−/− mice led to the formation of desmosterol-containing DRMs and rescued the observed membrane-related functional deficits. Our data provide evidence that an alternate sterol, desmosterol, can facilitate processes that are normally cholesterol-dependent including formation of DRMs from mouse brain extracts, membrane receptor ligand binding and activation, and regulation of membrane protein proteolytic activity. These data indicate that desmosterol can replace cholesterol in membrane-related functions in the DHCR24−/− mouse. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

5.
Chloride/formate exchange, in parallel with Na+/H+ exchange and nonionic diffusion of H2CO2, has been proposed as a mechanism of electroneutral transcellular Cl reabsorption by the proximal tubule. However, the measured brush border H2CO2 permeability of the rat proximal tubule is at least an order of magnitude too low to support sufficient H2CO2 recycling. To investigate the possibility that an unstirred layer within the brush border might depress the measured H2CO2 permeability, we constructed a mathematical model of a villous membrane. Axial fluxes along villous and intervillous spaces were specified by Nernst-Planck diffusion equations. Model parameters were set to achieve agreement with ion and water fluxes measured in the rat proximal tubule. The equations were solved numerically to generate steady-state concentration profiles in the villous and intervillous spaces. An apparent brush border H2CO2 permeability was determined by perturbing luminal [H2CO2] and calculating the change in H2CO2 flux. Overall, the ratio of apparent brush border H2CO2 permeability to cell membrane H2CO2 permeability was greater than 90%. Contributing to the small decrease in apparent permeability are finite diffusion coefficients, folding of the membrane, and acidification of the luminal solution. An approximate analysis of this system shows the critical parameters of brush border formate transport to be the actual membrane H2CO2 permeability, and the diffusion coefficients of HCO 3 and HCO 3 . Nevertheless, decreasing the diffusion coefficients by one order of magnitude failed to depress apparent brush border H2CO2 permeability by more than an additional 25%. We conclude that although permeability is systematically underestimated across a villous membrane, unstirred layer effects in the brush border are still too small to resolve the discrepancy between the measured value of H2CO2 permeability and the value needed to allow recycling.  相似文献   

6.
The mechanical properties of brush border membrane vesicles, BBMV, from rabbit kidney proximal tubule cells, were studied by measuring the initial and final equilibrium volumes of vesicles subjected to different osmotic shocks, using cellobiose as the impermeant solute in the preparation buffer. An elevated intracellular hydrostatic pressure was inferred from osmotic balance requirements in dilute solutions. For vesicles prepared in 18 and 85 mosm solutions, these pressures are close to 17 mosm (290 mm Hg). The corresponding membrane surface tension is 6.0 × 10−5 N cm−1 while the membrane surface area is expanded by at least 2.2%. When these vesicles are exposed to very dilute solutions the internal hydrostatic pressure rises to an estimated 84 mosm (1444 mm Hg) just prior to lysis. The corresponding maximal surface tension (pre-lysis) is 18.7 × 10−5 N cm−1, and the maximal expansion of membrane area is 6.8%. The calculated area compressibility elastic modulus was 2.8 × 10−3 N cm−1. Received: 8 August 1996/Revised: 4 March 1997  相似文献   

7.
The effect of cyclic nucleotides and cholera toxin on the phosphorylation of the brush border membrane proteins of the rat jejunum was studied. Phosphorylation was analyzed by autoradiography of brush border membrane proteins separated by SDS-polyacrylamide gel electrophoresis. Phosphorylation was performed either in vivo by perfusion of the jejunum with [32P]orthophosphate followed by an analysis of the isolated membranes or in vitro by phosphorylation of isolated brush border membranes by [γ-32P]ATP in the presence of saponin. The addition of cholera toxin (10 μg/ml) or dibutyryl-cAMP (5 mmol/l) to the perfusate was unable to produce significant changes in the phosphoprotein pattern. On the other hand, cAMP (at 5 μmol/l) induced an increase of the phosphorylation of a 86 kDa protein when freshly isolated brush border membranes were phosphorylated by [γ-32P]ATP. However, the same effect could also be induced by low concentrations of cGMP (0.1 μmol/l). It is concluded that brush border membranes from rat jejunum do not contain cAMP-dependent protein kinase activity and that cAMP-dependent protein phosphorylation of this membrane does probably not represent the final event of cholera toxin-induced secretion.  相似文献   

8.
The interaction of the 36 amino acid neuropeptide Y (NPY) with liposomes was studied using the intrinsic tyrosine fluorescence of NPY and an NPY fragment comprising amino acids 18–36. The vesicular membranes were composed of phosphatidylcholine and phosphatidylserine at varying mixing ratios. From the experimentally measured binding curves, the standard Gibbs free energy for the peptide transfer from aqueous solution to the lipid membrane was calculated to be around ?30 kJ/mol for membrane mixtures containing physiological amounts of acidic lipids at pH 5. The effective charge of the peptide depends on the pH of the buffer and is about half of its theoretical net charge. The results were confirmed using the fluorescence of the NPY analogue [Trp32]-NPY. Further, the position of NPY’s α-helix in the membrane was estimated from the intrinsic tyrosine fluorescence of NPY, from quenching experiments with spin-labelled phospholipids using [Trp32]-NPY, and from 1H magic-angle spinning NMR relaxation measurements using spin-labelled [Ala31, TOAC32]-NPY. The results suggest that the immersion depth of NPY into the membrane is triggered by the membrane composition. The α-helix of NPY is located in the upper chain region of zwitterionic membranes but its position is shifted to the glycerol region in negatively charged membranes. For membranes composed of phosphatidylcholine and phosphatidylserine, an intermediate position of the α-helix is observed.  相似文献   

9.
L-lactate transport mechanism across rat jejunal enterocyte was investigated using isolated membrane vesicles. In basolateral membrane vesicles l-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP, pCMBS and phloretin, while furosemide is ineffective. The pH gradient effect is strongly temperature dependent. The initial rate of the proton gradient-induced lactate uptake is saturable with respect to external lactate with a K m of 39.2 ± 4.8 mm and a J max of 8.9 ± 0.7 nmoles mg protein−1 sec−1. A very small conductive pathway for l-lactate is present in basolateral membranes. In brush border membrane vesicles both Na+ and H+ gradients exert a small stimulatory effect on lactate uptake. We conclude that rat jejunal basolateral membrane contains a H+-lactate cotransporter, whereas in the apical membrane both H+-lactate and Na+-lactate cotransporters are present, even if they exhibit a low transport rate. Received: 22 October 1996/Revised: 11 March 1997  相似文献   

10.
In adult male rats, fed prednisolone (0.75 mg/kg/day) for 7 days, brush border aminopeptidase activity was increased (P < 0.001) by 106% compared to pair-fed controls. [14C]Tyrosine was injected intraperitoneally 16 h and [3H]tyrosine 6 h before death. The 3H/14C ratio was 1.79 ± 0.21 (S.D.) in purified microvillus membranes from treated rats compared to 1.30 ± 0.16 (P < 0.01) in controls. Polyacrylamide gel electrophoresis of brush border membranes under denaturing conditions showed that the increased double-isotope ratio in membranes from treated rats was mainly in the high molecular weight protein subunits (> 80 kDa) Detergent-solubilized aminopeptidase was purified after in vivo labeling by protein A-Sepharose-antiaminopeptidase affinity chromatography. The 3H/14C ratio in aminopeptidase was 2.42 ± 0.15 (P < 0.05) in treated rats compared to 1.63 ± 0.13 in controls. Over the experimental period steady-state isotope reutilization and protein labeling was demonstrated and there was no isotope metabolism. Total microvillus membrane lipid content was unaffected by prednisolone. We conclude that prednisolone increases brush border aminopeptidase activity by increasing enzyme turnover. Other high molecular weight brush border proteins were similarly affected.  相似文献   

11.
Passive H+/OH permeability across epithelial cell membranes is rapid and leads to partial dissipation of H+/OH gradients produced by H+ pumps and ion gradient-coupled H+/OH transporters. A heterogeneous set of H+/OH transport mechanisms exist in biological membranes: lipid solubility/diffusion, protein-mediated transport by specific proteins or by slippage through ion-coupled H+/OH transporters, and transport at the protein/lipid interface or through protein-dependent defects in the lipid structure. A variety of methods are available to study protein transport mechanisms accurately in cells and biomembrane vesicles including pH electrode recordings, pH-sensitive fluorescent and magnetic resonance probes, and potentiometric probes. In brush border vesicles from the renal proximal tubule, the characteristics of passive H+/OH permeability are quite similar to those reported for passive H+/OH permeability through pure lipid bilayers; slippage of protons through the brush border Na+/H+ antiporter or through brush border water channels is minimal. In contrast, passive H+/OH permeability in brush border vesicles from human placenta is mediated in part by a stilbene-sensitive membrane protein. To demonstrate the physiological significance of passive renal brush border H+/OH transport, proximal tubule acidification and cell pH regulation mechanisms are modeled mathematically for states of normal and altered H+/OH permeabilities.  相似文献   

12.
Abstract

Free fatty acids released during intralumenal digestion of dietary fat must pass through the enterocyte brush border membrane before triacylglycerol reassembly and subsequent chylomicron delivery to the lymph system. In the present work fluorescent BODIPY fatty acid analogs were used to study this membrane passage in organ cultured intestinal mucosal explants. We found that in addition to a rapid uptake into the cytoplasm, a fraction of the fatty acid analogs were inserted directly into the brush border membrane. Furthermore, a brief exposure of microvillar membrane vesicles to a fat mixture mimicking a physiological solution of dietary mixed micelles, rearranged the lipid raft microdomain organization of the membranes. Thus, the fat mixture generated a low-density subpopulation of microvillar detergent resistant membranes (DRMs) highly enriched in alkaline phosphatase (AP). Since this GPI-linked enzyme is the membrane protein in the brush border with the highest affinity for lipid rafts, this implies that free fatty acids selectively insert stably into these membrane microdomains. We have previously shown that absorption of dietary lipids transiently induce a selective endocytosis of AP from the brush border, and from work by others it is known that fat absorption is accompanied by a rise in serum AP and secretion of surfactant-like particles from enterocytes. We propose that these physiological processes may be triggered by the sequestering of dietary free fatty acids in lipid raft microdomains of the brush border.  相似文献   

13.
Membrane proteins of the intestinal brush border were labelled in vivo by intraluminal injection of diazotised [125I]iodosulfanilic acid, a highly polar molecule. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of brush border membranes labelled in this manner showed 20 protein bands, 11 of which contained significant radioactivity. The most heavily labelled proteins had molecular weights greater than 150 000, indicating that they were the most exposed to the intestinal lumen. Little radioactivity was detected in proteins with molecular weights of less than 94 000. The majority of these smaller proteins were likely to have been brush border core proteins. The evidence that diazotised [125I]iodosulfanilic acid bound primarily to brush border membrane proteins when administered in this way, was: (a) the specific activity of brush border proteins was up to 3-fold greater than that of total cell particulate proteins (pelleted at 27 000 × g from mucosal homogenates); (b) principal peaks in the gel radioactivity profile of total cell particulate proteins corresponded to the most heavily labelled proteins of the isolated brush border membrane; and (c) brush border core proteins showed minimal radioactivity in vivo, but considerably higher radioactivity when brush border membranes were labelled in vitro. A small amount of label was absorbed across the intestinal mucosa. However, secondary labelling of brush border proteins by this absorbed label was minimal, since the specific activity of brush border proteins in jejunum adjacent to the labelled loop was only 0.22% of the level for those proteins in the labelled segment. Since this technique did not affect the cellular morphology, enzyme activity or biochemical integrity of the membrane, it should prove useful as a means of accurately studying in vivo turnover rates of brush border membrane proteins.  相似文献   

14.
In order to study the effect of the antibiotic neomycin on the intestinal epithelium, d-glucose was used as a probe molecule and its transport into rabbit brush border membrane vesicles was measured by a rapid filtration method. Treatment of the epithelium with neomycin sulfate prior to the preparation of the brush border membrane enhanced the d-glucose uptake, whereas neutral N-acetylated neomycin did not. This action of neomycin was related to its polycationic character and not to its bactericidal action. No significant difference could be demonstrated between the protein content or disaccharidase-specific activities of the brush border fractions from treated or non-treated intestines. Electrophoretic protein patterns of SDS-solubilized membrane were not significantly different after neomycin treatment. To gain more information on the mechanism involved in the stimulation of d-glucose transport, experiments were conducted on phosphatidyl glycerol artificial membranes and the results compared with those obtained with brush border membrane. At a concentration of 10?7 M, neomycin decreased the nonactin-induced K+ conductance by a factor of approx. 100. The membrane conductance was linearly dependent on the neomycin concentration and the conductance in 10?2 M KCl was 10 times that in 10?3 M KCl. The valence of neomycin was estimated, from the slope of these curves, to be between 6 and 4. In contrast, acetylated neomycin had no effect on the nonactin-induced K+ membrane conductance. Therefore, the effect of neomycin on artificial membrane is related to its 4 to 6 positive charges. It is proposed that the stimulation of sugar transport in brush border membrane is related to screening of the membrane negative charges by the positively-charged neomycin. Accumulation of anions at the membrane surface then occurs and their diffusion into the intravesicular space would increase the transmembrane potential which, in turn, stimulates the entry of d-glucose.  相似文献   

15.
Changes in the conformation of spinach thylakoid membranes were monitored in 5-doxyl stearic acid (SAL)-treated thylakoid membranes in the presence of various anions (Cl, Br, I, NO2 , SO4 2−, PO4 3−). The presence of anions made the thylakoid membrane more fluid. The extent of change in membrane fluidity differed with different anion and was reversible.  相似文献   

16.
We have previously partially purified the basolateral Na+/HCO 3 cotransporter from rabbit renal cortex and this resulted in a 400-fold purification, and an SDS-PAGE analysis showed an enhancement of a protein band with a MW of approximately 56 kDa. We developed polyclonal antibodies against the Na+/HCO 3 cotransporter by immunizing Dutch-belted rabbits with a partially purified protein fraction enriched in cotransporter activity. Western blot analysis of renal cortical basolateral membranes and of solubilized basolateral membrane proteins showed that the antibodies recognized a protein with a MW of approximately 56 kDa. The specificity of the purified antibodies against the Na+/HCO 3 cotransporter was tested by immunoprecipitation. Solubilized basolateral membrane proteins enriched in Na+/HCO 3 cotransporter activity were incubated with the purified antibody or with the preimmune IgG and then reconstituted in proteoliposomes. The purified antibody fraction caused a concentration-dependent inhibition of the Na+/HCO 3 cotransporter activity, while the preimmune IgG failed to elicit any change. The inhibitory effect of the antibody was of the same magnitude whether it was added prior to (inside) or after (outside) reconstitution in proteoliposomes. In the presence of the substrates (NaHCO3 or Na2CO3) for the cotransporter, the inhibitory effect of the antibody on cotransporter activity was significantly blunted as compared with the inhibition observed in the absence of substrates. Western blot analysis of rabbit kidneys showed that the antibodies recognized strongly a 56 kDa protein band in microsomes of the inner stripe of outer medulla and inner medulla, but not in the outer stripe of outer medulla. A 56 kDa protein band was recognized in microsomes of the stomach, liver, esophagus, and small intestine but was not detected in red blood cell membranes. Localization of the Na+/HCO 3 cotransporter protein by immunogold technique revealed specific labeling of the cotransporter on the basolateral membranes of the proximal tubules, but not in the brush border membranes. These results demonstrate that the polyclonal antibodies against the 56 kDa basolateral protein inhibit the activity of the Na+/HCO 3 cotransporter suggesting that the 56 kDa protein represents the cotransporter or a component thereof. These antibodies interact at or near the substrate binding sites. The Na+/HCO cotransporter protein is expressed in different regions of the kidneys and in other tissues. Received: 27 January 1996/Revised: 23 July 1996  相似文献   

17.
Summary Large differences in lipid composition of apical and basolateral membranes from epithelial cells exist. To determine the responsible mechanism(s), rat renal cortical brush border and basolateral membrane phospholipids were labeled using32P and either [3H]-glycerol or [2-3H] acetate for incorporation and degradation studies, respectively. Brush border and basolateral membrane fractions were isolated simultaneously from the same cortical homogenate. Different phospholipid classes were degraded at variable rates with phosphatidylcholine having the fastest decay rate. Decay rates for individual phospholipid classes were, however, similar in both brush border and basolateral membrane fractions. In phospholipid incorporation studies again, large variations existed between individual phospholipid classes with phosphatidylcholine and phosphatidylinositol showing the most rapid rates of incorporation. Sphingomyelin and phosphatidylserine showed extremely slow incorporation rates and did not enter into the isotopic decay phase for 48 hr. In contrast to degradation studies, however, the same phospholipid class labeled the two surface membrane domains at highly variable rates. The difference in these rates, with the exception of phosphatidylinositol, were identical to the differences in phospholipid compositions between the two membranes. For example, phosphatidylcholine was incorporated into the basolateral membrane 2.5 × faster than into the brush border membrane and its relative composition was 2.5 × greater in the basolateral membrane. The opposite was true for sphingomyelin. These results indicate incorporation and not degradation rates of individual phospholipids play a major role in regulating the differing phospholipid composition of brush border and basolateral membranes.  相似文献   

18.
Summary The aim of this study was to provide further evidence for the existence of a nonmitochondrial bicarbonate-stimulated Mg2+-ATPase in brush border membranes derived from rat kidney cortex. A plasma membrane fraction rich in brush border microvilli and a mitochondrial fraction were isolated by differential centrifugation. Both fractions contain a Mg2+-ATPase activity which can be stimulated by bicarbonate. The two Mg2+-ATPases are stimulated likewise by chloride, bicarbonate, and sulfite or inhibited by oligomycin and aurovertin, though to different degrees. In contrast to these similarities, only the Mg2+-ATPase activity of the mitochondrial fraction is inhibited by atractyloside, a substance which blocks an adenine nucleotide translocator in the inner mitochondrial membrane. On the other hand, filipin, an antibiotic that complexes with cholesterol in the membranes inhibits exclusively the Mg2+-ATPase of the cholesterol-rich brush border membranes. Furthermore it could be demonstrated by the use of bromotetramisole, an inhibitor of alkaline phosphatase activity, that the Mg2+-ATPase activity in the membrane fraction is not due to the presence of the highly active alkaline phosphatase in these membranes. These results support the assumption that an intrinsic bicarbonate-stimulated Mg2+-ATPase is present in rat kidney brush border membranes.  相似文献   

19.
We examined the effects of seven n-alkyl alcohols (from n-butyl to n-undecyl alcohol), isoamyl alcohol and benzyl alcohol on the activity of membrane enzyme Mg2+-ATPase of the rabbit small intestinal brush border membrane. Their relationships with the changes in the fluidity of the membrane lipid bilayer were examined through studies on the fluorescence anisotropies of diphenylhexatriene (DPH) and its ionic derivatives. Good linear correlations were found both between the partition coefficients of the alcohols and their concentrations causing similar decreases in the activity of Mg2+-ATPase and between their partition coefficients and the alcohol-induced changes in fluorescence anisotropies. Within the concentration range of the alcohols tested, including isoamyl alcohol and benzyl alcohol, the decreases in activity of the membrane enzyme Mg2+-ATPase clearly corresponded with the decreases in fluorescence anisotropy of DPH, which is thought to be located within the hydrophobic core of the membrane. From these findings, one possible explanation is that inhibition of this enzyme by the alcohols is due to perturbation of the lipid bilayer of the brush border membrane.The authors thank M. Takano, PhD and Y. Tomita, PhD, Department of Pharmacy, University Hospital of Kyoto University, for instruction in preparation of the brush border membrane vesicles. This work was supported in part by grants from the Japanese Ministry of Education, Science and Culture (05671795 and 06304044) and Takeda Science Foundation.  相似文献   

20.
Summary The kidney plays a major role in the handling of circulating insulin in the blood, primarily via reuptake of filtered insulin at the luminal brush border membrane.125I-insulin associated with rat renal brush border membrane vesicles (BBV) in a time-and temperature-dependent manner accompanied by degradation of the hormone to trichloroacetic acid (TCA)-soluble fragments. Both association and degradation of125I-insulin were linearly proportional to membrane protein concentration with virtually all of the degradative activity being membrane assoicated. Insulin, proinsulin and desoctapeptide insulin all inhibited the association and degradation of125I-insulin by BBV, but these processes were not appreciably afected by the insulin-like growth factors IGF-I and IGF-II or by cytochromec and lysozyme, low molecular weight, filterable, proteins, which are known to be reabsorbed in the renal tubules by luminal endocytosis. When the interaction of125I-insulin with BBV was studied at various medium osmolarities (300–1100 mosm) to alter intravesicular space, association of the ligand with the vesicles was unaffected, but degradation of the ligand by the vesicles decreased progressively with increasing medium osmolarity. Therefore, association of125I-insulin to BBV represented binding of the ligand to the membrane surface and not uptake of the hormone or its degradation products into the vesicles. Attempts to crosslink125I-insulin to a high-affinity insulin receptor using the bifunctional reagent disuccinimidyl suberate revealed only trace amounts of an125I-insulin-receptor complex in brush border membrane vesicles in contrast to intact renal tubules where this complex was readily observed. Both binding and degradation of125I-insulin by brush border membranes did not reach saturation even at concentrations of insulin approaching 10–5 m. These results indicate the presence of low-affinity, high-capacity binding sites for125I-insulin on renal brush border membranes which can clearly distinguish insulin from the insulin-like growth factors and other low molecular weight proteins and polypeptides, but which do not differentiate insulin from its analogues ad do the biological receptors for the hormone. The properties and location of these binding sites make them attractive candidates for the sites at which insulin is reabsorbed in the renal tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号