首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A protein kinase from wheat germ that phosphorylates the largest subunit of RNA polymerase IIA has been partially purified and characterized. The kinase has a native molecular weight of about 200 kilodaltons. This kinase utilizes Mg2+ and ATP and transfers about 20 phosphates to the heptapeptide repeats Pro-Thr-Ser-Pro-Ser-Tyr-Ser in the carboxyl-terminal domain of the 220-kilodalton subunit of soybean RNA polymerase II. This phosphorylation results in a mobility shift of the 220-kilodalton subunits of a variety of eukaryotic RNA polymerases to polypeptides ranging in size from greater than 220 kilodaltons to 240 kilodaltons on sodium dodecyl sulfate-polyacrylamide gels. The phosphorylation is highly specific to the heptapeptide repeats since a degraded subunit polypeptide of 180 kilodaltons that lacks the heptapeptide repeats is poorly phosphorylated. Synthetic heptapeptide repeat multimers inhibit the phosphorylation of the 220-kilodalton subunit.  相似文献   

3.
4.
RPA190, the gene coding for the largest subunit of yeast RNA polymerase A   总被引:33,自引:0,他引:33  
Yeast RNA polymerases are being extensively studied at the gene level. The entire gene encoding the largest subunit of RNA polymerase A, A190, was isolated and characterized in detail. Southern hybridization and gene disruption experiments showed that the RPA190 gene is unique in the haploid yeast genome and essential for cell viability. Nuclease S1 mapping was used to identify mRNA 5' and 3' termini. RPA190 encodes a polypeptide chain of 186,270 daltons in a large uninterrupted reading frame. A dot matrix comparison of the deduced amino acid sequence of subunit A190 with Escherichia coli beta' and cognate subunits B220 and C160 from yeast RNA polymerases B and C showed a conserved pattern of homology regions (I-VI). A potential DNA-binding site (zinc-binding motif) is conserved in the N-terminal region I. Remarkably, the A190 subunit does not harbor the heptapeptide repeated sequence present in the B220 subunit. The sequence of the A190 subunit diverges from B220 and C160 by the presence of two hydrophilic domains inserted between homology regions I and II, and V and VI. From their codon usage and third base pyrimidine bias, RNA polymerase genes RPA190, RPB220, RPC160, and RPC40 fall among yeast genes expressed at an average level. The RPA190 5'-flanking region contains features present in other polymerase genes that might function in regulation.  相似文献   

5.
6.
cDNAs encoding the largest subunit of RNA polymerase II were isolated from a Dictyostelium cDNA library. A total of 2.9 kilobases (kb) of cDNA was sequenced and the amino acid sequence of the carboxyl-terminal half of the protein was deduced. Similar to other eukaryotic RNA polymerases II, the largest subunit of Dictyostelium RNA polymerase II contains a unique repetitive tail domain at its carboxyl-terminal region. It consists of 24 highly conserved heptapeptide repeats, with a consensus sequence of Tyr-Ser-Pro-Thr-Ser-Pro-Ser. In addition to the tail domain, five segments of the deduced primary structure show > 50% sequence identity with either yeast or mouse protein. RNA blots show that cDNA probes hybridized with a single mRNA species of approximately 6 kb and immunoblots using a monoclonal antibody raised against the tail domain lighted up a single protein band of 200 kilodaltons. Interestingly, expression of the largest subunit of RNA polymerase II appears to be under developmental regulation. The accumulation of its mRNA showed a 60% increase during the first 3 h of development, followed by a steady decrease during the next 6 h. Cells began to accumulate a higher level of the RNA polymerase II mRNA after 9 h of development. When cells were treated with low concentrations of cAMP pulses to stimulate the developmental process, the pattern of mRNA accumulation moved 3 h ahead, but otherwise remained similar to that of control cells.  相似文献   

7.
The gene, rpb1, encoding the largest subunit of RNA polymerase II has been cloned from Schizosaccharomyces pombe using the corresponding gene, RPB1, of Saccharomyces cerevisiae as a cross-hybridization probe. We have determined the complete sequence of this gene, and parts of PCR-amplified rpb1 cDNA. The predicted coding sequence, interrupted by six introns, encodes a polypeptide of 1,752 amino acid residues in length with a molecular weight of 194 kilodaltons. This polypeptide contains eight conserved structural domains characteristic of the largest subunit of RNA polymerases from other eukaryotes and, in addition, 29 repetitions of the C-terminal heptapeptide found in all the eukaryotic RNA polymerase II largest subunits so far examined.  相似文献   

8.
Cracking the RNA polymerase II CTD code   总被引:3,自引:0,他引:3  
  相似文献   

9.
A comparative overview of the subunit taxonomy and sequences of eukaryotic and prokaryotic RNA polymerases indicates the presence of a core structure conserved between both sets of enzymes. The differentiation between prokaryotic and eukaryotic polymerases is ascribed to domains and subunits peripheral to the largely conserved central structure. Possible subunit and domain functions are outlined. The core's flexible shape is largely determined by the elongated architecture of the two largest subunits, which can be oriented along the DNA axis with their bulkier amino-terminal head regions looking towards the 3' end of the gene to be transcribed and their more slender carboxyl-terminal domains at the tail end of the enzyme. The two largest prokaryotic subunits appear originally derived from a single gene.  相似文献   

10.
11.
12.
13.
We have set out to clone the trypanosomal gene encoding the largest subunit of RNA polymerase I. We screened a genomic library with a synthetic oligonucleotide probe encoding an eleven amino acid sequence motif, YNADFDGDEMN, which has been found in all eukaryotic RNA polymerase largest subunit genes analyzed so far. We isolated the Trp11 locus and determined the complete sequence of the gene encoded within this locus. The deduced amino acid sequence contains the highly conserved RNA polymerase domains as well as the previously identified RNA polymerase I-specific hydrophilic insertions. Therefore, the gene most closely resembles the largest subunit of RNA polymerase I.  相似文献   

14.
Active eukaryotic RNA polymerase II (RNAP II) was purified by immunoaffinity chromatography, using a monoclonal antibody (mAb) that reacts with the highly conserved heptapeptide repeat of the largest subunit. This mAb (designated SWG16) was conjugated to CNBr-activated Sepharose and used to purify RNAP II from wheat germ and calf thymus. The subunit composition of the immunoaffinity-purified enzyme was essentially the same as RNAP II purified by conventional chromatography except that it contained only the form with the unproteolyzed largest subunit. Active enzyme could be eluted from the SWG16-Sepharose, at pH 7.9, with combinations of low molecular weight polyols and nonchaotropic salts. The superior eluting procedure used combinations of ethylene glycol (30-40%) and ammonium sulfate (0.5-0.75 M). Active enzyme also could be eluted with a synthetic peptide containing four repeats of the heptapeptide; however, the peptide was not as effective as the polyol and salt combinations for eluting the enzyme. This mAb should be useful for purifying RNAP II from many eukaryotic species. Because the elution of enzyme from the immunoadsorbent seems to be dependent upon the presence of a polyol, this antibody is referred to as a "polyol-responsive mAb." A procedure that helps to identify a polyol-responsive mAb and to optimize the eluting conditions is described. Polyol-responsive mAbs might have broad applicability to the purification of many labile enzymes by immunoaffinity chromatography.  相似文献   

15.
16.
17.
18.
To improve our understanding of the structure and function of eukaryotic RNA polymerase II, we purified the enzyme from the fission yeast Schizosaccharomyces pombe. The highly purified RNA polymerase II contained more than eleven polypeptides. The sizes of the largest the second-, and the third-largest polypeptides as measured by SDS-polyacrylamide gel electrophoresis were about 210, 150, and 40 kilodaltons (kDa), respectively, and are similar to those of RPB1, 2, and 3 subunits of Saccharomyces cerevisiae RNA polymerase II. Using the degenerated primers designed after amino acid micro-sequencing of the 40 kDa third-largest polypeptide (subunit 3), we cloned the subunit 3 gene (rpb3) and determined its DNA sequence. Taken together with the sequence of parts of PCR-amplified cDNA, the predicted coding sequence of rpb3, interrupted by two introns, was found to encode a polypeptide of 297 amino acid residues in length with a molecular weight of 34 kDa. The S. pombe subunit 3 contains four structural domains conserved for the alpha-subunit family of RNA polymerase from both eukaryotes and prokaryotes. A putative leucine zipper motif was found to exist in the C-terminal proximal conserved region (domain D). Possible functions of the conserved domains are discussed.  相似文献   

19.
We have cloned and sequenced the gene encoding the largest subunit of RNA polymerase II (RPB1) from Arabidopsis thaliana and partially sequenced genes from soybean (Glycine max). We have also determined the nucleotide sequence for a number of cDNA clones which encode the carboxyl terminal domains (CTDs) of RNA polymerase II from both soybean and Arabidopsis. The Arabidopsis RPB1 gene encodes a polypeptide of approximately 205 kDa, consists of 12 exons, and encompasses more than 8 kb. Predicted amino acid sequence shows eight regions of similarity with the largest subunit of other prokaryotic and eukaryotic RNA polymerases, as well as a highly conserved CTD unique to RNA polymerase II.The CTDs in plants, like those in most other eukaryotes, consist of tandem heptapeptide repeats with the consensus amino acid sequence PTSPSYS. The portion of RPB1 which encodes the CTD in plants differs from that of RPB1 of animals and lower eukaryotes. All the plant genes examined contain 2–3 introns within the CTD encoding regions, and at least two plant genes contain an alternatively spliced intron in the 3 untranslated region. Several clustered amino acid substitutions in the CTD are conserved in the two plant species examined, but are not found in other eukaryotes. RPB1 is encoded by a multigene family in soybean, but a single gene encodes this subunit in Arabidopsis and most other eukaryotes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号