首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
Because thrombin has been implicated in sepsis, it has been proposed that antithrombin III (AT III) is beneficial due to its anticoagulatory and antiadhesive effects. Using intravital microscopy, we visualized leukocyte-endothelium interactions in postcapillary venules of the feline mesentery exposed to lipopolysaccharide (LPS). At a concentration of AT III that blocks leukocyte adhesion in postischemic mesentery, we found no role for thrombin in LPS-induced rolling, adhesion and emigration, or microvascular dysfunction. Furthermore, AT III did not attenuate leukocyte-endothelial interactions after tumor necrosis factor-alpha superfusion of the mesentery. In contrast, fucoidan, a selectin inhibitor, prevented almost all LPS-induced rolling and reduced adhesion, emigration, and microvascular dysfunction. In a model of endotoxemia, leukocyte recruitment into mesentery or lungs was unaffected by AT III. Finally, in a human cell system that mimics the flow conditions in vivo, human neutrophils rolled, adhered, and emigrated similar to the feline postcapillary microvessels, and AT III had no effect on leukocyte recruitment induced by LPS. If AT III has beneficial effects in endotoxemia, it is not due to a direct effect upon leukocyte rolling, adhesion, or emigration in postcapillary venules in vivo.  相似文献   

2.
Resting membrane potential (RMP) and whole cell currents wererecorded in human THP-1 monocytes adherent to polystyrene, unstimulated human umbilical vein endothelial cells (HUVECs),lipopolysaccharide (LPS)-treated HUVECs, immobilizedE-selectin, or vascular cell adhesion molecule 1 (VCAM-1)using the patch-clamp technique. RMP after 5 h on polystyrene was24.3 ± 1.7 mV (n = 42) with delayed rectifier K+(Idr) andCl currents(ICl) presentin >75% of the cells. Inwardly rectifying K+ currents(Iir) werepresent in only 14% of THP-1 cells. Adherence to unstimulated HUVECsor E-selectin for 5 h had no effect on Iir orICl but decreasedIdr. Five hoursafter adherence to LPS-treated HUVECs, outward currents were unchanged,but Iir waspresent in 81% of THP-1 cells. A twofold increase inIir and ahyperpolarization (41.3 ± 3.7 mV,n = 16) were abolished by pretreatmentof THP-1 cells with cycloheximide, a protein synthesis inhibitor, orherbimycin A, a tyrosine kinase inhibitor, or by pretreatment of theLPS-treated HUVECs with anti-VCAM-1. Only a brief (15-min) interactionbetween THP-1 cells and LPS-treated HUVECs was required toinduce Iir expression 5 h later. THP-1 cells adherent to VCAM-1 exhibited similarconductances to cells adherent to LPS-treated HUVECs. Thus engagementof specific integrins results in selective modulation of differentK+ conductances.

  相似文献   

3.
Terada, Lance S., Brooks M. Hybertson, Kevin G. Connelly,David Weill, Dale Piermattei, and John E. Repine. XO increases neutrophil adherence to endothelial cells by a dual ICAM-1 and P-selectin-mediated mechanism. J. Appl.Physiol. 82(3): 866-873, 1997.Circulatingxanthine oxidase (XO) can modify adhesive interactions betweenneutrophils and the vascular endothelium, although the mechanismsunderlying this effect are not clear. We found that treatment with XOof bovine pulmonary artery endothelial cells (EC), but not neutrophilsor plasma, increased adherence, suggesting that XO had its primaryeffect on EC. The mechanism by which XO increased neutrophil adherenceto EC involved binding of XO to EC and production ofH2O2.XO also increased platelet-activating factor production by EC by aH2O2-dependentmechanism. Similarly, the platelet-activating factor-receptorantagonist WEB-2086 completely blocked XO-mediated neutrophil ECadherence. In addition, neutrophil adherence was dependent on the2-integrin Mac-1 (CD11b/CD18) but not on leukocyte functional antigen-1 (CD11a/CD18). Treatment of ECwith XO for 30 min did not alter intercellular adhesion molecule-1surface expression but increased expression of P-selectin and releaseof von Willibrand factor. Antibodies against P-selectin (CD62) did notaffect XO-mediated neutrophil adherence under static conditions butdecreased both rolling and firm adhesive interactions under conditionsof shear. We conclude that extracellular XO associates with theendothelium and promotes neutrophil-endothelial cell interactionsthrough dual intercellular adhesion molecule-1 and P-selectin ligation,by a mechanism that involves platelet-activating factor andH2O2as intermediates.

  相似文献   

4.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

5.
Isolated rat heart perfused with 1.5-7.5µM NO solutions or bradykinin, which activates endothelial NOsynthase, showed a dose-dependent decrease in myocardial O2uptake from 3.2 ± 0.3 to 1.6 ± 0.1 (7.5 µM NO, n = 18,P < 0.05) and to 1.2 ± 0.1 µM O2 · min1 · gtissue1 (10 µM bradykinin, n = 10,P < 0.05). Perfused NO concentrations correlated with aninduced release of hydrogen peroxide (H2O2) inthe effluent (r = 0.99, P < 0.01). NO markedlydecreased the O2 uptake of isolated rat heart mitochondria(50% inhibition at 0.4 µM NO, r = 0.99,P < 0.001). Cytochrome spectra in NO-treated submitochondrial particles showed a double inhibition of electron transfer at cytochrome oxidase and between cytochrome b andcytochrome c, which accounts for the effects in O2uptake and H2O2 release. Most NO was bound tomyoglobin; this fact is consistent with NO steady-state concentrationsof 0.1-0.3 µM, which affect mitochondria. In the intact heart,finely adjusted NO concentrations regulate mitochondrial O2uptake and superoxide anion production (reflected byH2O2), which in turn contributes to thephysiological clearance of NO through peroxynitrite formation.

  相似文献   

6.
Bovine adrenalzona fasciculata cells (AZF) express a noninactivatingK+ current(IAC) whoseinhibition by adrenocorticotropic hormone and ANG II may be coupled tomembrane depolarization andCa2+-dependentcortisol secretion. We studiedIACinhibition byCa2+ and theCa2+ionophore ionomycin in whole cell and single-channel patch-clamp recordings of AZF. In whole cell recordings with intracellular (pipette)Ca2+concentration([Ca2+]i)buffered to 0.02 µM,IAC reachedmaximum current density of 25.0 ± 5.1 pA/pF(n = 16); raising[Ca2+]ito 2.0 µM reduced it 76%. In inside-out patches, elevated[Ca2+]idramatically reducedIAC channelactivity. Ionomycin inhibited IAC by 88 ± 4% (n = 14) without altering rapidlyinactivating A-type K+ current.Inhibition of IACby ionomycin was unaltered by adding calmodulin inhibitory peptide tothe pipette or replacing ATP with its nonhydrolyzable analog5'-adenylylimidodiphosphate.IAC inhibition byionomycin was associated with membrane depolarization. When[Ca2+]iwas buffered to 0.02 µM with 2 and 11 mM1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), ionomycin inhibitedIAC by 89.6 ± 3.5 and 25.6 ± 14.6% and depolarized the same AZF by 47 ± 8 and 8 ± 3 mV, respectively (n = 4). ANG II inhibitedIAC significantlymore effectively when pipette BAPTA was reduced from 11 to 2 mM. Raising[Ca2+]iinhibits IACthrough a mechanism not requiring calmodulin or protein kinases,suggesting direct interaction withIAC channels. ANGII may inhibitIAC anddepolarize AZF by activating parallel signaling pathways, one of whichuses Ca2+ asa mediator.

  相似文献   

7.
Parker, James C., and Claire L. Ivey.Isoproterenol attenuates high vascular pressure-inducedpermeability increases in isolated rat lungs. J. Appl.Physiol. 83(6): 1962-1967, 1997.To separate thecontributions of cellular and basement membrane components of thealveolar capillary barrier to the increased microvascular permeabilityinduced by high pulmonary venous pressures (Ppv), we subjected isolatedrat lungs to increases in Ppv, which increased capillary filtrationcoefficient(Kfc) withoutsignificant hemorrhage (31 cmH2O)and with obvious extravasation of red blood cells (43 cmH2O). Isoproterenol (20 µM)was infused in one group (Iso) to identify a reversible cellularcomponent of injury, and residual blood volumes were measured to assessextravasation of red blood cells through ruptured basement membranes.In untreated lungs (High Ppv group),Kfc increased 6.2 ± 1.3 and 38.3 ± 15.2 times baseline during the 31 and 43 cmH2O Ppv states. In Iso lungs, Kfc was 36.2%(P < 0.05) and 64.3% of that in theHigh Ppv group at these Ppv states. Residual blood volumes calculatedfrom tissue hemoglobin contents were significantly increased by53-66% in the high Ppv groups, compared with low vascularpressure controls, but there was no significant difference between HighPpv and Iso groups. Thus isoproterenol significantly attenuatedvascular pressure-induced Kfc increases atmoderate Ppv, possibly because of an endothelial effect, but it did notaffect red cell extravasation at higher vascular pressures.

  相似文献   

8.
Whole cellpatch-clamp techniques were used to investigate amiloride-sensitivesodium conductance (GNa) in the everted initial collecting tubule of Ambystoma. Accessibility to both theapical and basolateral membranes made this preparation ideal forstudying the regulation of sodium transport by insulin.GNa accounted for 20% of total cell conductance(GT) under control conditions. A restingmembrane potential of 75 ± 2 mV (n = 7)together with the fact that GT is stable withtime suggested that the cells studied were viable. Measurements ofcapacitance and use of a known uncoupling agent, heptanol, suggestedthat cells were not electrically coupled. Thus the values ofGT and GNa represented individual principal cells. Exposure of the basolateral membrane toinsulin (1 mU/ml) for 10-60 min significantly (P < 0.05) increased the normalized GNa [1.2 ± 0.3 nS (n = 6) vs. 2.0 ± 0.4 nS(n = 6)]. Cell-attached patch-clamp techniques wereused to further elucidate the mechanism by which insulin increasesamiloride-sensitive epithelial sodium channel (ENaC) activity. In thepresence of insulin there was no apparent change in either the numberof active levels/patch or the conductance of ENaC. The openprobability increased significantly (P < 0.01) from0.21 ± 0.04 (n = 6) to 0.46 ± 0.07 (n = 6). Thus application of insulin enhanced sodium reabsorption by increasing the fraction of time the channel spent inthe open state.

  相似文献   

9.
Important role of carotid afferents in control of breathing   总被引:5,自引:0,他引:5  
The purpose of the present study was todetermine the effect on breathing in the awake state of carotid bodydenervation (CBD) over 1-2 wk after denervation. Studies werecompleted on adult goats repeatedly before and1) for 15 days after bilateral CBD (n = 8),2) for 7 days after unilateral CBD(n = 5), and3) for 15 days after sham CBD(n = 3). Absence of ventilatorystimulation when NaCN was injected directly into a common carotidartery confirmed CBD. There was a significant(P < 0.01) hypoventilation during the breathing of room air after unilateral and bilateral CBD. Themaximum PaCO2 increase (8 Torr forunilateral and 11 Torr for bilateral) occurred ~4 days afterCBD. This maximum was transient because by 7 (unilateral)to 15 (bilateral) days after CBD, PaCO2 was only 3-4 Torr above control.CO2 sensitivity was attenuated from control by 60% on day 4 afterbilateral CBD and by 35% on day 4 after unilateral CBD. This attenuation was transient, because CO2 sensitivity returned tocontrol temporally similar to the return ofPaCO2 during the breathing of room air.During mild and moderate treadmill exercise 1-8 days afterbilateral CBD, PaCO2 was unchanged fromits elevated level at rest, but, 10-15 days after CBD,PaCO2 decreased slightly from restduring exercise. These data indicate that1) carotid afferents are animportant determinant of rest and exercise breathing and ventilatoryCO2 sensitivity, and2) apparent plasticity within theventilatory control system eventually provides compensation for chronicloss of these afferents.

  相似文献   

10.
Nucleus raphéobscurus (NRo) modulates hypoglossal (XII) nerve motor output in the invitro transverse brain stem slice of neonatal rats (1-5 days old);chemical ablation of NRo and its focal CO2 acidificationmodulated the bursting rhythm of XII nerves. We microinjected a 4.5 mMsolution of kainic acid into the NRo to disrupt cellular activity andobserved that XII nerve activity was temporarily abolished(n = 10). We also microinjected CO2-acidified (pH = 6.00 ± 0.01) artificialcerebrospinal fluid (aCSF) into the NRo (n = 6), thepre-Bötzinger complex (PBC) (n = 6), as well as acontrol region in the lateral tegmental field equidistant to NRo, PBC,and the XII motor nuclei (n = 12). CO2acidification of the control region had no effect on XII motor output.CO2 acidification of the NRo significantly(P < 0.05) increased the burst discharge frequency ofXII nerves by 77%; integrated burst amplitude and burst durationincreased by 64% and 52%, respectively. CO2 acidificationof the PBC significantly (P < 0.05) increased theburst discharge frequency of XII nerves by 65%, but neither integratedburst amplitude nor burst duration changed. These results demonstratethat chemical ablation of the NRo can abolish XII nerve bursting rhythmand that stimulation of the NRo with CO2-acidified aCSF canexcite XII nerve bursting activity. From these observations, weconclude that, in transverse brain stem slices, the NRo containspH/CO2-sensitive cells that modulate XII motor output.

  相似文献   

11.
We asked whethercrystalloid administration improves tissue oxygen extraction inendotoxicosis. Four groups of anesthetized pigs(n = 8/group) received either normalsaline infusion or no saline and either endotoxin or no endotoxin. Wemeasured whole body (WB) and gut oxygen delivery and consumption duringhemorrhage to determine the critical oxygen extraction ratio(ERO2 crit). Just after onset of ischemia (critical oxygen delivery rate), gut was removed for determination of area fraction of interstitial edema and capillary hematocrit. Radiolabeled microspheres were used todetermine erythrocyte transit time for the gut. Endotoxin decreased WBERO2 crit(0.82 ± 0.06 to 0.55 ± 0.08, P < 0.05) and gutERO2 crit(0.77 ± 0.07 to 0.52 ± 0.06, P < 0.05). Unexpectedly, saline administration also decreased WBERO2 crit (0.82 ± 0.06 to 0.62 ± 0.08, P < 0.05) and gutERO2 crit (0.77 ± 0.07 to 0.67 ± 0.06, P < 0.05) in nonendotoxin pigs. Saline administration increased thearea fraction of interstitial space (P < 0.05) and resulted in arterial hemodilution(P < 0.05) but not capillaryhemodilution (P > 0.05). Salineincreased the relative dispersion of erythrocyte transit times from0.33 ± 0.08 to 0.72 ± 0.53 (P < 0.05). Thus saline administration impairs tissue oxygen extractionpossibly by increasing interstitial edema or increasing heterogeneityof microvascular erythrocyte transit times.

  相似文献   

12.
Yang, X. X., W. S. Powell, M. Hojo, and J. G. Martin.Hyperpnea-induced bronchoconstriction is dependent ontachykinin-induced cysteinyl leukotriene synthesis. J. Appl. Physiol. 82(2): 538-544, 1997.The purposeof the study was to test the hypothesis that tachykinins mediatehyperpnea-induced bronchoconstriction indirectly by triggeringcysteinyl leukotriene (LT) synthesis in the airways. Guinea pigs(350-600 g) were anesthetized with xylazine and pentobarbital sodium and received hyperpnea challenge (tidal volume 3.5-4.0 ml,frequency 150 breaths/min) with either humidified isocapnic gas(n = 6) or dry gas(n = 7). Dry gas challenge wasperformed on animals that received MK-571(LTD4 antagonist; 2 mg/kg iv; n = 5), capsaicin(n = 4), neurokinin (NK) antagonists[NK1 (CP-99994) + NK2 (SR-48968) (1 mg/kg iv);n = 6], or theH1 antihistamine pyrilamine (2 mg/kg iv; n = 5). We measured thetracheal pressure and collected bile for 1 h before and 2 h afterhyperpnea challenge. We examined the biliary excretion of cysteinylLTs; the recovery of radioactivity in bile after instillation of 1 µCi [3H]LTC4intratracheally averaged 24% within 4 h(n = 2). The major cysteinyl LTidentified was LTD4 (32% recoveryof radioactivity). Cysteinyl LTs were purified from bile of animalsundergoing hyperpnea challenge by using reverse-phase high-pressureliquid chromatography and quantified by radioimmunoassay. There was asignificant increase in the peak value of tracheal pressure afterchallenge, indicating bronchoconstriction in dry gas-challenged animalsbut not after humidified gas challenge. MK-571, capsaicin, and NKantagonists prevented the bronchoconstriction; pyrilamine didnot. Cysteinyl LT levels in the bile after challenge weresignificantly increased from baseline in dry gas-challenged animals(P < 0.05) and were higher than inthe animals challenged with humidified gas or dry gas-challengedanimals treated with capsaicin or NK antagonists (P < 0.01). The results indicatethat isocapnic dry gas hyperpnea-induced bronchoconstriction is LTmediated and the role of tachykinins in the response is indirectthrough release of LTs. Endogenous histamine does not contribute to theresponse.

  相似文献   

13.
The hypothesis that the intracellularNa+ concentration([Na+]i)is a regulator of the epithelialNa+ channel (ENaC) was tested withthe Xenopus oocyte expression systemby utilizing a dual-electrode voltage clamp.[Na+]iaveraged 48.1 ± 2.2 meq (n = 27)and was estimated from the amiloride-sensitive reversal potential.[Na+]iwas increased by direct injection of 27.6 nl of 0.25 or 0.5 MNa2SO4.Within minutes of injection,[Na+]istabilized and remained elevated at 97.8 ± 6.5 meq(n = 9) and 64.9 ± 4.4 (n = 5) meq 30 min after theinitial injection of 0.5 and 0.25 MNa2SO4,respectively. This increase of[Na+]icaused a biphasic inhibition of ENaC currents. In oocytes injected with0.5 MNa2SO4(n = 9), a rapid decrease of inwardamiloride-sensitive slope conductance(gNa) to 0.681 ± 0.030 of control within the first 3 min and a secondary, slowerdecrease to 0.304 ± 0.043 of control at 30 min were observed.Similar but smaller inhibitions were also observed with the injectionof 0.25 MNa2SO4.Injection of isotonicK2SO4(70 mM) or isotonicK2SO4made hypertonic with sucrose (70 mMK2SO4-1.2M sucrose) was without effect. Injection of a 0.5 M concentration ofeitherK2SO4,N-methyl-D-glucamine (NMDG) sulfate, or 0.75 M NMDG gluconate resulted in a much smaller initial inhibition (<14%) and little or no secondary decrease. Thusincreases of[Na+]ihave multiple specific inhibitory effects on ENaC that can betemporally separated into a rapid phase that was complete within 2-3 min and a delayed slow phase that was observed between 5 and 30 min.

  相似文献   

14.
Lipopolysaccharide (LPS) is known to stimulate the circulation and local production of angiotensin II (Ang II). To assess whether Ang II plays a role in LPS-induced acute lung injury, rats were injected with LPS, the microvascular endothelial permeability injury was evaluated by histological changes, increased pulmonary wet/dry weight ratio, and pulmonary microvascular protein leak. Besides, increased rat pulmonary microvascular endothelial cell monolayer permeability coefficient (K(f)) was measured after treatment with LPS and/or Ang II, respectively. LPS/Ang II, treatment resulted in a significant increase in K(f). Ang II cooperates with LPS to further increase K(f). Hence, LPS increases pulmonary microvascular endothelial permeability both in vitro and in vivo. Local lung Ang II was increased in response to LPS challenge, and elevated Ang II ulteriorly exacerbates LPS-induced endothelium injury. [Sar(1),Ile(8)]Ang II, a selective block of Ang II type 1 (AT(1)) receptors, eliminated these changes significantly. Our conclusion is that the LPS-induced lung injury may be mediated by the AT(1) receptor.  相似文献   

15.
Cessation of bloodflow during ischemia will decrease both distending and shearforces exerted on endothelium and may worsen ischemic lung injury bydecreasing production of nitric oxide (NO), which influences vascularbarrier function. We hypothesized that increased intravascular pressure(Piv) during ventilated ischemia might maintain NO productionby increasing endothelial stretch or shear forces, thereby attenuatingischemic lung injury. Injury was assessed by measuring the filtrationcoefficient(Kf) and theosmotic reflection coefficient for albumin(alb) after 3 h of ventilated(95% O2-5%CO2; expiratory pressure 3 mmHg) ischemia. Lungs were flushed with physiological salt solution, and then Piv was adjusted to achieve High Piv (mean 6.7 ± 0.4 mmHg, n = 15) or Low Piv (mean0.83 ± 0.4 mmHg, n = 10).NG-nitro-L-arginine methyl ester(L-NAME;105 M,n = 10),NG-nitro-D-argininemethyl ester (D-NAME;105 M,n = 11), orL-NAME(105M)+L-arginine (5 × 104 M,n = 6) was added at the start ofischemia in three additional groups of lungs with High Piv.High Piv attenuated ischemic injury compared with Low Piv(alb 0.67 ± 0.04 vs. 0.35 ± 0.04, P < 0.05). Theprotective effect of High Piv was abolished byL-NAME(alb 0.37 ± 0.04, P < 0.05) but not byD-NAME(alb 0.63 ± 0.07). The effects of L-NAME were overcomeby an excess of L-arginine(alb 0.56 ± 0.05, P < 0.05).Kf did not differsignificantly among groups. These results suggest that Piv modulatesischemia-induced barrier dysfunction in the lung, and theseeffects may be mediated by NO.

  相似文献   

16.
The hypothesis that protein kinase C (PKC) isable to regulate the whole cell Ca-activated K(KCa) current independently of PKC effects on local Ca release events was tested using the patch-clamp technique and freshly isolated rat tail artery smooth muscle cells dialyzed with a strongly buffered low-Ca solution. The active diacylglycerol analog1,2-dioctanoyl-sn-glycerol (DOG) at 10 µM attenuated the current-voltage(I-V)relationship of the KCa current significantly and reduced the KCacurrent at +70 mV by 70 ± 4% (n = 14). In contrast, 10 µM DOG after pretreatment of the cells with 1 µM calphostin C or 1 µM PKC inhibitor peptide, selective PKCinhibitors, and 10 µM1,3-dioctanoyl-sn-glycerol, aninactive diacylglycerol analog, did not significantly alter theKCa current. Furthermore, thecatalytic subunit of PKC (PKCC)at 0.1 U/ml attenuated theI-Vrelationship of the KCa currentsignificantly, reduced the KCacurrent at +70 mV by 44 ± 3% (n = 17), and inhibited the activity of singleKCa channels at 0 mV by 79 ± 9% (n = 6). In contrast, 0.1 U/mlheat-inactivated PKCC did notsignificantly alter the KCacurrent or the activity of singleKCa channels. Thus these resultssuggest that PKC is able to considerably attenuate theKCa current of freshly isolatedrat tail artery smooth muscle cells independently of effects of PKC onlocal Ca release events, most likely by a direct effect on theKCa channel.  相似文献   

17.
Hepple, R. T., S. L. M. Mackinnon, J. M. Goodman, S. G. Thomas, and M. J. Plyley. Resistance and aerobic training in oldermen: effects onO2 peak and thecapillary supply to skeletal muscle. J. Appl.Physiol. 82(4): 1305-1310, 1997.Both aerobic training (AT) and resistance training (RT) may increase aerobic power(O2 peak) in theolder population; however, the role of changes in the capillary supplyin this response has not been evaluated. Twenty healthymen (age 65-74 yr) engaged in either 9 wk of lower body RTfollowed by 9 wk of AT on a cycle ergometer (RTAT group) or 18 wk of AT on a cycle ergometer (ATAT group). RT was performedthree times per week and consisted of three sets of four exercises at6-12 repetitions maximum. AT was performed threetimes per week for 30 min at 60-70% heart ratereserve. O2 peak was increasedafter both RT and AT (P < 0.05).Biopsies (vastus lateralis) revealed that the number of capillaries per fiber perimeter length was increased after both AT and RT(P < 0.05), paralleling the changesin O2 peak, whereascapillary density was increased only after AT(P < 0.01). These results, and thefinding of a significant correlation between the change in capillarysupply and O2 peak(r = 0.52), suggest the possibility that similar mechanisms may be involved in the increase ofO2 peak afterhigh-intensity RT and AT in the older population.

  相似文献   

18.
Regulation of the epithelial Na(+) channel by extracellular acidification   总被引:2,自引:0,他引:2  
The effect of extracellular acidification wastested on the native epithelial Na+ channel (ENaC) in A6epithelia and on the cloned ENaC expressed in Xenopusoocytes. Channel activity was determined utilizing blocker-inducedfluctuation analysis in A6 epithelia and dual electrode voltage clampin oocytes. In A6 cells, a decrease of extracellular pH(pHo) from 7.4 to 6.4 caused a slow stimulation of theamiloride-sensitive short-circuit current (INa)by 68.4 ± 11% (n = 9) at 60 min. This increaseof INa was attributed to an increase of openchannel and total channel (NT) densities. Similar changes were observed with pHo 5.4. The effects ofpHo were blocked by buffering intracellularCa2+ with 5 µM1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Inoocytes, pHo 6.4 elicited a small transient increase of theslope conductance of the cloned ENaC (11.4 ± 2.2% at 2 min)followed by a decrease to 83.7 ± 11.7% of control at 60 min (n = 6). Thus small decreases of pHostimulate the native ENaC by increasing NT butdo not appreciably affect ENaC expressed in Xenopus oocytes.These effects are distinct from those observed with decreasingintracellular pH with permeant buffers that are known to inhibit ENaC.

  相似文献   

19.
Diving isknown to induce a change in the amplitude of the T wave(ATw) ofelectrocardiograms, but it is unknown whether this is linked to achange in cardiovascular performance. We analyzed ATw in guinea pigs at 10-60atm and 25-36°C, breathing 2%O2 in either helium (heliox;n = 10) or hydrogen (hydrox;n = 9) for 1 h at each pressure. Coretemperature and electrocardiograms were detected by using implantedradiotelemeters. O2 consumption rate was measured by using gas chromatography. In a previous study (S. R. Kayar and E. C. Parker. J. Appl.Physiol. 82: 988-997, 1997), we analyzed theO2 pulse, i.e., theO2 consumption rate per heartbeat, in the same animals. By multivariate regression analysis, weidentified variables that were significant toO2 pulse: body surface area,chamber temperature, core temperature, and pressure. In this study,inclusion of ATw made asignificantly better model with fewer variables. After normalizing forchamber temperature and pressure, theO2 pulse increased with increasing ATw in heliox(P = 0.001) but with decreasingATw in hydrox(P < 0.001). ThusATw is associated with thedifferences in O2 pulse foranimals breathing heliox vs. hydrox.

  相似文献   

20.
We determinedwhether drugs which modulate the state of protein tyrosinephosphorylation could alter the threshold for high airwaypressure-induced microvascular injury in isolated perfused rat lungs.Lungs were ventilated for successive 30-min periods with peak inflationpressures (PIP) of 7, 20, 30, and 35 cmH2O followed by measurement ofthe capillary filtration coefficient (Kfc), asensitive index of hydraulic conductance. In untreated control lungs,Kfc increased by1.3- and 3.3-fold relative to baseline (7 cmH2O PIP) after ventilation with30 and 35 cmH2O PIP. However, inlungs treated with 100 µM phenylarsine oxide (a phosphotyrosinephosphatase inhibitor),Kfc increased by4.7- and 16.4-fold relative to baseline at these PIP values. In lungs treated with 50 µM genistein (a tyrosine kinase inhibitor),Kfc increasedsignificantly only at 35 cmH2OPIP, and the three groups were significantly different from each other.Thus phosphotyrosine phosphatase inhibition increased thesusceptibility of rat lungs to high-PIP injury, and tyrosine kinaseinhibition attenuated the injury relative to the high-PIP control lungs.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号