共查询到20条相似文献,搜索用时 31 毫秒
1.
The subcellular distribution of alanine: glyoxylate aminotransferase 1 in guinea pig and rabbit kidneys was examined by centrifugation in a sucrose density gradient. The enzyme was located in the peroxisomes of guinea pig kidney and cross-reactive with the antibody against rat liver alanine: glyoxylate aminotransferase 1. This is the first report on the presence of the enzyme in the peroxisomes of mammalian kidney. The enzyme was found to be located in the mitochondria but not in the peroxisomes in rabbit kidney. 相似文献
2.
3.
H Sakuraba S Fujiwara T Noguchi 《Biochemical and biophysical research communications》1991,176(3):1450-1453
Alanine:glyoxylate aminotransferase has been reported to be present as the apo form in the peroxisomes and as the holo form in the mitochondria in chicken kidney. In contrast, the enzyme was found to be present as the holo form both in the peroxisomes and in the mitochondria in pigeon kidney, suggesting that birds are classified into two groups on the basis of intraperoxisomal form of kidney alanine:glyoxylate aminotransferase. In the kidney, the pigeon peroxisomal holo enzyme did not cross-react immunologically with the chicken peroxisomal apo enzyme. 相似文献
4.
Alanine:glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting in human hereditary kidney stone disease 总被引:2,自引:0,他引:2
The pyridoxal-phosphate (PLP)-dependent enzyme alanine:glyoxylate aminotransferase (AGT) is mistargeted from peroxisomes to mitochondria in patients with the hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) due to the synergistic interaction between a common Pro(11)Leu polymorphism and a PH1-specific Gly(170)Arg mutation. The kinetic partitioning of newly synthesised AGT between peroxisomes and mitochondria is determined by the combined effects of (1) the generation of cryptic mitochondrial targeting information, and (2) the inhibition of AGT dimerization. The crystal structure of AGT has recently been solved, allowing the effects of the various polymorphisms and mutations to be rationalised in terms of AGT's three-dimensional conformation. Procedures that increase dimer stability and/or increase the rate of dimer formation have potential in the formulation of novel strategies to treat this otherwise intractable life-threatening disease. 相似文献
5.
Serine: glyoxylate, alanine:glyoxylate, and glutamate:glyoxylate aminotransferase reactions in peroxisomes from spinach leaves 总被引:6,自引:0,他引:6
Two different aminotransferases, that have glyoxylate as the amino acceptor, have specific activities of 1 to 2 mumol . min-1 . mg of protein-1 in the isolated peroxisomal fraction from spinach leaves. Their properties were evaluated after separation on a hydroxylapatite column. Both enzymes had a Km for glyoxylate of 0.15 mM and an amino acid Km of 2 to 3 mM. Reactions proceeded by a Ping Pong Bi Bi mechanism. Serine:glyoxylate aminotransferase was relatively specific for both substrates and could only be slightly reversed with 100 mM glycine, although the Ki of glycine was 33 mM. The glutamate:glyoxylate amino-transferase protein was equally active in catalyzing an alanine:glyoxylate aminotransferase reaction, but the reverse reactions with 100 mM glycine were hardly measureable, although the Ki (glycine) was 8.7 mM. Protection against hydroxylamine inhibition from reaction with pyridoxal phosphate was used to investigate the specificity of amino acid binding. Substrate amino acids protected at about the same concentration as their Km, while glycine protected at its Ki concentration. Thus, the nearly irreversible catalysis with glycine is not due to a failure to bind glycine. The significance of a peroxisomal alanine:glyoxylate aminotransferase activity has not been incorporated into schemes for the oxidative photosynthetic carbon cycle. 相似文献
6.
E Okuno T Ishikawa J Kawai R Kido 《Comparative biochemistry and physiology. B, Comparative biochemistry》1988,90(4):773-778
1. The distribution of L-alanine:glyoxylate aminotransferase (AGT) activities were found in Suncus liver, 55% in particulate fraction and 45% in supernatant. 2. 65% of AGT activities in particulate were dependent on AGT isoenzyme 2 (AGT 2) having molecular weight 210,000, the remainder (35%) of AGT activities were dependent on AGT isoenzyme 1 (AGT 1) which have aminotransferase activity for serine. AGT activities in supernatant were dependent on AGT 1, AGT 2 and alanine:2-oxoglutarate aminotransferase (GPT), and their activity ratios were 10, 15 and 75%, respectively. 3. Km values for alanine were 0.52 mM; AGT 1, 3.3 mM; AGT 2, 0.88 mM; GPT measuring with AGT activity. AGT activity of GPT was inhibited by addition of glutamate and its Ki value was 1.8 mM. 4. Some other properties of AGT 1, AGT 2 and GPT are described. 相似文献
7.
Immunocytochemical demonstration of serine:pyruvate aminotransferase in peroxisomes and mitochondria of rat kidney 总被引:1,自引:0,他引:1
Summary The light- and electron-microscopic localization of serine:pyruvate aminotransferase (SPT) in rat kidney was studied using immunoenzyme and protein A-gold techniques. Rat kidneys were fixed by perfusion through the abdominal aorta and small tissue slices were embedded in Epon, Lowicryl K4M, or LR Gold. The Epon was removed from the semithin sections, which were then stained using the immunoenzyme technique. Ultrathin sections of Lowicryl K4M- or LR gold-embedded materials were labeled using the protein A-gold technique. At light microscopy, discrete granular reaction deposits were exclusively present in the proximal tubule, all of whose segments were positive for SPT. A weakly positive reaction was observed in the distal tubules. At electron microscopy, gold particles indicating the antigenic sites for SPT were confined to the peroxisomes and mitochondria. The labeling intensity of both organelles was dependent on the embedding resins used. The labeling of Lowicryl K4M-embedded material was weaker than that of LR gold-embedded material; Quantitative analysis confirmed this result. Our results indicate that, in rat kidney, the main intracellular sites for SPT are peroxisomes and mitochondria of the proximal tubule. 相似文献
8.
9.
When provided with glycollate, peroxisomal extracts of leaves of spinach beet (Beta vulgaris L. cv.) converted L-serine and L-glutamate to hydroxypyruvate and 2-oxoglutarate respectively. When approximately saturating concentrations of each of these amino acids were incubated separately with glycollate, the utilization of serine was greater than that of glutamate. The utilization of glutamate was substantially reduced by the presence of relatively low concentrations of serine in the reaction mixture, whereas even high concentrations of glutamate caused only small reductions in serine utilization. Over the entire range of concentrations of amino acids examined, serine was invariably the preferred amino-group donor, but this preference was abolished at higher concentrations of glyoxylate. Serine not only competed favourably for glyoxylate but also inhibited L-glutamate: glyoxylate aminotransferase (GGAT), the degree of inhibition depending upon the glyoxylate concentration. Studies of L-serine: glyoxylate aminotransferase (SGAT) and GGAT in partially purified extracts from spinach-beet leaves confirmed that serine competitively inhibited GGAT but glutamate did not affect SGAT. Both enzymes were inhibited by high glyoxylate concentrations, the inhibition being relieved by suitably high concentrations of the appropriate amino acid. It is concluded that at the low glyoxylate concentrations likely to occur in vivo, the preferential utilization of serine would ensure flux through the glycollate pathway to glycerate, but at higher concentrations of glyoxylate, both enzymes could be fully active in glyoxylate amination.Abbreviations SGAT
L-serine: glyoxylate aminotransferase
- GGAT
L-glutamate: glyoxylate aminotransferase 相似文献
10.
11.
Serine:glyoxylate aminotransferase, a marker enzyme for leaf peroxisomes, has been purified to homogeneity from cucumber cotyledons (Cucumis sativus cv Improved Long Green). The isolation procedure involved precipitation with polyethyleneimine, a two-step ammonium sulfate fractionation (35 to 45%), gel filtration on Ultrogel AcA 34, and ion exchange chromatography on diethylaminoethyl-cellulose, first in the presence of pyridoxal-5-phosphate, and then in its absence. The enzyme was purified approximately 690-fold to a final specific activity of 34.4 units per milligram. Electrophoresis of the purified enzyme on sodium dodecyl sulfate-polyacrylamide gels revealed two polypeptide bands with apparent molecular weights of approximately 47,000 and 45,000. Both polypeptides coeluted with enzyme activity under all chromatographic conditions investigated, both were localized to the peroxisome, and both accumulated in cotyledons as enzyme activity increased during development. The two polypeptides appear not to be structurally related, since they showed little immunological cross-reactivity and gave rise to different peptide fragments when subjected to partial proteolytic digestion. Antiserum raised against either the denatured enzyme or the 45,000-dalton polypeptide did not react with any other polypeptides present in a crude cotyledonary homogenate. The purified enzyme also had alanine:glyoxylate aminotransferase activity, but was about twice as active with serine as the amino donor. 相似文献
12.
Rat liver soluble fraction contained 3 forms of alanine: glyoxylate aminotransferase. One with a pI of 5.2 and an Mr of approx. 110,000 was found to be identical with cytosolic alanine:2-oxoglutarate aminotransferase. The pI 6.0 enzyme with an Mr of approx. 220,000 was suggested to be from broken mitochondrial alanine:glyoxylate aminotransferase 2 and the pI 8.0 enzyme with an Mr of approx. 80,000 enzyme from broken peroxisomal and mitochondrial alanine:glyoxylate aminotransferase 1. These results suggest that the cytosolic alanine: glyoxylate aminotransferase activity is due to cytosolic alanine: 2-oxoglutarate aminotransferase. 相似文献
13.
Background
Serum alanine aminotransferase (ALT) is a marker of liver injury. The 2005 American Gastroenterology Association Future Trends Committee report states that serum ALT levels remain constant with age. This study examines the association between serum ALT and age in a community-dwelling cohort in the United States.Methods
A cross-sectional study of 2,364 (54% female) participants aged 30–93 years from the Rancho Bernardo Study cohort who attended a research clinic visit in 1984–87. Demographic, metabolic co-variates, ALT, bilirubin, gamma glutamyl transferase (GGT), albumin, and adiposity signaling biomarkers (leptin, IL-6, adiponectin, ghrelin) were measured. Participants were divided into four-groups based upon age quartile, and multivariable-adjusted least squares of means (LSM) were examined (p for trend <0.05).Results
ALT decreased with increasing age, with mean ALT levels (IU/L) of 23, 21, 20, and 17 for those between quartile ages 30–62, 63–71, 72–77, and 78–93 years (p<0.0001). Trends of decreasing LSM ALT with age and the decreasing prevalence of categorically defined elevated serum ALT with age remained robust after adjusting for sex, alcohol use, metabolic syndrome components, and biomarkers of adiposity (p-value <0.0001), and was not materially changed after adjusting for bilirubin, GGT, and albumin.Conclusions
ALT levels decrease with age in both men and women independent of metabolic syndrome components, adiposity signaling biomarkers, and other commonly used liver function tests. Further studies are needed to understand the mechanisms responsible for a decline in ALT with age, and to establish the optimal cut-point of normal ALT in the elderly. 相似文献14.
15.
Mirco Dindo Stefano Pascarelli Davide Chiasserini Silvia Grottelli Claudio Costantini GenIchiro Uechi Giorgio Giardina Paola Laurino Barbara Cellini 《Protein science : a publication of the Protein Society》2022,31(5)
The conformational landscape of a protein is constantly expanded by genetic variations that have a minimal impact on the function(s) while causing subtle effects on protein structure. The wider the conformational space sampled by these variants, the higher the probabilities to adapt to changes in environmental conditions. However, the probability that a single mutation may result in a pathogenic phenotype also increases. Here we present a paradigmatic example of how protein evolution balances structural stability and dynamics to maximize protein adaptability and preserve protein fitness. We took advantage of known genetic variations of human alanine:glyoxylate aminotransferase (AGT1), which is present as a common major allelic form (AGT‐Ma) and a minor polymorphic form (AGT‐Mi) expressed in 20% of Caucasian population. By integrating crystallographic studies and molecular dynamics simulations, we show that AGT‐Ma is endowed with structurally unstable (frustrated) regions, which become disordered in AGT‐Mi. An in‐depth biochemical characterization of variants from an anticonsensus library, encompassing the frustrated regions, correlates this plasticity to a fitness window defined by AGT‐Ma and AGT‐Mi. Finally, co‐immunoprecipitation analysis suggests that structural frustration in AGT1 could favor additional functions related to protein–protein interactions. These results expand our understanding of protein structural evolution by establishing that naturally occurring genetic variations tip the balance between stability and frustration to maximize the ensemble of conformations falling within a well‐defined fitness window, thus expanding the adaptability potential of the protein. 相似文献
16.
Intact and broken (osmotically disrupted) spinach (Spinacia oleracea) leaf peroxisomes were compared for their enzymic activities on various metabolites in 0.25 molar sucrose solution. Both intact and broken peroxisomes had similar glycolate-dependent o2 uptake activity. In the conversion of glycolate to glycine in the presence of serine, intact peroxisomes had twice the activity of broken peroxisomes at low glycolate concentrations, and this difference was largely eliminated at saturating glycolate concentrations. However, when glutamate was used instead of serine as the amino group donor, broken peroxisomes had slightly higher activity than intact peroxisomes. In the conversion of glyoxylate to glycine in the presence of serine, intact peroxisomes had only about 50% of the activity of broken peroxisomes at low glyoxylate concentrations, and this difference was largely overcome at saturating glyoxylate concentrations. In the transamination between alanine and hydroxypyruvate, intact peroxisomes had an activity only slightly lower than that of broken peroxisomes. In the oxidation of NADH in the presence of hydroxypyruvate, intact peroxisomes were largely devoid of activity. These results suggest that the peroxisomal membrane does not impose an entry barrier to glycolate, serine, and O2 for matrix enzyme activity; such a barrier does exist to glutamate, alanine, hydroxypyruvate, glyoxylate, and NADH. Furthermore, in intact peroxisomes, glyoxylate generated by glycolate oxidase is channeled directly to glyoxylate aminotransferase for a more efficient glycolate-glycine conversion. In related studies, application of in vitro osmotic stress to intact or broken peroxisomes had little effect on their ability to metabolize glycolate to glycine. 相似文献
17.
18.
《FEBS letters》1986,201(1):20-34
Activities of alanine:glyoxylate aminotransferase in the livers of two patients with primary hyperoxaluria type I were substantially lower than those found in five control human livers. Detailed subcellular fractionation of one of the hyperoxaluric livers, compared with a control liver, showed that there was a complete absence of peroxisomal alanine:glyoxylate aminotransferase. This enzyme deficiency explains most of the biochemical characteristics of the disease and means that primary hyperoxaluria type I should be added to the rather select list of peroxisomal disorders. 相似文献
19.
Tabak HF Hoepfner D Zand Av Geuze HJ Braakman I Huynen MA 《Biochimica et biophysica acta》2006,1763(12):1647-1654
Eukaryotic cells contain functionally distinct, membrane enclosed compartments called organelles. Here we like to address two questions concerning this architectural lay out. How did this membrane complexity arise during evolution and how is this collection of organelles maintained in multiplying cells to ensure that new cells retain a complete set of them. We will try to address these questions with peroxisomes as a focal point of interest. 相似文献
20.
The distribution of enzymes involved in purine degradation in fish and crustaceous liver was examined by centrifugation in a sucrose density gradient. In mackerel, yellow mackerel, and prawn liver and mantis club hepatopancreas, uricase and allantoinase were located only in the peroxisomes and in the soluble fraction from broken peroxisomes, and allantoicase was located only in the peroxisomes. Uricase and allantoinase seem to be located in the peroxisomal matrix and allantoicase in the peroxisomal membrane. Adenase, guanase, and xanthine oxidase were present only in the soluble fraction of mackerel liver. 相似文献