首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comprehensive understanding of Ca cycling in an ecosystem is desirable because of the role of this element in tree mineral nutrition and its status as a major base cation on the soil exchange complex. The determination of the origin of Ca in forests is particularly indicated in regard of important changes linked to acid inputs and intensive logging. Natural strontium isotopes are increasingly used as tracers of Ca in forest ecosystems for qualitative and quantitative assessments. Nevertheless this method is limited to relatively simple systems with two sources of nutrients. Some recent studies coupled Sr/Ca or Sr/Ba ratios to Sr isotopic measurements in order to solve more complex systems. Such method has however associated with it some uncertainties: this approach assumed that Ca, Sr and Ba behave similarly throughout the ecosystem and does not take into account the Ca biopurification processes occurring in some tree’s organs which can alter element ratio. The present work focuses on two deciduous species covering large areas in Europe: European beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.). In order to test the similarity of behaviour between Ca, Sr and Ba, their concentrations were measured extensively in the major compartments of two forest ecosystems. In parallel, the discrimination process inside tree organs was studied in 23 stands for beech and 10 stands for oak. We found that Sr and Ca behave similarly in all soil and tree compartments. By contrast, Ba and Ca appear to have contrasting behaviours, especially in streams, soil solution and soil exchange complex (no correlations between element concentrations). Sr/Ba and Ba/Ca ratios must therefore be used with care as tracer of Ca. The Ca biopurification is absent in roots and slight in bole wood but is large in bark, twigs and leaves. The discrimination factors (DF) between wood and leaves are characteristic of the two species studied and do not change significantly as a function of the soil Ca status (acidic or calcareous soils). Therefore, strontium–calcium DF can be used as a correction factor of the Sr/Ca ratio of leaves when this ratio is used in connection with Sr isotopic ratios. This correction allows to solve systems of tree nutrition with more than two sources of Ca.  相似文献   

2.
Nitrogen (N) is a critical limiting nutrient that regulates plant productivity and the cycling of other essential elements in forests. We measured foliar and soil nutrients in 22 young Douglas-fir stands in the Oregon Coast Range to examine patterns of nutrient availability across a gradient of N-poor to N-rich soils. N in surface mineral soil ranged from 0.15 to 1.05% N, and was positively related to a doubling of foliar N across sites. Foliar N in half of the sites exceeded 1.4% N, which is considered above the threshold of N-limitation in coastal Oregon Douglas-fir. Available nitrate increased five-fold across this gradient, whereas exchangeable magnesium (Mg) and calcium (Ca) in soils declined, suggesting that nitrate leaching influences base cation availability more than soil parent material across our sites. Natural abundance strontium isotopes (87Sr/86Sr) of a single site indicated that 97% of available base cations can originate from atmospheric inputs of marine aerosols, with negligible contributions from weathering. Low annual inputs of Ca relative to Douglas-fir growth requirements may explain why foliar Ca concentrations are highly sensitive to variations in soil Ca across our sites. Natural abundance calcium isotopes (δ44Ca) in exchangeable and acid leachable pools of surface soil measured at a single site showed 1 per mil depletion relative to deep soil, suggesting strong Ca recycling to meet tree demands. Overall, the biogeochemical response of these Douglas-fir forests to gradients in soil N is similar to changes associated with chronic N deposition in more polluted temperate regions, and raises the possibility that Ca may be deficient on excessively N-rich sites. We conclude that wide gradients in soil N can drive non-linear changes in base-cation biogeochemistry, particularly as forests cross a threshold from N-limitation to N-saturation. The most acute changes may occur in forests where base cations are derived principally from atmospheric inputs.  相似文献   

3.
Semi-arid and arid ecosystems dominated by shrubs (“dry shrublands”) are an important component of the global C cycle, but impacts of climate change and elevated atmospheric CO2 on biogeochemical cycling in these ecosystems have not been synthetically assessed. This study synthesizes data from manipulative studies and from studies contrasting ecosystem processes in different vegetation microsites (that is, shrub or herbaceous canopy versus intercanopy microsites), to assess how changes in climate and atmospheric CO2 affect biogeochemical cycles by altering plant and microbial physiology and ecosystem structure. Further, we explore how ecosystem structure impacts on biogeochemical cycles differ across a climate gradient. We found that: (1) our ability to project ecological responses to changes in climate and atmospheric CO2 is limited by a dearth of manipulative studies, and by a lack of measurements in those studies that can explain biogeochemical changes, (2) changes in ecosystem structure will impact biogeochemical cycling, with decreasing pools and fluxes of C and N if vegetation canopy microsites were to decline, and (3) differences in biogeochemical cycling between microsites are predictable with a simple aridity index (MAP/MAT), where the relative difference in pools and fluxes of C and N between vegetation canopy and intercanopy microsites is positively correlated with aridity. We conclude that if climate change alters ecosystem structure, it will strongly impact biogeochemical cycles, with increasing aridity leading to greater heterogeneity in biogeochemical cycling among microsites. Additional long-term manipulative experiments situated across dry shrublands are required to better predict climate change impacts on biogeochemical cycling in deserts.  相似文献   

4.
Drought causes reduced growth of trembling aspen in western Canada   总被引:1,自引:0,他引:1       下载免费PDF全文
Adequate and advance knowledge of the response of forest ecosystems to temperature‐induced drought is critical for a comprehensive understanding of the impacts of global climate change on forest ecosystem structure and function. Recent massive decline in aspen‐dominated forests and an increased aspen mortality in boreal forests have been associated with global warming, but it is still uncertain whether the decline and mortality are driven by drought. We used a series of ring‐width chronologies from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada, in an attempt to clarify the impacts of drought on aspen growth by using Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Results indicated that prolonged and large‐scale droughts had a strong negative impact on trembling aspen growth. Furthermore, the spatiotemporal variability of drought indices is useful for explaining the spatial heterogeneity in the radial growth of trembling aspen. Due to ongoing global warming and rising temperatures, it is likely that severer droughts with a higher frequency will occur in western Canada. As trembling aspen is sensitive to drought, we suggest that drought indices could be applied to monitor the potential effects of increased drought stress on aspen trees growth, achieve classification of eco‐regions and develop effective mitigation strategies to maintain western Canadian boreal forests.  相似文献   

5.
森林生态系统作为陆地生态系统的主体,其发达的林冠层通过调节降水量、改变降水强度等深刻影响着流域全过程水文通量及水分输出。以中国广泛开展的典型森林降雨再分配过程的年尺度监测数据为基础,揭示中国不同类型森林生态系统的降雨再分配及林冠层降雨截留特征,阐明森林生态系统林冠层截留特征与降雨、植被要素的关系。结果表明:我国不同森林生态系统年穿透雨量处于141.4-2450.0 mm之间,年穿透雨率为36.3%-92.3%。5种典型森林生态系统多年平均穿透雨量((445.3±252.9)-(1230.6±479.6) mm)占同期多年平均降雨量的(72.6±9.2)%-(77.4±8.9)%。不同森林生态系统年树干茎流量介于0-508.2 mm之间,占同期年降雨量的0-25.8%。5种典型森林生态系统树干茎流量多年平均值((9.8±17.3)-(87.8±81.6) mm)占同期多年平均降雨量的(1.4±1.9)%-(5.4±4.6)%。不同森林生态系统林冠层年降雨截留范围在25.7-812.9 mm之间,占年降雨量的4.2%-55.6%。5种典型森林生态系统多年平均林冠截留量((154.2±81.6)-(392.2±203.5) mm)占同期年平均降雨量的(18.7±7.4)%-(25.9±8.3)%。进一步分析表明,我国森林生态系统穿透雨量、树干茎流量和林冠层截留量随观测区年降雨量的增加而呈显著增大(P<0.05),年穿透雨率、年树干茎流率随年降雨量的增加呈显著线性上升趋势(P<0.05),而年林冠截留率与年降雨量呈显著的负相关关系(P<0.01),降雨量、叶面积指数是深刻影响森林生态系统林冠层降雨截留率等特征的重要因素。整体上,不同类型森林生态系统林冠截留降雨能力存在明显差异,林冠层截留率突出表现为:落叶林大于常绿林、针叶林大于阔叶林。  相似文献   

6.
We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota’s mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity.  相似文献   

7.
喇家遗址位于青海省民和县,主体为齐家文化的遗存,距今大约3900~4300年。喇家遗址古代人类迁移活动的研究,对于探索黄河上游古代文明,推动该地区齐家文化研究,有着积极的学术意义。本文首先采用电感耦合等离子体质谱技术对喇家遗址出土的22个个体的44份牙釉质和骨骼样品进行了元素分析,根据检测结果排除了受到污染的2份骨骼样品。其次,通过热电离质谱分析方法对喇家遗址出土22个个体的42份牙釉质和骨骼样品及8个猪牙釉质样品的锶同位素比值进行了测定。检测数据表明,猪牙釉质的锶同位素比值的标准偏差远小于其他动物,可以推断猪由当地饲养的可能性是最大的,因此其牙釉质锶同位素比值可以代表当地的锶同位素水平。经过计算得到8个猪牙釉质的锶同位素比值的平均值为0.710930,将该平均值加或减2倍标准偏差可以得到喇家遗址当地的锶同位素比值范围在0.711058~0.710802之间。以此为前提可以推测,本次检测的22个个体中,有17个个体牙釉质的锶同位素比值在遗址当地的锶同位素比值范围内,可能为本地出生。还有2个个体牙釉质在当地的锶同位素比值范围上下限附近,姑且存疑;仅有3个个体牙釉质的锶同位素比值在遗址当地的锶同位素比值范围以外,表明这些个体可能在其他地区出生,去世后埋葬在遗址中。此外,数据分析还显示,本地出生人群牙釉质的锶同位素比值平均值与骨骼的锶同位素比值平均值比较接近,暗示喇家遗址当地古人类生活方式可能比较统一。  相似文献   

8.
Aim Trembling aspen (Populus tremuloides Michx.) is absent in the upper foothills region of west‐central Alberta because of the cold conditions and short growing season at this high elevation. However, in recent years it appears that aspen has been establishing from seed in this zone and that it has been doing so mainly as a result of forest harvesting. The objectives of this study were to determine the frequency of and types of microsite required for the successful establishment of aspen seedlings at these higher elevations. Location Rocky Mountains Upper Foothills Natural Subregion of west‐central Alberta, Canada. Methods The current distribution of mature aspen and the presence and absence of aspen seedlings in harvested areas were determined in an area c. 300 km2 in size, using ground and aerial surveys. In an intensive study, 12 belt transects (180 m long and 5 m wide) were established in areas disturbed by forest harvesting at high elevations where no aspen was present prior to harvesting. Transects were surveyed seven growing seasons after disturbance and the microsites occupied by aspen seedlings were characterized according to their substrate and microtopography. Similarly, the availability of different substrates and microtopographic positions were assessed by systematic point sampling on these sites. Results On level surfaces, aspen seedling regeneration was found up to 200 m higher in elevation than the mature aspen in the original undisturbed forests. Overall, there were 428 seedlings ha?1 established on these transects, and the age distribution indicates that aspen seedlings had established in each of the seven growing seasons since the disturbance. Nearly all of the seedlings (93%) were established on mineral soil microsites and virtually no seedlings were established on undisturbed forest floor layers. Significantly more seedlings were found in concave microtopographic positions. Main conclusions This study indicates that aspen establishment from seed is currently not a stochastic event and demonstrates that aspen is rapidly expanding its range upslope in the Canadian Rocky Mountain region as a result of forest management practices that expose mineral soil substrates in conjunction with a warming climate. The change in canopy composition from conifer to deciduous forests at these higher elevations will have far‐reaching implications for ecosystem processes and functions.  相似文献   

9.
The radioactive isotopes of strontium, mainly (90)Sr, which are common fission products, may significantly contribute to the internal exposure of the population in case of their accidental release into the environment and transfer to the food chain. For (90)Sr, the internal radiation dose is significantly dependent on the fractional absorption of the ingested activity (f(1)-value). Human data on the absorption of dietary strontium and of soluble forms of the element give values ranging from about 0.15 to 0.45 (up to 1.0) for adults. The International Commission on Radiological Protection (ICRP) has adopted f(1)-values of 0.6 for children of less than 1 year of age, 0.4 for children between 1 and 15 years and 0.3 for adolescents above 15 years of age. This study was aimed at investigating how far these values correspond to the actual uptake of strontium from contaminated foodstuffs. A methodology is presented that has been developed for preparing foodstuffs intrinsically labelled with stable isotopes and that will be used in tracer kinetic investigations. The results show that cress and salad can be adequately labelled, i.e. a strontium concentration of 1.36+/-0.47 g per kg of cress (wet weight) and of 0.29+/-0.04 g per kg of salad (wet weight) may be obtained within 15 days and 24 days, respectively. For the biokinetic investigations on humans, applying stable isotopes of Sr as tracers, about 0.1-1 mg strontium is required per volunteer, i.e. a few grams of the edible parts of the labelled material are sufficient.  相似文献   

10.
Many studies made in Europe and North America have shown an increasing depletion of exchangeable base cations that may cause tree nutritional deficiencies in sensitive soils. We use radial variation of strontium isotope in tree-rings (87Sr/86Sr ratio) to monitor possible changes in Ca sources for tree nutrition (Sr is used as an analog to Ca). The two main sources of Ca in forest stands are mineral weathering release and atmospheric inputs. Measurements in several forest stands in temperate regions show a steep decrease from pith to outer wood of the Sr isotope ratio from∼1870 to∼1920 except for stands developed on soils with a higher Ca status. This suggests a decrease of the weathering contribution (high 87Sr/86Sr ratio) when cations are displaced from the soil exchange complex by acid deposition at a rate faster than the replenishment of the cation pool by mineral weathering. This displacement enhances the atmospheric contribution, which is characterized by a low 87Sr/86Sr ratio. Tree-ring chronologies are an exceptional historic-timing record of chemical changes in the soil environment induced by atmospheric pollution. The reliability of the tree-ring recorder has been verified with a well-controlled nutritional perturbation in the context of a limed forest stand (with a known liming Sr isotopic signature). Our data suggest that forest ecosystems were affected by atmospheric inputs of strong acids earlier than previously thought.  相似文献   

11.
Aim  The recent concern that quaking aspen ( Populus tremuloides Michx.) has been declining in parts of western North America due to fire suppression is largely based on trends during the latter part of the 20th century. The aim of the current study was to compare the extent of aspen in the modern landscape with its extent in the late 19th century prior to fire suppression, and to assess the effects of elevation, late-19th century fires, and pre-fire forest composition on the successional status of aspen.
Location  North-west Colorado, USA.
Methods  We used a georeferenced 1898 map and modern maps to examine trends in aspen dominance since the late 19th century in a 348,586 ha area of White River and Routt National Forests in north-western Colorado. Stand age and structure were sampled in 30 stands.
Results  We found no evidence of overall aspen decline over this period. In fact, aspen distribution has increased in parts of the study area following severe fires in the late 19th century in forests that were previously dominated by conifers. Aspen persistence and increase was especially pronounced at elevations below 3000 m a.s.l. Most 120-year-old post-fire stands that are presently being successionally replaced by conifers were dominated by conifers prior to the last severe fire.
Main conclusions  Human perceptions of ecosystems are often on time scales that are shorter than the cycles of natural variation within those ecosystems. This disparity may lead to an underestimation of the range of natural variability of ecosystem patterns and processes. The appropriate temporal scale of inquiry is necessary for the correct understanding of natural variation in ecosystems.  相似文献   

12.
Increased meteorological drought intensity with rising atmospheric demand for water (hereafter vapor pressure deficit [VPD]) increases the risk of tree mortality and ecosystem dysfunction worldwide. Ecosystem-scale water-use strategy is increasingly recognized as a key factor in regulating drought-related ecosystem responses. However, the link between water-use strategy and ecosystem vulnerability to meteorological droughts is poorly established. Using the global flux observations, historic hydroclimatic data, remote-sensing products, and plant functional-trait archive, we identified potentially vulnerable ecosystems, examining how ecosystem water-use strategy, quantified by the percentage bias (δ) of the empirical canopy conductance sensitivity to VPD relative to the theoretical value, mediated ecosystem responses to droughts. We found that prevailing soil water availability substantially impacted δ in dryland regions where ecosystems with insufficient soil moisture usually showed conservative water-use strategy, while ecosystems in humid regions exhibited more pronounced climatic adaptability. Hyposensitive and hypersensitive ecosystems, classified based on δ falling below or above the theoretical sensitivity, respectively, achieved similar net ecosystem productivity during droughts, employing different structural and functional strategies. However, hyposensitive ecosystems, risking their hydraulic system with a permissive water-use strategy, were unable to recover from droughts as quickly as hypersensitive ones. Our findings highlight that processed-based models predicting current functions and future performance of vegetation should account for the greater vulnerability of hyposensitive ecosystems to intensifying atmospheric and soil droughts.  相似文献   

13.
We used isotopes of Sr to quantify weathering versus atmospheric sources of foliar Sr in 34 Hawaiian forests on young volcanic soils. The forests varied widely in climate, and in lava flow age and texture. Weathering supplied most of the Sr in most of the sites, but atmospheric deposition contributed 30–50% of foliar Sr in the wettest rainforests. A stepwise multiple regression using annual precipitation, distance from the ocean, and texture of the underlying lava explained 76% of the variation in Sr isotope ratios across the sites. Substrate age did not contribute significantly to variation in Sr isotope ratios in the range of ages evaluated here (11–3000 years), although atmospheric sources eventually dominate pools of biologically available Sr in Hawaiian rainforests in older substrates (≥150,000 years). Received: 25 January 1999 / Accepted: 23 June 1999  相似文献   

14.
The concept that vegetation structure (and faunal habitat) develops predictably with time since fire has been central to understanding the relationship between fire and fauna. However, because plants regenerate after fire in different ways (e.g. resprouting from above‐ground stems vs. underground lignotubers), use of simple categories based on time since fire might not adequately represent post‐fire habitat development in all ecosystems. We tested the hypothesis that the post‐fire development of faunal habitat structure differs between ecosystems, depending on fire regeneration traits of the dominant canopy trees. We measured 12 habitat components at sites in foothill forests (n = 38), heathy woodlands (n = 38) and mallee woodlands (n = 98) in Victoria, Australia, and used generalised additive models to predict changes in each variable with time since fire. A greater percentage of faunal habitat variables responded significantly to time since fire in mallee woodlands, where fires typically are stand‐replacing, than in foothill forests and heathy woodlands, where canopy tree stems generally persist through fire. In the ecosystem with the highest proportion of epicormic resprouters (foothill forests), only ground cover and understorey vegetation responded significantly to time since fire, compared with all but one variable in the ecosystem dominated by basal resprouters (mallee woodlands). These differences between ecosystems in the post‐fire development of key habitat components suggest there may also be fundamental differences in the role of fire in shaping the distribution of fauna. If so, this challenges the way in which many fire‐prone ecosystems currently are categorised and managed, especially the level of dependence on time since fire and other temporal surrogates such as age‐classes and successional states. Where time since fire is a poor surrogate for habitat structural development, additional complexity (e.g. fire severity, topography and prior land‐use history) could better capture processes that determine faunal occurrence in fire‐prone ecosystems.  相似文献   

15.
Although succession may follow multiple pathways in a given environment, the causes of such variation are often elusive. This paper describes how changes in fire interval mediate successional trajectory in conifer-dominated boreal forests of northwestern Canada. Tree densities were measured 5 and 19 years after fire in permanent plots and related to pre-fire vegetation, site and fire characteristics. In stands that were greater than 75 years of age when they burned, recruitment density of conifers was significantly correlated with pre-fire species basal area, supporting the expectation of stand self-replacement as the most common successional pathway in these forests. In contrast, stands that were under 25 years of age at the time of burning had significantly reduced conifer recruitment, but showed no change in recruitment of trembling aspen (Populus tremuloides). As a result, young-burned stands had a much higher probability of regenerating to deciduous dominance than mature-burned stands, despite the dominance of both groups by spruce (Picea mariana and Picea glauca) and pine (Pinus contorta) before the fire. Once initiated, deciduous-dominated stands may be maintained across subsequent fire cycles through mechanisms such as low on-site availability of conifer seed, competition with the aspen canopy, and rapid asexual regeneration of aspen after fire. We suggest that climate-related increases in fire frequency could trigger more frequent shifts from conifer to deciduous-dominated successional trajectories in the future, with consequent effects on multiple ecosystem processes.  相似文献   

16.
Ecosystem engineers play a large role in physically structuring the ecosystem in which they are embedded. The focus of much of the research surrounding these species is to document the impacts of a single engineer on community composition and ecosystem processes. However, most ecosystems harbor multiple engineering species that interact in complex ways and rarely have the dynamics of such species been fully investigated. We look at how two ecosystem engineers, the white-tailed deer (Odocoileus virginianus) and the invasive plant Japanese stilt grass (Microstegium vimineum), interact to completely alter the structure and composition of the subcanopy within northern deciduous forests. This interaction has wide-ranging repercussions on forest food webs which we explore through a case study of breeding woodland birds in the state of New Jersey, USA. We show that the guilds of birds that rely on the subcanopy have experienced greater declines from 1980 to 2005 than birds that specialize on the intact upper canopy of impacted forests. This dynamic is not restricted to immediate temporal effects and may act to derail the long-term successional pathway of northern deciduous forests. It is no longer prudent to set aside tracts of forest and expect them to retain their native biodiversity without active management.  相似文献   

17.
As atmospheric CO2 levels rise, temperate and boreal forests in the Northern Hemisphere are gaining importance as carbon sinks. Quantification of that role, however, has been difficult due to the confounding effects of climate change. Recent large‐scale experiments with quaking aspen (Populus tremuloides), a dominant species in many northern forest ecosystems, indicate that elevated CO2 levels can enhance net primary production. Field studies also reveal that droughts contribute to extensive aspen mortality. To complement this work, we analyzed how the growth of wild aspen clones in Wisconsin has responded to historical shifts in CO2 and climate, accounting for age, genotype (microsatellite heterozygosity), and other factors. Aspen growth has increased an average of 53% over the past five decades, primarily in response to the 19.2% rise in ambient CO2 levels. CO2‐induced growth is particularly enhanced during periods of high moisture availability. The analysis accounts for the highly nonlinear changes in growth rate with age, and is unaffected by sex or location sampled. Growth also increases with individual heterozygosity, but this heterozygote advantage has not changed with rising levels of CO2 or moisture. Thus, increases in future growth predicted from previous large‐scale, common‐garden work are already evident in this abundant and ecologically important tree species. Owing to aspen's role as a foundation species in many North American forest ecosystems, CO2‐stimulated growth is likely to have repercussions for numerous associated species and ecosystem processes.  相似文献   

18.
Globally documented widespread drought‐induced forest mortality has important ramifications for plant community structure, ecosystem function, and the ecosystem services provided by forests. Yet the characteristics of drought seasonality, severity, and duration that trigger mortality events have received little attention despite evidence of changing precipitation regimes, shifting snow melt timing, and increasing temperature stress. This study draws upon stand level ecohydrology and statewide climate and spatial analysis to examine the drought characteristics implicated in the recent widespread mortality of trembling aspen (Populus tremuloides Michx.). We used isotopic observations of aspen xylem sap to determine water source use during natural and experimental drought in a region that experienced high tree mortality. We then drew upon multiple sources of climate data to characterize the drought that triggered aspen mortality. Finally, regression analysis was used to examine the drought characteristics most associated with the spatial patterns of aspen mortality across Colorado. Isotopic analysis indicated that aspens generally utilize shallow soil moisture with little plasticity during drought stress. Climate analysis showed that the mortality‐inciting drought was unprecedented in the observational record, especially in 2002 growing season temperature and evaporative deficit, resulting in record low shallow soil moisture reserves. High 2002 summer temperature and low shallow soil moisture were most associated with the spatial patterns of aspen mortality. These results suggest that the 2002 drought subjected Colorado aspens to the most extreme growing season water stress of the past century by creating high atmospheric moisture demand and depleting the shallow soil moisture upon which aspens rely. Our findings highlight the important role of drought characteristics in mediating widespread aspen forest mortality, link this aspen die‐off to regional climate change trends, and provide insight into future climate vulnerability of these forests.  相似文献   

19.
Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO2) and ozone (O3), alone and in combination, from establishment onward. We examine how O3 affects the flow of carbon through the ecosystem from the leaf level through to the roots and into the soil micro-organisms in present and future atmospheric CO2 conditions. We provide evidence of adverse effects of O3, with or without co-occurring elevated CO2, that cascade through the entire ecosystem impacting complex trophic interactions and food webs on all three species in the study: trembling aspen (Populus tremuloides Michx.), paper birch (Betula papyrifera Marsh), and sugar maple (Acer saccharum Marsh). Interestingly, the negative effect of O3 on the growth of sugar maple did not become evident until 3 years into the study. The negative effect of O3 effect was most noticeable on paper birch trees growing under elevated CO2. Our results demonstrate the importance of long-term studies to detect subtle effects of atmospheric change and of the need for studies of interacting stresses whose responses could not be predicted by studies of single factors. In biologically complex forest ecosystems, effects at one scale can be very different from those at another scale. For scaling purposes, then, linking process with canopy level models is essential if O3 impacts are to be accurately predicted. Finally, we describe how outputs from our long-term multispecies Aspen FACE experiment are being used to develop simple, coupled models to estimate productivity gain/loss from changing O3.  相似文献   

20.
林冠附生植物生态学研究进展   总被引:9,自引:0,他引:9       下载免费PDF全文
林冠附生植物及其枯死存留物是构成山地湿性森林生态系统中生物区系、结构和功能的重要组分。由于在林冠攀爬技术上的限制,过去对林冠附生植物在生态系统结构和功能过程中的作用未能引起足够的重视。近20年来,随着对林冠生物多样性及其在生态系统功能过程影响的认识和研究技术上的提高,对林冠附生生物的研究已逐步从个体水平转移到系统水平上。有关林冠附生植物多样性、生物量及其生态学效应已成为近年来国际上新兴研究领域——“林冠学”的研究热点之一。许多研究表明,林冠附生植物在生态系统水平上的交互作用比它们的解剖、形态和生理特征更为重要。国外大量的研究结果表明,林冠是一个适合于许多生物种类生存的场所,其数量比想象的更为丰富。在全球范围内估计有29 500余种附生植物,其中维管束附生植物的种类高达24 000种,约占总维管束植物种类的10%。林冠附生物的生物量在世界各地森林中存在较大的差异,其范围在105~44 000 kg·hm-2之间,其中在一些热带和温带天然老龄林中林冠附生物的生物量超过了宿主林木的叶生物量。林冠附生植物还具有较大的叶面积指数(LAI)。林冠附生物丰富的物种组成、较高的生物量、独特的生理形态特征以及它们分布于森林与大气相互作用的关键界面,使得它们在生态系统物种多样性形成及其维持机制、养分和水分循环、指示环境质量等方面具有重要的作用。林冠附生植物及其枯死残留物具有较强的能力吸收雨水和空气中的营养物质,在林冠层中形成一个潮湿的环境促进氮固定,林冠附生植物群落还能为生存于林冠的其它生物(如鸟类、哺乳动物、两栖动物、爬行动物和昆虫等)提供食物和栖息场所。林冠附生植物的生长发育与分布格局除与宿主有关外,还受到环境因素(气候、地形、微生境条件等)和人为干扰的影响。由于世界各地森林类型多样和环境条件各异,目前国际上有关附生物的研究仍十分活跃,建立了林冠研究网络,研究不同类型森林中附生植物及其枯死残留物的动态及其与群落特征、环境因子的数量关系,探讨、交流和发展有效的标准测量方法和技术是该领域研究的主要内容。国内对林冠附生植物生态学的研究刚刚起步,有待于今后加强该领域的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号