首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Harihar B  Selvaraj S 《Proteins》2011,79(3):880-887
Predicting the experimental unfolding rates of two-state proteins and models describing the unfolding rates of these proteins is quite limited because of the complexity present in the unfolding mechanism and the lack of experimental unfolding data compared with folding data. In this work, 25 two-state proteins characterized by Maxwell et al. (Protein Sci 2005;14:602–616) using a consensus set of experimental conditions were taken, and the parameter long-range order (LRO) derived from their three-dimensional structures were related with their experimental unfolding rates ln(k(u)). From the total data set of 30 proteins used by Maxwell et al. (Protein Sci 2005;14:602–616), five slow-unfolding proteins with very low unfolding rates were considered to be outliers and were not included in our data set. Except all beta structural class, LRO of both the all-alpha and mixed-class proteins showed a strong inverse correlation of r = -0.99 and -0.88, respectively, with experimental ln(k(u)). LRO shows a correlation of -0.62 with experimental ln(k(u)) for all-beta proteins. For predicting the unfolding rates, a simple statistical method has been used and linear regression equations were developed for individual structural classes of proteins using LRO, and the results obtained showed a better agreement with experimental results.  相似文献   

2.
Biochemical functions of proteins in cells frequently involve interactions with various ligands. Proteomic methods for the identification of proteins that interact with specific ligands such as metabolites, signaling molecules, and drugs are valuable in investigating the regulatory mechanisms of cellular metabolism, annotating proteins with unknown functions, and elucidating pharmacological mechanisms. Here we report an energetics-based target identification method in which target proteins in a cell lysate are identified by exploiting the effect of ligand binding on their stabilities. Urea-induced unfolding of proteins in cell lysates is probed by a short pulse of proteolysis, and the effect of a ligand on the amount of folded protein remaining is monitored on a proteomic scale. As proof of principle, we identified proteins that interact with ATP in the Escherichia coli proteome. Literature and database mining confirmed that a majority of the identified proteins are indeed ATP-binding proteins. Four identified proteins that were previously not known to interact with ATP were cloned and expressed to validate the result. Except for one protein, the effects of ATP on urea-induced unfolding were confirmed. Analyses of the protein sequences and structure models were also employed to predict potential ATP binding sites in the identified proteins. Our results demonstrate that this energetics-based target identification approach is a facile method to identify proteins that interact with specific ligands on a proteomic scale.  相似文献   

3.
Small β-hairpin peptides have been widely used as models for the folding of β-sheets. But how applicable is the folding of such models to β-structure in larger proteins with conventional hydrophobic cores? Here we present multiple unfolding simulations of three such proteins that contain the WW domain double hairpin β-sheet motif: cold shock protein A (CspA), cold shock protein B (CspB) and glucose permease IIA domain. We compare the behavior of the free motif in solution and in the context of proteins of different size and architecture. Both Csp proteins lost contacts between the double-hairpin motif and the protein core as the first step of unfolding and proceeded to unfold with loss of the third β-strand, similar to the isolated WW domain. The glucose permease IIA domain is a larger protein and the contacts between the motif and the core were not lost as quickly. Instead the unfolding pathway of glucose permease IIA followed a different pathway with β1 pulling away from the sheet first. Interestingly, when the double hairpin motif was excised from the glucose permease IIA domain and simulated in isolation in water it unfolded by the same pathway as the WW domain, indicating that it is tertiary interactions with the protein that alter the motif’s unfolding not a sequence dependent effect on its intrinsic unfolding behavior. With respect to the unfolding of the hairpins, there was no consistent order to the loss of hydrogen bonds between the β-strands in the hairpins in any of the systems. Our results show that while the folding behavior of the isolated WW domain is generally consistent with the double hairpin motif’s behavior in the cold shock proteins, it is not the case for the glucose permease IIA domain. So, one must be cautious in extrapolating findings from model systems to larger more complicated proteins where tertiary interactions can overwhelm intrinsic behavior.  相似文献   

4.
Circular dichroism (CD) is an excellent spectroscopic technique for following the unfolding and folding of proteins as a function of temperature. One of its principal applications is to determine the effects of mutations and ligands on protein and polypeptide stability. If the change in CD as a function of temperature is reversible, analysis of the data may be used to determined the van't Hoff enthalpy and entropy of unfolding, the midpoint of the unfolding transition and the free energy of unfolding. Binding constants of protein-protein and protein-ligand interactions may also be estimated from the unfolding curves. Analysis of CD spectra obtained as a function of temperature is also useful to determine whether a protein has unfolding intermediates. Measurement of the spectra of five folded proteins and their unfolding curves at a single wavelength requires approximately 8 h.  相似文献   

5.
In this study, the thermodynamic activation parameters of cold-adapted proteins from Archaeaa are described for the first time for the irreversible protein unfolding and ribosome-dependent GTPase activity of elongation factor 2 (EF-2) from the psychrotolerant Methanococcoides burtonii and the thermophilic Methanosarcina thermophila. Thermolability of Methanococcoides burtonii EF-2 was demonstrated by a low activation free-energy of unfolding as a result of low activation-enthalpy. Although structural data for EF-2 are presently limited to protein homology modeling, the observed thermodynamic properties are consistent with a low number of noncovvalent bonds or an altered solvent interaction, causing a loss of entropy during the unfolding process. A physiological concentration of potassium aspartate or potassium glutamate was shown to stabilize both proteins against irreversible denaturation by strengthening noncovalent interactions, as indicated by increased activation enthalpies. The transition state of GTPase activity for Methanococcoides burtonii EF-2 was characterized by a lower activation enthalpy than for Methanosarcina thermophila EF-2. The relative entropy changes could be explained by differential displacement of water molecules during catalysis, resulting in similar activation free energies for both proteins. The presence of solutes was shown to facilitate the breaking of enthalpy-driven interactions and structuring of more water molecules during the reaction. By studying the thermodynamic activation parameters of both GTPase activity and unfolding and examining the effects of intracellular solutes and partner proteins (ribosomes), we were able to identify enthalpic and entropic properties that have evolved in the archaeal EF-2 proteins to enable Methanococcoides burtonii and Methanosarcina thermophila to adapt to their respective thermal environments.  相似文献   

6.
Unfolding of marginally stable proteins is a significant factor in commercial application of hydrophobic interaction chromatography (HIC). In this work, hydrogen-deuterium isotope exchange labeling has been used to monitor protein unfolding on HIC media for different stationary phase hydrophobicities and as a function of ammonium sulfate concentration. Circular dichroism and Raman spectroscopy were also used to characterize the structural perturbations experienced by solution phase protein that had been exposed to media and by protein adsorbed on media. As expected, greater instability is seen on chromatographic media with greater apparent hydrophobicity. However, increased salt concentrations also led to more unfolding, despite the well-known stabilizing effect of ammonium sulfate in solution. A thermodynamic framework is proposed to account for the effects of salt on both adsorption and stability during hydrophobic chromatography. Using appropriate estimates of input quantities, analysis with the framework can explain how salt effects on stability in chromatographic systems may contrast with solution stability.  相似文献   

7.
SH3 domains are small, modular domains that are found in many proteins, especially signal transduction proteins such as tyrosine kinases. While much is known about the sequences and tertiary structures of SH3 domains, far less is known about their solution dynamics. A slow, partial unfolding event that occurs under physiological conditions was previously identified in the Hck SH3 domain using hydrogen exchange (HX) mass spectrometry (MS). To determine if this unfolding was unique to Hck SH3, HX MS was used to analyze 11 other SH3 domains: seven SH3 domains from Src-family kinases and five SH3 domains from various proteins. A wide variety of unfolding rates were found, with unfolding half-lives ranging from 1s to 1h. The Lyn and alpha-spectrin SH3 domains exhibited slow, partial unfolding in beta strands D and E and part of the RT-loop. Hck SH3 also underwent partial unfolding in the same region, implying that a unique feature in this area of the domains is responsible for the partial unfolding. Partial unfolding was, however, not a function of sequence conservation. Although the Fyn and Yes SH3 domains are very similar to Hck SH3 in sequence, they exhibited no evidence of partial unfolding. Overall, the results suggest that while the tertiary structure of SH3 domains is highly conserved, the dynamics of SH3 domains are variable.  相似文献   

8.
A novel quantitative comparison of denaturants involving the complete reversible unfolding of proteins is presented. Ribonuclease A was denatured with guanidinium chloride in the presence of low fixed concentrations of various partial denaturants, with the unfolding process being monitored by circular dichroism and difference spectroscopy. The major advantage of this method is that it allows a direct quantitative comparison of the effects of denaturants on the stability of proteins. The effect on the stability of ribonuclease A was shown to be linearly dependent upon the concentration of denaturant. An investigation of the constitutive ions of salts revealed that their effects were additive only in the case of salts that have no specific binding capability. This method can also be useful in detecting the specific binding of salts.  相似文献   

9.
The folding and unfolding kinetics within the transition region were measured for RNase A and for RNase T1. The data were used to evaluate the theoretical models for the influence of prolyl isomerization on the observed folding kinetics. These two proteins were selected, since the folding reaction of RNase A is faster than prolyl isomerization, whereas in RNase T1, folding is slower than isomerization in the transition region. Folding of RNase T1 was investigated for three variants with different numbers of cis prolyl residues. The results indicate that in the transition region the folding rates are indeed strongly dependent on the number of prolyl residues. The variant of RNase T1 that contains only one cis prolyl residue folds about ten times faster than two variants that contain two cis prolyl residues. For both RNase A and RNase T1, the apparent rates of folding and unfolding as well as the corresponding amplitudes depend on the concentration of denaturant in a manner that was predicted by the model calculations. When refolding was started from the fast-folding species, additional kinetic phases could be observed in the transition region for both proteins. The obtained values could be used to calculate the microscopic rate constants of folding and isomerization on the basis of theoretical models.  相似文献   

10.
The essential cellular functions of secretion and protein degradation require a molecular machine to unfold and translocate proteins either across a membrane or into a proteolytic complex. Protein translocation is also critical for microbial pathogenesis, namely bacteria can use translocase channels to deliver toxic proteins into a target cell. Anthrax toxin (Atx), a key virulence factor secreted by Bacillus anthracis, provides a robust biophysical model to characterize transmembrane protein translocation. Atx is comprised of three proteins: the translocase component, protective antigen (PA) and two enzyme components, lethal factor (LF) and oedema factor (OF). Atx forms an active holotoxin complex containing a ring-shaped PA oligomer bound to multiple copies of LF and OF. These complexes are endocytosed into mammalian host cells, where PA forms a protein-conducting translocase channel. The proton motive force unfolds and translocates LF and OF through the channel. Recent structure and function studies have shown that LF unfolds during translocation in a force-dependent manner via a series of metastable intermediates. Polypeptide-binding clamps located throughout the PA channel catalyse substrate unfolding and translocation by stabilizing unfolding intermediates through the formation of a series of interactions with various chemical groups and α-helical structure presented by the unfolding polypeptide during translocation.  相似文献   

11.
Full-consensus designed ankyrin repeat proteins were designed with one to six identical repeats flanked by capping repeats. These proteins express well in Escherichia coli as soluble monomers. Compared to our previously described designed ankyrin repeat protein library, randomized positions have now been fixed according to sequence statistics and structural considerations. Their stability increases with length and is even higher than that of library members, and those with more than three internal repeats are resistant to denaturation by boiling or guanidine hydrochloride. Full denaturation requires their heating in 5 M guanidine hydrochloride. The folding and unfolding kinetics of the proteins with up to three internal repeats were analyzed, as the other proteins could not be denatured. Folding is monophasic, with a rate that is nearly identical for all proteins (∼ 400-800 s− 1), indicating that essentially the same transition state must be crossed, possibly the folding of a single repeat. In contrast, the unfolding rate decreases by a factor of about 104 with increasing repeat number, directly reflecting thermodynamic stability in these extraordinarily slow denaturation rates. The number of unfolding phases also increases with repeat number. We analyzed the folding thermodynamics and kinetics both by classical two-state and three-state cooperative models and by an Ising-like model, where repeats are considered as two-state folding units that can be stabilized by interacting with their folded nearest neighbors. This Ising model globally describes both equilibrium and kinetic data very well and allows for a detailed explanation of the ankyrin repeat protein folding mechanism.  相似文献   

12.
The goal of the Dynameomics project is to perform, store, and analyze molecular dynamics simulations of representative proteins, of all known globular folds, in their native state and along their unfolding pathways. To analyze unfolding simulations, the location of the protein along the unfolding reaction coordinate (RXN) must be determined. Properties such as the fraction of native contacts and radius of gyration are often used; however, there is an issue regarding degeneracy with these properties, as native and nonnative species can overlap. Here, we used 15 physical properties of the protein to construct a multidimensional-embedded, one-dimensional RXN coordinate that faithfully captures the complex nature of unfolding. The unfolding RXN coordinates for 188 proteins (1534 simulations and 22.9 μs in explicit water) were calculated. Native, transition, intermediate, and denatured states were readily identified with the use of this RXN coordinate. A global native ensemble based on the native-state properties of the 188 proteins was created. This ensemble was shown to be effective for calculating RXN coordinates for folds outside the initial 188 targets. These RXN coordinates enable, high-throughput assignment of conformational states, which represents an important step in comparing protein properties across fold space as well as characterizing the unfolding of individual proteins.  相似文献   

13.
14.
The relationship between the unfolding pseudo free energies of reduced and detailed atomic models of the GCN4 leucine zipper is examined. Starting from the native crystal structure, a large number of conformations ranging from folded to unfolded were generated by all-atom molecular dynamics unfolding simulations in an aqueous environment at elevated temperatures. For the detailed atomic model, the pseudo free energies are obtained by combining the CHARMM all-atom potential with a solvation component from the generalized Born, surface accessibility, GB/SA, model. Reduced model energies were evaluated using a knowledge-based potential. Both energies are highly correlated. In addition, both show a good correlation with the root mean square deviation, RMSD, of the backbone from native. These results suggest that knowledge-based potentials are capable of describing at least some of the properties of the folded as well as the unfolded states of proteins, even though they are derived from a database of native protein structures. Since only conformations generated from an unfolding simulation are used, we cannot assess whether these potentials can discriminate the native conformation from the manifold of alternative, low-energy misfolded states. Nevertheless, these results also have significant implications for the development of a methodology for multiscale modeling of proteins that combines reduced and detailed atomic models.  相似文献   

15.
BackgroundPressure perturbation calorimetry (PPC) is a biophysical method that allows direct determination of the volume changes upon conformational transitions in macromolecules.Scope of this reviewThis review provides novel details of the use of PPC to analyze unfolding transitions in proteins. The emphasis is made on the data analysis as well as on the validation of different structural factors that define the volume changes upon unfolding. Four case studies are presented that show the application of these concepts to various protein systems.Major conclusionsThe major conclusions are:
  • 1.Knowledge of the thermodynamic parameters for heat induced unfolding facilitates the analysis of the PPC profiles.
  • 2.The changes in the thermal expansion coefficient upon unfolding appear to be temperature dependent.
  • 3.Substitutions on the protein surface have negligible effects on the volume changes upon protein unfolding.
  • 4.Structural plasticity of proteins defines the position dependent effect of amino acid substitutions of the residues buried in the native state.
  • 5.Small proteins have positive volume changes upon unfolding which suggests difference in balance between the cavity/void volume in the native state and the hydration volume changes upon unfolding as compared to the large proteins that have negative volume changes.
General significanceThe information provided here gives a better understanding and deeper insight into the role played by various factors in defining the volume changes upon protein unfolding. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

16.
Nine single substitution cysteine mutants of staphylococcal nuclease (nuclease) were preferentially crosslinked at the introduced cysteine residues using three different bifunctional crosslinking reagents; 1,6-bismaleimidohexane (BMH), 1,3-dibromo-2-propanol (DBP), and the chemical warfare agent, mustard gas (bis(2-chloroethyl)sulfide; mustard). BMH and mustard gas are highly specific reagents for cysteine residues, whereas DBP is not as specific. Guanidine hydrochloride (GuHCl) denaturations of the resulting dimeric proteins exhibited biphasic unfolding behavior that did not fit the two-state model of unfolding. The monofunctional reagent, epsilon-maleimidocaproic acid (MCA), was used as a control for the effects of alkylation. Proteins modified with MCA unfolded normally, showing that this unusual unfolding behavior is due to crosslinking. The data obtained from these crosslinked dimers was fitted to a three-state thermodynamic model of two successive transitions in which the individual subunits cooperatively unfold. These two unfolding transitions were very different from the unfolding of the monomeric protein. These differences in unfolding behavior can be attributed in large part to changes in the denatured state. In addition to GuHCl titrations, the crosslinked dimers were also thermally unfolded. In contrast to the GuHCl denaturations, analysis of this data fit a two-state model well, but with greatly elevated van't Hoff enthalpies in many cases. However, clear correlations between the thermal and GuHCl denaturations exist, and the differences in thermal unfolding can be rationalized by postulating interactions of the denatured crosslinked proteins.  相似文献   

17.
HslVU is an ATP-dependent protease consisting of HslU ATPase and HslV peptidase. In an HslVU complex, the central pores of HslU hexamer and HslV dodecamer are aligned and the proteolytic active sites are sequestered in the inner chamber of HslV. Thus, the degradation of natively folded proteins requires unfolding and translocation processes for their access into the proteolytic chamber of HslV. A highly conserved GYVG(93) sequence constitutes the central pore of HslU ATPase. To determine the role of the pore motif on protein unfolding and translocation, we generated various mutations in the motif and examined their effects on the ability of HslU in supporting the proteolytic activity of HslV against three different substrates: SulA as a natively folded protein, casein as an unfolded polypeptide, and a small peptide. Flexibility provided by Gly residues and aromatic ring structures of the 91st amino acid were essential for degradation of SulA. The same structural features of the GYVG motif were highly preferred, although not essential, for degradation of casein. In contrast, none of the features were required for peptide hydrolysis. Mutations in the GYVG motif of HslU also showed marked influence on its ATPase activity, affinity to ADP, and interaction with HslV. These results suggest that the GYVG motif of HslU plays important roles in unfolding of natively folded proteins as well as in translocation of unfolded proteins for degradation by HslV. These results also implicate a role of the pore motif in ATP cleavage and in the assembly of HslVU complex.  相似文献   

18.
Extensive structural studies using high-pressure NMR spectroscopy have recently been carried out on proteins, which potentially contribute to our understanding of the mechanisms of protein folding. Pressure shifts the conformational equilibrium from higher to lower volume conformers. If the pressure is varied, starting from the folded native structure, in many cases we observe intermediate conformers before the onset of total unfolding. This enables the investigation of details of the structure and thermodynamic characteristics of various intermediate conformers of proteins under equilibrium conditions. We can also examine pressure effects on the structure and stability of some typical denatured states such as helical denatured, molten globule, and unfolded states. The high-pressure NMR method can also be used to investigate association/dissociation equilibria of oligomeric or aggregated proteins. Beside direct observation of kinetic intermediates upon pressure jump, NMR structural investigations of equilibrium conformers under pressure provide information about the structures of kinetic intermediates during folding/unfolding reactions.  相似文献   

19.
Simulations and experiments that monitor protein unfolding under denaturing conditions are commonly employed to study the mechanism by which a protein folds to its native state in a physiological environment. Due to the differences in conditions and the complexity of the reaction, unfolding is not necessarily the reverse of folding. To assess the relevance of temperature initiated unfolding studies to the folding problem, we compare the folding and unfolding of a 125-residue protein model by Monte Carlo dynamics at two temperatures; the lower one corresponds to the range used in T -jump experiments and the higher one to the range used in unfolding simulations of all-atom models. The trajectories that lead from the native state to the denatured state at these elevated temperatures are less diverse than those observed in the folding simulations. At the lower temperature, the system unfolds through a mandatory intermediate that corresponds to a local free energy minimum. At the higher temperature, no such intermediate is observed, but a similar pathway is followed. The structures contributing to the unfolding pathways resemble most closely those that make up the "fast track" of folding. The transition state for unfolding at the lower temperature (above Tm) is determined and is found to be more structured than the transition state for folding below the melting temperature. This shift towards the native state is consistent with the Hammond postulate. The implications for unfolding simulations of higher resolution models and for unfolding experiments of proteins are discussed.  相似文献   

20.
Osmolytes increase the thermodynamic conformational stability of proteins, shifting the equilibrium between native and denatured states to favor the native state. However, their effects on conformational equilibria within native-state ensembles of proteins remain controversial. We investigated the effects of sucrose, a model osmolyte, on conformational equilibria and fluctuations within the native-state ensembles of bovine pancreatic ribonuclease A and S and horse heart cytochrome c. In the presence of sucrose, the far- and near-UV circular dichroism spectra of all three native proteins were slightly altered and indicated that the sugar shifted the native-state ensemble toward species with more ordered, compact conformations, without detectable changes in secondary structural contents. Thermodynamic stability of the proteins, as measured by guanidine HCl-induced unfolding, increased in proportion to sucrose concentration. Native-state hydrogen exchange (HX) studies monitored by infrared spectroscopy showed that addition of 1 M sucrose reduced average HX rate constants at all degrees of exchange of the proteins, for which comparison could be made in the presence and absence of sucrose. Sucrose also increased the exchange-resistant core regions of the proteins. A coupling factor analysis relating the free energy of HX to the free energy of unfolding showed that sucrose had greater effects on large-scale than on small-scale fluctuations. These results indicate that the presence of sucrose shifts the conformational equilibria toward the most compact protein species within native-state ensembles, which can be explained by preferential exclusion of sucrose from the protein surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号