首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is possible that Earth's biologic precursors were delivered by late-impacting asteroids or comets, and it is possible that these objects were a source of Earth's volatile inventory. To understand the behavior of organic matter in carbonaceous meteorites during hypervelocity impact (1–2 km s–1), three samples of the Murchison (CM2) carbonaceous chondrite were shocked to 19, 20 and 36 GPa and analyzed by very sensitive thermal-desorption photoionization mass spectrometry (SALI). Thermal-desorption (25–800 °C) SALI mass spectra of unshocked Murchison reveal indigenous aliphatic, aromatic, sulfur and organosulfur compounds. Samples shocked to 20 GPa exhibit little or no loss of organic matter relative to the unshocked material. This is consistent with the earlier work of Tyburczyet al. (1986) which showed that incipient devolatilization of Murchison occurs at peak shock pressures near 20 GPa. The small amount of organic matter lost appears to have occurred by volatilization of elemental sulfur, amines and aliphatic compounds. In the sample shocked to 36 GPa, approximately 70% of the organic matter was volatilized as a result of impact. The residual organic matter desorbed at somewhat higher temperatures and displayed a different chemical signature. In particular, the shocked material has a lower alkene/alkane ratio than that of the starting material. The preliminary data suggest that it is unlikely that the indigenous organic matter in carbonaceous chondrite-like planetesimals could have survived impact on the Earth in the later stages of Earth's accretion. However, chemical reactions that produce organic compounds with greater thermal stabilities may occur during impact or subsequent to impact by condensation of the impact-produced vapor plume.  相似文献   

2.
Summary The amino acid pool of MDCK cells was essentially constituted by alanine, glycine, glutamic acid, serine, taurine, lysine, -alanine and glutamine. Upon reductions in osmolarity, free amino acids were rapidly mobilized. In 50% hyposmotic solutions, the intracellular content of free amino acids decreased from 69 to 25mm. Glutamic acid, taurine and -alanine were the most sensitive to hyposmolarity, followed by glycine, alanine and serine, whereas isoleucine, phenylalanine and valine were only weakly reactive. The properties of this osmolarity-sensitive release of amino acids were examined using3H-taurine. Decreasing osmolarity to 85, 75 or 50% increased taurine efflux from 0.6% per min to 1.6, 3.5 and 5.06 per min, respectively. The time course of3H-taurine release closely follows that of the regulatory volume decrease in MDCK cells. Taurine release was unaffected by removal of Na+, Cl or Ca2+, or by treating cells with colchicine or cytochalasin. It was temperature dependent and decreased at low pH. Taurine release was unaffected by bumetanide (an inhibitor of the Na+/K+/2Cl carrier); it was inhibited 16 and 67 by TEA and quinidine (inhibitors of K+ conductances), unaffected by gadolinium or diphenylamine-2-carboxylate (inhibitors of Cl channels) and inhibited 50% by DIDS. The inhibitory effects of DIDS and quinidine were additive. Quinidine but not DIDS inhibited taurine uptake by MDCK cells.  相似文献   

3.
Flash Heating on the Early Earth   总被引:1,自引:0,他引:1  
It has been suggested that very large impact events ( 500 km diameter impactors) sterilized the surface of the young Earth by producing enough rock vapor to boil the oceans. Here, we consider surface heating due to smaller impactors, and demonstrate that surface temperatures conducive to organic synthesis resulted. In particular, we focus on the synthesis of thermal peptides. Previously, laboratory experiments have demonstrated that dry heating a mixture of amino acids containing excess Asp, Glu, or Lys to temperatures 170 °C for 2 hours yields polypeptides. It has been argued that such temperature conditions would not have been available on the early Earth. Here we demonstrate, by analogy with the K/T impact, that the requisite temperatures are achieved on sand surfaces during the atmospheric reentry of fine ejecta particles produced by impacts of bolides 10–20 km in diameter, assuming 1 – 100 PAL CO2. Impactors of this size struck the Earth with a frequency of 1 per 104 – 105 y at 4.2 Ga. Smaller bolides produced negligible global surface heating, whereas bolides > 30 km in diameter yielded solid surface temperatures > 1000 K , high enough to pyrolyze amino acids and other organic compounds. Thus, peptide formation would have occurred globally for a relatively narrow range of bolide sizes.  相似文献   

4.
In the course of a study of possible mechanisms for chemical evolution in the primeval sea, we found the novel formation of -amino acids and N-acylamino acids from -oxo acids and ammonia in an aqueous medium. Glyoxylic acid reacted with ammonia to form N-oxalylglycine, which gave glycine in a 5–39% yield after hydrolysis with 6N HCl. Pyruvic acid and ammonia reacted to give N-acetylalanine, which formed alanine in a 3–7% overall yield upon hydrolysis. The pH optima in these reactions were between pH 3 and 4. These reactions were further extended to the formation of other amino acids. Glutamic acid, phenylalanine and alanine were formed from -ketoglutaric acid, phenylpyruvic acid and oxaloacetic acid, respectively, under similar conditions. N-Succinylglutamic acid was obtained as an intermediate in glutamic acid synthesis. Phenylacetylphenyl-alanineamide was also isolated as an intermediate in phenylalanine synthesis. Alanine, rather than aspartic acid, was produced from oxaloacetic acid. These reactions provide a novel route for the prebiotic synthesis of amino acids. A mechanism for the reactions will be proposed.  相似文献   

5.
Bacterial utilization of dissolved organic matter (DOM) was studied in water from a humic and a clearwater oligotrophic lake. Indigenous bacteria were inoculated into either 0.2 m natural filtered lake water, or lake water enriched fivefold with colloidal DOM >100 kD but below 0.2 m. Consumption of DOM was followed from changes in concentrations of total dissolved organic carbon (DOC), dissolved combined and free carbohydrates and amino acids (DCCHO and DFCHO, and DCAA and DFAA, respectively) and by uptake of monosaccharide and amino acid radioisotopes. DCCHO and DCAA made up 8% (humic lake) to 33–44% (clear-water lake) of the natural DOC pools, while DFCHO and DFAA contributed at most 1.7% to the DOC pools. Addition of >100 kD DOM increased the DOC concentrations by 50% (clearwater lake) to 92% (humic lake), but it only resulted in a higher bacterial production (by 63%) in the humic lake. During the incubations 13 to 37% of the DOC was assimilated by the bacteria, at estimated growth efficiencies of 4–8%. Despite the measured reduction of DOC, statistically significant changes of specific organic compounds, especially of DCCHO and DCAA, generally did not occur. Probably the presence of high molecular weight DOC interfered with the applied analytical procedures. Addition of radiotracers indicated, however, that DFAA sustained 17–58% and 29–100% of the bacterial carbon and nitrogen requirements, respectively, and that glucose met 1–3% of the bacterial carbon requirements. Thus, our experiments indicate that radiotracers, rather than measurements of concentration changes, should be used in studies of bacterial utilization of DOC in freshwaters with a high content of humic or high molecular weight organic matter.  相似文献   

6.
The photolysis of water vapor with carbon monoxide at 1849 Å yields alcohols, aldehydes and organic acids, with an overall quantum yield of 3.3×10–2. This rather high quantum yield could have led to a contribution of 1011 organic molecules cm–2 sec–1 to the pool of organic material on the primitive Earth. The reactions are initiated by the photolysis of water molecules and the resulting hydrogen atoms reduce the carbon monoxide to a variety of one and two carbon compounds. The organic molecules are dissolved in water and thus escape destruction by photolysis. Photolysis of water vapor with carbon dioxide did not yield organic compounds under these conditions.  相似文献   

7.
A number of optically active amino acids, both in the solid state and as sodium or hydrochloride salts in aqueous solution, have been exposed to ionizing radiation from a 3000 Ci60Co -ray source to see if radioracemization might accompany their well-known radiolysis. -Ray doses causing 55–68% radiolysis of solid amino acids typically engendered 2–5% racemization, while aqueous solutions of the sodium salts of amino acids which underwent 53–66% radiolysis showed 5–11% racemization. Amino acid hydrochloride salts in aqueous solution, on the other hand, showed little or no radioracemization accompanying their radiolysis. Both radiolysis, and radioracemization were roughly proportional to -ray dose in the range studied (1–36×106 rads). Mechanisms for the radioracemization of amino acids in the solid state and as aqueous sodium salts are discussed, and the absence of radioracemization for aqueous hydrochloride salts is rationalized. Isovaline, a non-protein amino acid which has been isolated from the Murchison meteorite, contains no -hydrogen atom and is therefore incapable of racemizationvia the chemical mechanisms by which ordinary amino acids racemize. Nevertheless, isovaline suffers radioracemization in the solid state to an extent comparable to that shown by ordinary amino acids, as do its sodium and hydrochloride salts in the solid state. The sodium salt of isovaline in aqueous solution, however, fails to racemize during its radiolysis. Several implicaitons of the newly described phenomenon of radiomization are pointed out for the fields of geochemistry and cosmochemistry.A portion of this research has been described previously at the 144th National Meeting of the American Association for the Advancement of Science, Washington D.C., Feb. 12–17, 1978, at the Fourth College Park Colloquium on Chemical Evolution, University of Maryland, College Park, Maryland, Oct. 18–20, 1978, and at the Carnegie Institution of Washington Conference: Advances in the Biogeochemistry of Amino Acids, Airlie House, Warrenton, Virginia, Oct. 29—Nov. 1, 1978.  相似文献   

8.
Data concerning concentrations and fluxes of dissolved organic compounds (DOC) from marine and lacustrine environments are reviewed and discussed. Dissolved free amino acids and carbohydrates comprised the main fraction in the labile organic carbon pool. Dissolved free amino acids in marine waters varied between 3–1400 nM and those of freshwaters between 2.6–4124 nM. Dissolved free carbohydrates varied between 0.4–5000 nM in marine systems and between 14–1111 nM in freshwaters. The turnover times of both substrate pools varied in marine waters between 1.4 hours and 948 days and in freshwaters between 2 hours and 51 days. Measurements of stable12/13C-ratio and14C-isotope dating in ocean deep water samples revealed DOC turnover times between 2000–6000 years. Studies on carbon flows within the aquatic food webs revealed that about 50% of photosynthetically fixed carbon was channelled via DOC to the bacterioplankton. Excreted organic carbon varied between 1–70% of photosynthetically fixed carbon in marine waters and between 1–99% in freshwaters. The labile organic carbon pool represented only 10–30% of the DOC. The majority (70–90%) of the DOC was recalcitrant to microbial assimilation. Only 10–20% of the DOC could be easily chemically identified. Most of the large bulk material represented dissolved humic matter and neither the chemical structure nor the ecological function of the DOC is as yet clearly understood.Abbreviations ATP Adenosine Tri-Phosphate - AMS Accelerated Mass Spectrometry - BSA Bovine Serum Albumin - GlAse GlucosidAse activity - DAA Dissolved Amino Acids - DCAA Dissolved Combined Amino Acids - DFAA Dissolved Free Amino Acids - DTAA Dissolved Total Amino Acids - DCHO Dissolved Carbohydrates - DCCHO Dissolved Combined Carbohydrates - DFCHO Dissolved Free Carbohydrates - DTCHO Dissolved Total Carbohydrates - DLCFaAc Dissolved Long Chain Fatty Acids - DSCFaAc Dissolved Short Chain Fatty Acids - DOC Dissolved Organic Carbon - DOM Dissolved Organic Matter - DHM Dissolved Humic Matter - DTPhOH Dissolved Total Phenolic compounds - DCPhOH Dissolved Combined Phenolic compounds - DFPhOH Dissolved Free Phenolic conpounds - EOC Excreted Organic Carbon - HS Humic Substances - HPLC High Performance Liquid Chromatography - HTCO High-Temperature Catalytic Oxidation - (Kt+Sn) Transport Constant + Natural Substrate from Michaelis Menten Kinetics - LOCP Labile Organic Carbon Pool - OM Organic Matter - MEE Microbial Extracellular Enzymes - PER Percent of Extracellular Release - PhDOC Photosynthetically derived Dissolved Organic Carbon - POC Particulate Organic Carbon - ROCP Recalcitrant Organic Carbon Pool - Tt Turnover time - UDOC Utilizable Dissolved Organic Carbon - Vmax Maximum Uptake Velocity - WCO Wet Chemical Oxidation Dedicated to Prof. Drs. J. Overbeck on the occasion of his 70th birthday  相似文献   

9.
Summary The course of the CO2 evolution rates of soil samples has been followed continuously in the absence and in the presence of various organic compounds. After an incubation period of 300 hours at 13 and 20°C the CO2 evolution from pasture soil (containing 1.76% soil organic carbon) amounted to 0.13 and 0.44g CO2–C.g soil–1.h–1, respectively. For arable soil (containing 1.20% soil organic carbon) the rates amounted to 0.04 and 0.09 g CO2–C.g soil–1.h–1, respectively.At 20°C larger amounts of the organic substrates added to the soil supplied with 20 g NH4NO3–N.g soil–1 were lost as CO2 than at 13°C, indicating a higher efficiency of the growth of microorganisms at lower temperatures. In the absence of NH4NO3 the respiration rates were initially higher than in its presence, suggesting that a part of the soil microflora is inhibited by low concentrations of NH4NO3. The amounts of carbon lost were low for phenolcarboxylic acids with OH groups in the ortho position. The replacement of one of these groups by a methoxyl group resulted in a larger amount of the C lost as CO2. The replacement of the COOH group by a C=C–COOH group had a decreasing effect on the decomposition of the phenolic acids tested. The decomposition of vanillic acid,p-hydroxybenzoic acid, and of the benzoic acids with OH groups in the meta position was as complete as that of glucose, amino acids or casein. The decomposition of bacterial cells to CO2 was considerably less than that of glucose.No evidence could be obtained that the low percentage of substrate converted to CO2 at the time of maximal respiration rate was due to the decreasing diffusion rate of substrate to the microbial colonies in the soil during the consumption of substrate.  相似文献   

10.
A study of the isotopic composition of organic matter was conducted in a freshwater marsh over seasonal and diel time scales to determine the sources of dissolved organic matter (DOM) and the processes leading to its formation. Bulk C and N isotopic compositions of the bacterial fraction (0.2–0.7 m) and particulate organic matter (POM; 0.7–10 m) were compared on a seasonal basis with the change in 13C of DOM. The bulk isotopic data support the idea that DOM was, in part, derived from the breakdown of larger organic matter fractions. The bacterial fraction and POM were compositionally similar throughout the year, based on a comparison of the 13C of individual amino acids in each fraction. Annual variation in the 13C of amino acids in DOM was greater relative to the variation in larger fractions indicating that microbial reworking was an important factor determining the proteinaceous component of DOM. The 13C enrichment of serine and leucine in each organic matter fraction suggested microbial reworking was an important factor determining organic matter composition during the most productive times of year. Changes in the bulk 13C of DOM were more significant over daily, relative to seasonal, time scales where values ranged by 6 and followed changes in chlorophyll a concentrations. Although bulk 13C values for POM ranged only from –29 to –28 during the same diel period, the 13C of alanine in POM ranged from –30 to –22. Alanine is directly synthesized from pyruvate and is therefore a good metabolic indicator. The 13C of individual amino acids in DOM revealed the diel change in the importance of autotrophic versus heterotrophic activity in influencing DOM composition. Diel changes in the 13C of phenylalanine, synthesized by common pathways in phytoplankton and bacteria, were similar in both DOM and POM. The diel change in 13C of isoleucine and valine, synthesized through different pathways in phytoplankton and bacteria, were distinctly different in DOM versus POM. This disparity indicated a decoupling of the POM and DOM pools, which suggests a greater source of bacterial-derived organic matter at night. The results of this study demonstrate the use of the isotopic composition of individual amino acids in determining the importance of microbial reworking and autotrophic versus heterotrophic contributions to DOM over both diel and seasonal time scales.  相似文献   

11.
Summary The effects of P nutrition under various salinity levels on the protein, amino acids, and nutrients in mature wheat grain were studied. Mexican dwarf wheat (Triticum aestivum L. var Inia) was grown to maturity in solution cultures with variable concentrations of P (0.5-, 5-, 25- and 50 mg P/l) in combination with NaCl at concentrations producing osmotic potentials (s) of –0.4-, –1.4-, –2.4- and –4.4-bars. All other essential nutrients were present in adequate concentrations for vigorous plant growth.Increasing levels of P in the nutrient solutions tended to decrease the grain yield, N, Cl, protein-glutamic acid,-proline,-leucine,-glycine, and-serine, while P, K, Mg, Zn, Mn and Cu in the grain were increased. The sum of all protein amino acids in the grain decreased as the concentration of P increased in the nutrient solution. The effect of P on the individual and sum of amino acids tended to show peak amounts at the 5.0 mg P/l treatment level.Increased levels of salinity significantly reduced grain yield, N, proteinglutamic acid,-proline,-leucine,-glycine,-serine,-aspartic acid,-alanine, and-phenylalanine in the grain. The sum of the protein amino acids (mol/g dry wt.) was decreased in the grain from plants grown at –4.4 bars salinity level, but not in the grain from plants receiving less saline treatments. The concentrations of free amino acids: serine, aspartic acid, glutamic acid, alanine, and arginine were lower in the grain produced at the –4.4 bars salinity than at –0.4 bars salinity level. The sum of free amino acids (mol/g dry wt.) in the grain were decreased at the highest salinity level as compared with concentrations found for grain produced at lower salinity levels.There were some interactions found between P and salinity on the protein amino acids and nutrients in the grains.The amounts of essential amino acids expressed in mg/g of protein were not significantly affected by the increasing levels of P and salinity in the nutrient solution and they were found in adequate or greater amounts than those recommended by the World Health Organization and FAO.  相似文献   

12.
Summary The net total uptake of several amino acids at low (0.8–3.1 moles/liter) as well as high (800–1200 moles/liter) extracellular concentrations, by normal rat liver, a premalignant liver, a solid hepatoma, and the Zajdela ascitic hepatoma cells, has been compared under conditions in which protein synthesis continues. At low amino acid concentrations, the initial (3 min) total uptake of the various amino acids in the Zajdela cells, was 3–10 (average 7) times more, and the intracellular concentration of the labeled amino acids taken up 14–45 (average 31) times more, than in normal liver. At the high amino acid concentrations, the total uptake in the Zajdela cells, at 60–120 min was 2–5 (average 3.5) times more, and the intracellular concentration of the amino acids taken up 8–19 (average 13) times more, than in normal liver; the corresponding values for the premalignant liver and the solid hepatoma were in between those for normal liver and the Zajdela cells. Further, the rate of the total uptake of amino acids, their intracellular concentration, the proportion of the amino acid taken up utilized for protein synthesis, the rate of incorporation of the amino acid taken up into protein, and the cellular growth rate, seemed to be correlated in the four cell/tissue preparations studied. In most cases, the rate of the net uptake fell drastically with time, the uptake virtually stopping after 90–180 min, probably due to lack of serum in the incubation medium.  相似文献   

13.
We found that molecular oxygen and aromatic amino acids such as tryptophan, tyrosine and phenylalanine were essential for the formation of marigranules. Among aromatic amino acids, tryptophan gave the best yield of marigranules. Among indole derivatives, kynurenine gave the best yield of marigranules. Large marigranules (0.3–3 m in diameter) were formed from tryptophan in the presence of Ca2+ and Mg2+, and small marigranules (0.2–0.6 m in diameter) were produced in the absence of such divalent metal ions. Marigranules formed from tryptophan were partially solubilized with methanol and completely solubilized with dimethyl sulfoxide and dimethyl-formamide. The solubilized marigranules consisted of polymers with molecular weights of 2×103 and 105–107 daltons. The methanol-soluble fraction provided well-defined vesicles upon sonication. Marigranule-like particles were formed from D,L-glyceraldehyde, D-erythrose and D-ribose but they were not formed from glycolaldehyde, L-arabinose and D-glucose. Among sugars, D-erythrose gave the best yield of the particles.  相似文献   

14.
Field studies to examine the in situ assimilation and production of ammonium (NH4 +) by bacterial assemblages were conducted in the northern Gerlache Strait region of the Antarctic Peninsula. Short term incubations of surface waters containing 15N-NH4 + as a tracer showed the bacterial population taking up 0.041–0.128 g-atoms Nl–1d–1, which was 8–25% of total NH4 + uptake rates. The large bacterial uptake of NH4 + occurred even at low bacterial abundance during a rich phytoplankton bloom. Estimates of bacterial production using 3H-leucine and -adenine were l.0gCl–1 d–1 before the bloom and 16.2 g Cl–1 d–1 at the bloom peak. After converting bacterial carbon production to an estimate of nitrogen demand, NH4 + was found to supply 35–60% of bacterial nitrogen requirements. Bacterial nitrogen demand was also supported by dissolved organic nitrogen, generally in the form of amino acids. It was estimated, however, that 20–50% of the total amino acids taken up were mineralized to NH4 +. Bacterial production of NH4 + was occurring simultaneously to its uptake and contributed 27–55% of total regenerated NH4 + in surface waters. Using a variety of 15N-labelled amino acids it was found that the bacteria metabolized each amino acid differently. With their large mineralization of amino acids and their relatively low sinking rates, bacteria appear to be responsible for a large portion of organic matter recycling in the upper surface waters of the coastal Antarctic ecosystem.  相似文献   

15.
Gunvor Øie  Yngvar Olsen 《Hydrobiologia》1997,358(1-3):251-258
Rotifers (Brachionus plicatilis) grown atdifferent growth rate ( = 0.05–0.39 d–1)were analyzed for protein, lipid, fatty acids, aminoacids and free amino acids, and values are expressedin terms of individuals and dry weight. Increase ingrowth rate is equivalent with increased food rationof the individual rotifer, which responded by higheregg ratio. The protein content per individualrotifer increased by 60–80% when the growth rate increased, whereas the protein content per dryweight showed a slight, although insignificant,increase (p > 0.05). The lipid content perindividual was constant, whereas lipid per dryweight decreased when the growth rate increased. Theratio DHA/EPA decreased when the growth ratesincreased. The amino acids profile in percent oftotal amino acids showed low variation betweencultures maintained at different growth rates,whereas the values expressed in terms of amino acidper individual showed higher variation. The range ofvariation for free amino acids was more pronouncedthan for total amino acids.Short-term food enrichment of poorly fed rotifers( = 0.05 d–1) with balanced protein richdiet resulted in increased protein and lipid contentper rotifer. The protein content per dry weightshowed only minor changes whereas lipid per dryweight increased. Contrary, short term enrichmentwith a lipid rich diet resulted in increased lipidcontent per individual rotifer and per dry weight,whereas the protein content per individual remainedconstant and the protein content per dry weightshowed a slight decrease.Our experiments show that the amount of protein, wasquite variable in rotifers, and that feeding andgrowth condition were decisive factors affecting it.The range of variation was large enough to be animportant factor during first feeding of marinelarvae, and should therefore be considered infeeding larvae.  相似文献   

16.

Objective

To analyse the association in newborns between blood levels of phenylalanine and feeding method and gestational age.

Study Design

This observational, cross-sectional study included a sample of 11,829 infants between 2008 and 2013 in a Spanish region. Data were recorded on phenylalanine values, feeding method [breast, formula, mixed (breast plus formula), or partial or fully intravenous feeding], gestational age in weeks (<32, 32–37, ≥37), gender and days since birth at the moment of blood collection. Outcomes were [phenylalanine] and [phenylalanine] ≥95th percentile. Associations were analysed using multivariate models [linear (means difference) and logistic regression (adjusted odds ratios)].

Results

Higher phenylalanine values were associated with lower gestational age (p<0.001) and with intravenous feeding (p<0.001).

Conclusion

The degree of prematurity and intravenous feeding influenced the plasma concentration of phenylalanine in the newborn. Caution should be taken in [phenylalanine] for newborns with intravenous feeding, monitoring them carefully. Very preterm infants given the recommended amount of amino acids should also be strictly monitored. These findings should be taken into consideration and call for adapting the amounts to the needs of the infant.  相似文献   

17.
Summary Of the 20 protein amino acids, 16 have a methylene group at the position, and a further three bear a methine group. No aromatic, carboxamido, carboxylic carbon, or hetero atoms are attached directly to the carbon, but they are separated by this methylene or occasionally by a longern-alkylene spacer group. Therefore, the structure of the protein amino acids should rather be formulated as H2N–CH((CH2)n–R)–COOH instead of the generally accepted H2N–CH(R)–COOH. The appearance of and the role played by the spacer group are discussed in an evolutionary context. It is suggested that the spacer group appeared as a result of prebiotic selection, based on the relative abundance, racemization rate, and suitability for thermal polymerization of the protein amino acids and their homologs with various spacer group lengths. At the biotic level of evolution the requirements for ribosomal polymerization, as well as the abilities of polypeptides to maintain a stable and flexible threedimensional structure and to bind ligands are considered and are proposed to have been responsible for the possible exclusion of longer spacer groups. It is concluded that the general role of the spacer group is to ensure the uniformity of the constant regions H2N–CH(-)–COOH and the individuality of the R contact groups by spatially separating them.  相似文献   

18.
From various oxic or anoxic habitats anaerobic enrichment cultures were set up which completely oxidized aromatic amino acids to CO2 with nitrate as electron acceptor. Tyrosine and tryptophan at first were degraded to phenol and indole, respectively, prior to utilization of the aromatic ring; with phenylalanine no intermediates were detected. Attempts to isolate denitrifying bacteria able to completely degrade aromatic amino acids were unsuccessful. Starting with these enrichments several strains of denitrifying bacteria were anaerobically enriched and isolated with known fermentation products of amino acids (phenylacetate, 4-OH-phenylacetate, 2-OH-benzoate) plus nitrate as sole sources of carbon and energy.Three strains were characterized further. They grew well in defined mineral salts medium, were gram-negative and facultatively anaerobic with strictly oxidative metabolism; molecular oxygen, nitrate or nitrite served as electron acceptors. The isolates were tentatively identified as pseudomonads, but could not be aligned to known species. They oxidized a variety of aromatic compounds completely to CO2 anaerobically and, with some exceptions, also aerobically. The substrates included among others: (4-OH)-phenylacetate, (4-OH)-phenylglyoxylate, benzoate, 2-aminobenzoate, phenol, OH-benzoates, indole and notably toluene. Reduced alicyclic compounds were not utilized. During anaerobic degradation of (4-OH)-phenylacetate transient accumulation of (4-OH)-phenylglyoxylate was observed.It is proposed that anaerobic -oxidation of the-CH2–COOH side chain to -CO–COOH initiates anaerobic degradation of (4-OH)-phenylacetate. This implies a novel type of anaerobic -hydroxylation with water as the oxygen donor. Abbreviation. Hydroxyl groups were abbreviated as OH  相似文献   

19.
Homochirality plays an important role in all living organisms but its origin remains unclear. It also remains unclear whether such chiral molecules survived terrestrial heavy impact events. Impacts of extraterrestrial objects on early oceans were frequent and could have affected the chirality of oceanic amino acids when such amino acids accumulated during impacts. This study investigated the effects of shock-induced heating on enantiomeric change of valine with minerals such as olivine ([Mg0.9, Fe0.1]2SiO4), hematite (Fe2O3), and calcite (CaCO3). With a shock wave generated by an impact at ~0.8 km/s, both d- and l-enriched valine were significantly decomposed and partially racemized under all experimental conditions. Different minerals had different shock impedances; therefore, they provided different P-T conditions for identical impacts. Furthermore, the high pH of calcite promoted the racemization of valine. The results indicate that in natural hypervelocity impacts, amino acids in shocked oceanic water would have decomposed completely, since impact velocity and the duration of shock compression and heating are typically greater in hypervelocity impact events than those in experiments. Even with the shock wave by the impact of small and decelerated projectiles in which amino acids survive, the shock heating may generate sufficient heat for significant racemization in shocked oceanic water. However, the duration of shock induced heating by small projectiles is limited and the population of such decelerated projectiles would be limited. Therefore, even though impacts of asteroids and meteorites were frequent on the prebiotic Earth, impact events would not have significantly changed the ee of proteinogenic amino acids accumulated in the entire ocean.  相似文献   

20.
Summary Glutamine uptake by rat renal brushborder vesicles occurred via two distinct saturable processes withK m values of 0.145 and 8.5 mM which were stimulated by both ionic and sodium gradients with a pH optimum of 6.8–7.1 Glutamic acid uptake also occurred by a two-component system withK m values of 0.016 and 3.60 mM. Both components were stimulated specifically by a sodium gradient. The lowK m system for glutamic acid had a pH optimum of 7.2–7.4. Glutamine entry at 0.06 mM was inhibited by a variety of amino acids at 3 mM, including dibasic amino acids, glycine, valine, and phenylalanine. Glutamic acid entry at 0.06 mM was inhibited 20–30% by 3 mM phenylalanine, valine, -aminoisobutyric acid, and glutamine. No metabolic alteration of glutamic acid was observed on incubation with membrane vesicles, but glutamine was significantly hydrolyzed to glutamic acid upon prolonged incubation. Hydrolysis of glutamine was negligible at 15 sec incubation which was employed for measurement of initial rate of entry. These studies provide support for the existence of an uptake system in the brushborder of the renal proximal tubule cell capable of handling the reabsorption of glutamine normally present in glomerular filtrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号