首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of Damline ewes with i.v. injections of various doses (2, 5 or 10 ml) of bovine follicular fluid for 72 h after prostaglandin-induced luteal regression resulted in a significant decrease in plasma concentrations of FSH after a 1.5-2 h delay but did not affect LH. The half life of this decrease in plasma FSH levels (156 min) after injection of follicular fluid was similar to that for clearance (159 min) of ovine FSH after infusion. A significant rebound increase in plasma FSH levels occurred by 13 h after all follicular fluid injections, and the magnitude of this rebound was inversely related to the dose of follicular fluid injected. A significant delay in the onset of oestrus occurred only with 5 and 10 ml bovine follicular fluid. There was no significant effect on ovulation rate or subsequent corpus luteum function as measured by plasma concentrations of progesterone. Infusion of ovine FSH (50 micrograms/h for 48 h) during the period of follicular fluid treatment prevented the delay in onset of oestrus and resulted in a substantial (2-10-fold) increase in ovulation rate. Corpus luteum function in terms of progesterone secretion was also enhanced. These results show that (1) intermittent suppression of FSH during the preovulatory period in the ewe does not affect subsequent ovulation rate or corpus luteum function and (2) the delay in the onset of oestrus induced by bovine follicular fluid can be prevented by exogenous FSH.  相似文献   

2.
The aim of this study was to determine whether the decline in oestradiol inhibition of circulating luteinizing hormone (LH) and follicle-stimulating hormone (FSH) during the peripubertal period of heifers is associated with a change in opioid modulation of LH and FSH secretion. Opioid inhibition of LH secretion was determined by response to administration of the opioid antagonist naloxone. Prepubertal heifers (403 days old) were left as intact controls, ovariectomized or ovariectomized and chronically administered oestradiol. Control heifers were used to determine time of puberty. Three weeks after ovariectomy, four doses of naloxone (0.13-0.75 mg kg-1 body weight) or saline were administered to heifers in the treatment groups in a latin square design (one dose per day). Blood samples were collected at intervals of 10 min for 2 h before and 2 h after administration of naloxone. This procedure was repeated four times at intervals of 3 weeks during the time intact control heifers were attaining puberty. All doses of naloxone induced a similar increase in concentration of serum LH within a bleeding period. During the initial bleeding period (before puberty in control heifers), administration of naloxone induced an increase in LH concentration, but the response was greater for heifers in the ovariectomized and oestradiol treated than in the ovariectomized group. At the end of the study when control heifers had attained puberty (high concentrations of progesterone indicated corpus luteum function), only heifers in the ovariectomized and oestradiol treated group responded to naloxone. Opioid inhibition of LH appeared to decline in heifers during the time control heifers were attaining puberty. Heifers in the ovariectomized group responded to naloxone at the time of administration with an increase in FSH, but FSH did not respond to naloxone at any other time. Administration of naloxone did not alter secretion of FSH in ovariectomized heifers. These results suggest that opioid neuropeptides and oestradiol are involved in regulating circulating concentrations of LH and possibly FSH during the peripubertal period. Opioid inhibition of gonadotrophin secretion appeared to decline during the peripubertal period but was still present in ovariectomized heifers treated with oestradiol after the time when age-matched control heifers had attained puberty. We conclude that opioid inhibition is important in regulating LH and FSH in circulation in heifers during the peripubertal period. However, opioids continue to be involved in regulation of circulating concentrations of LH after puberty.  相似文献   

3.
In Exp. I, blood samples were collected simultaneously from the posterior vena cava and jugular vein or aorta from 7 heifers every 5-20 min for 2-5 h. Concomitant pulsatile secretion of oxytocin and immunoreactive neurophysin I was detected in the vena cava, but not in the jugular vein or aorta. Concentrations of oxytocin and immunoreactive neurophysin increased earlier and were higher in the vena cava than in the jugular vein or aorta after the injection of a luteolytic dose of prostaglandin F-2 alpha analogue during the mid-luteal phase of the oestrous cycle, demonstrating its ovarian but not pituitary origin. In Exp. II, blood samples were collected from the jugular vein every 12 h during 1 week after oestrus. Follicular growth had been stimulated during the preceding oestrous cycle with PMSG (10 heifers and cows) or with FSH (5 animals); 6 heifers served as controls. There was a high correlation between the number of follicles or CL and the increase in oxytocin and immunoreactive neurophysin I. Although PMSG had a greater luteotrophic effect than did FSH on progesterone secretion, a similar stimulation of oxytocin and immunoreactive neurophysin I was not observed. It is concluded that immunoreactive neurophysin I and oxytocin are secreted from the ovary in concentrations dependent upon the number of corpora lutea (and of follicles) present. During the mid-luteal period the secretion occurs in a concomitant pulsatile fashion.  相似文献   

4.
The effect of an induced hyperadrenal state on luteinizing hormone (LH) secretion and subsequent ovarian function was examined in both intact and adrenalectomized (ADRX) heifers. Treatments were begun on Day 2 or Day 16 of an estrous cycle in order to examine their effect on corpus luteum development or ovulation, respectively. In Experiment I, continuous intravenous infusion of ACTH (1.0 mg/24 h) to intact heifers decreased LH concentrations during the early phase of the cycle (Days 3-5). Treatment of ADRX heifers with hydrocortisone succinate (HS) (100 mg/24 h) did not appear to change mean LH concentrations, although da Rosa and Wagner (1981) have reported reduced plasma concentrations of progesterone at mid-cycle in these ACTH-treated intact heifers and HS-treated ADRX heifers. ACTH treatment of ADRX heifers had no effect on LH or progesterone. In the second study, there were similar frequencies of LH surges at the anticipated time of ovulation in all treatment groups. HS (100 mg/24 h) in ADRX heifers and ACTH (0.5 mg/24 h) in intact heifers was given continuously beginning on Day 16 of an estrous cycle. Although some animals in all groups exhibited LH surges, the ACTH-treated intact and HS-treated ADRX heifers failed to show a consistent subsequent increase in progesterone concentrations in plasma, suggesting a failure of luteal development. Although no difference was seen in baseline concentrations of LH, there was a greater difference between basal and overall mean LH concentrations in control groups than was observed in ACTH- or HS-treated animals. These induced hyperadrenal states resulted in depression of ovarian function as shown by decreased plasma progesterone during the luteal phase of the cycle. It is not known if other noncorticoid steroids from the adrenal cortex are necessary for a full expression of this effect.  相似文献   

5.
A luteolytic dose (500 micrograms) of cloprostenol was given on Day 12 of the oestrous cycle to 5 heifers. Blood samples were collected simultaneously from the caudal vena cava and jugular vein at 5-20-min intervals from -6 to 0 (control period), 0 to 12 and 24 to 36 h after PG injection. Pulses of LH were secreted concomitantly with pulses of FSH during all sampling periods. However, during the control period separate FSH pulses were detected resulting in a shorter (P less than 0.01) interpulse interval for FSH than LH (93 versus 248 min). LH and FSH pulse frequencies increased (P less than 0.01) beginning 1-3 h after PG to interpulse intervals of 59 and 63 min, respectively, and continued to be maintained 24-36 h after PG. Concomitantly there was a 2-3-fold increase (P less than 0.01) in basal concentrations and pulse amplitude for LH (but not FSH). FSH basal concentrations and pulse amplitudes decreased (P less than 0.05) in 3 heifers 24-36 h after PG. Pulsatile secretion of oestradiol was observed at frequencies similar to LH during the periods 4-12 h (3 heifers) and 24-36 h (2 heifers) after PG, respectively, resulting in higher (P less than 0.05) mean oestradiol concentrations. Progesterone concentrations in the vena cava increased (P less than 0.01) 5-10 min after PG but decreased (P less than 0.01) 67% by 20 min after PG. This decrease was followed by a rise (P less than 0.05) beginning 2-3 h after PG and lasting for an average of 3.3 h.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
In 4-day estrous cyclic rats the neutralization of postovulatory biological activity of LH (by means of a single 0.5 ml sc injection of an anti-LH serum) (LHAS) at any time between 12.00 h on estrus and 12.00 h on metestrus prolongs the estrous cycle corpus luteum (CL) progesterone secretion for almost 24 hours. Injection of LHAS later on during the estrous cycle has no effect on CL progesterone secretion. It is concluded that postovulatory LH secreted up to time of CL maximum capacity to produce progesterone (metestrus afternoon) accelerates the intrinsic luteolytic mechanism, and that once the intrinsic luteolytic process has been switched on (shortly after noon of metestrus), it will lead to the CL functional demise regardless of the luteolytic action of LH.  相似文献   

7.
The mechanisms involved in the control of oxytocin and progesterone secretion by the ovine corpus luteum have been investigated in vitro using luteal slice incubations. Oxytocin and progesterone were secreted at constant rates from luteal slices for 2 h of incubation (366 +/- 60 pg X mg X h and 18.9 +/- 0.18 ng X mg X h, respectively). Secretion of progesterone, but not of oxytocin, was significantly (p less than 0.02) stimulated in the presence of ovine luteinizing hormone. Incubation of luteal slices in medium containing 100 mM potassium, however, resulted in increased secretion of oxytocin and, to a lesser extent, of progesterone (294 +/- 59% and 142 +/- 15%, respectively, p less than 0.05). Basal oxytocin secretion was reduced during incubation in calcium-free medium, compared to secretion in the presence of calcium (70 +/- 15 and 175 +/- 25 pg X mg X 20 min, respectively, p less than 0.01), whereas progesterone secretion was not altered in the absence of calcium. Secretion of both hormones by luteal slices was stimulated by the addition of the calcium ionophore A23187 (p less than 0.05). Addition of prostaglandin F2 alpha (2.8 microM) had no effect on secretion of either oxytocin or progesterone. We have demonstrated that oxytocin and progesterone can be stimulated, independently, from corpus luteum slices incubated in vitro. The pattern of release is consistent with the proposal that oxytocin, but not progesterone, is associated with and actively released from luteal secretory granules. Our results also indicated that prostaglandin F2 alpha does not directly stimulate release of oxytocin or progesterone from luteal cells in vitro.  相似文献   

8.
When ovaries are removed prior to puberty, administration of exogenous 17 beta-estradiol (E2) decreases concentrations of luteinizing hormone (LH) below that of ovariectomized heifers receiving no E2. Subsequent to the time age-matched intact heifers reach puberty, exogenous E2 increases secretion of LH in ovariectomized heifers above that of ovariectomized heifers receiving no E2. The hypothesis that E2 would inhibit gonadotropin secretion in bovine males during the time E2 no longer inhibited gonadotropin secretion in age-matched bovine females was tested. Males (n = 12) and females (n = 12) were gonadectomized at 241 +/- 3 days of age, and half of each sex (6 males and 6 females) were administered a 27-cm E2 implant. An additional group of males (n = 6) and females (n = 6) remained intact and served as controls. Blood samples were collected (to quantify LH and follicle-stimulating hormone [FSH]) from all animals at 15-min intervals for 24 h at 1, 7, 13, 17, 21, 25, 29, 33, 37, and 43 wk after gonadectomy. Additional blood samples were collected twice weekly from control females to monitor progesterone and onset of corpus luteum function (451 days of age). E2 inhibited frequency of pulses of LH (p less than 0.01) and decreased mean concentration of LH and FSH (p less than 0.01) at Week 1 in gonadectomized males treated with E2 compared to gonadectomized males not administered E2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The role of LH in luteal function in pregnant dogs was investigated at two different periods during pregnancy: (i) the transitional period from apparent total independence of the corpus luteum to relative hormonal dependence (days 20-35); and (ii) the period of full hormonal dependence (days 35-40). At both periods, LH neutralization, LH inhibition and LH administration studies were conducted. At both periods LH immunoneutralization had no significant effect on the secretion pattern of progesterone or prolactin. GnRH antagonist treatment (Nal-Glu) decreased plasma LH below the detection limit in all treatment periods. Nal-Glu had no effect on prolactin. When GnRH antagonist osmotic pumps were implanted, a transient decrease in plasma progesterone concentrations occurred on days 21-22 but not during the remaining implantation period. When GnRH antagonist was injected, plasma progesterone temporarily decreased (24 h) after the beginning of treatment starting on day 20, but decreased for 5 days when the treatment started on day 35. When purified pig LH was injected i.v. twice a day for 2 consecutive days either from day 30 or from day 40, plasma progesterone concentrations remained constant during treatment. However, on days 40 and 41, an increase in prolactin was observed. These results indicate that LH immunoneutralization may not impair corpus luteum function. In addition, GnRH antagonist induces dose- and time-dependent effects. Only high doses resulted in a decrease in progesterone, the duration of which increased as pregnancy progressed. Continuous GnRH antagonist administration, even when associated with complete LH inhibition, was not associated with detectable effects on progesterone. Finally, LH administration does not stimulate progesterone but may modify prolactin in the last third of pregnancy. Other studies indicated a corpus luteum prolactin dependency. The present study indicates that, in pregnant bitches, LH may not be necessary to sustain progesterone synthesis but that its role may vary in a time-dependent manner.  相似文献   

10.
Basal progesterone (P4) production by isolated goat ovarian cells in vitro was in the order corpus luteum (CL) greater than granulosa (G) greater than theca (TH), while estradiol (E2) production was in the order TH greater than G greater than CL. In G cells, various concentrations (0.01 to 100 micrograms/ml) of luteinizing hormone (LH), human chorionic gonadotropin (hCG) and follicle-stimulating hormone (FSH) increased P4 and E2 secretion. Testosterone (T, 10(-9) to 10(-5) M) produced dose-dependent increases in P4 and E2 secretion. Testosterone and LH together had an additive effect on E2 secretion. The combined effect of the lower (less than 10(-6) M) concentrations of T and LH on P4 production was marginally higher than either agent alone, but the increase was statistically insignificant; at higher concentrations of T (10(-6) and 10(-5) M) in combination with LH, P4 secretion was similar to that with LH alone, but was significantly (p less than 0.01 and less than 0.001, respectively) less compared to that with T alone. Follicle-stimulating hormone and T together produced a synergistic effect on E2 and an additive effect on P4 production. In TH cells, a dose-dependent increase in P4 and E2 production was observed with LH and hCG, but the effect of FSH was not significant. Testosterone produced a dose-dependent increase in P4 and E2 secretion. Testosterone and LH together induced higher steroid production than either agent alone. However, the increase was not statistically significant compared to T alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Oxytocin infusions were initiated on day 10 of the oestrous cycle in ewes, and luteal regression was induced by injection of 100 micrograms cloprostenol on day 12. Blood samples were collected at frequent intervals via an indwelling jugular vein cannula to measure concentrations of progesterone and luteinizing hormone (LH) during the luteal and follicular phases in saline (n = 6) and oxytocin (n = 5) infused animals. The oxytocin infusion maintained peripheral plasma concentrations of 53 +/- 3.2 pg oxytocin ml-1 (mean +/- SEM) compared with values of about 1 pg ml-1 during oestrus in control ewes. Oxytocin infusion had no effect on luteal phase progesterone concentrations, the timing of luteolysis, basal luteinizing hormone (LH) secretion, LH pulse frequency, or the timing or height of the LH surge. Treated ewes came into oestrus significantly earlier than controls (P < 0.05) but ovulated normally. Uterine samples collected 96 h after cloprostenol injection (approximately day 2 of the cycle) showed that oxytocin receptor concentrations were significantly higher in the endometrium in ewes that had been given a 5 day oxytocin infusion than in control animals (556 and 262 fmol mg-1 protein, respectively: geometric means from ANOVA, P < 0.001), whereas myometrial receptor concentrations were not affected (113 and 162 fmol mg-1 protein, respectively). We conclude that the previously reported delay in luteal development caused by oxytocin infusion (Wathes et al., 1991) is not due to the inhibition or delay of ovulation, but must instead occur via a direct influence on the developing corpus luteum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In Exp. 1, injections of 10 ml bovine follicular fluid (bFF, i.v. or s.c.), given twice daily for 3 days after injection of a luteolytic dose of PGF-2 alpha, delayed the onset of oestrus in 3 of 6 heifers to 8 or 9 days after PGF-2 alpha, as compared with 2 or 3 days after PGF-2 alpha in control heifers. Mean plasma concentrations of FSH and LH during the injection period were not different from those in saline-injected heifers. In Exp. 2, i.v. injections of 20 ml bFF twice daily for 3 days uniformly delayed oestrus to 8 days after PGF-2 alpha (N = 4) and injections of 20 ml bFF i.v. every 6 h for 24h on the day of PGF-2 alpha injection delayed oestrus to 5.0 +/- 0.6 days after PGF-2 alpha as compared with 2.8 +/- 0.3 days for control heifers. In both treatment groups, plasma concentrations of FSH were suppressed during the injection period and increased transiently after treatment, but plasma concentrations of LH during the injection period were not different from those of control heifers. Plasma levels of oestradiol in heifers given bFF remained basal for 2 or 3 days after treatment, then increased several days before the delayed oestrus, in a manner similar to that in control heifers, and elicited normal preovulatory surges of LH and FSH. Plasma concentrations of progesterone and the length of the next oestrous cycle were normal, indicating formation of functional corpora lutea. Therefore, bFF treatments appear to delay oestrus by selectively suppressing plasma FSH, without affecting LH, and delaying the development of the preovulatory follicle. These results suggest that FSH may be critical to support the growth and development of the preovulatory follicle after luteolysis in cows.  相似文献   

13.
The GnRH antagonist cetrorelix was given during the early (Days 1-5), mid (Days 6-10 or 5-12) or for the entire (Days 1-16) luteal phase of mares to inhibit the secretion of FSH and LH (Day 0=ovulation). Frequent blood sampling from Day 6 to Day 14 was used to determine the precise time-course of the suppression (cetrorelix given Days 6-10). Cetrorelix treatment caused a decrease in FSH and LH concentrations by 8 and 16 h, respectively, and an obliteration of the response to exogenous GnRH given 24h after treatment onset. Treatment never suppressed gonadotropin concentrations to undetectable levels; e.g. frequent sampling showed that the nadirs reached in FSH and LH were 46.2±6% and 33.1±11%, respectively, of pre-treatment concentrations. Daily FSH concentrations were decreased in all treatment groups but daily LH concentrations were lower only when treatment commenced at the beginning of the luteal phase; progesterone concentrations depended on the time of cetrorelix administration, but the changes suggested a role for LH in corpus luteum function. The inter-ovulatory interval was longer than controls when cetrorelix was given in the mid- or for the entire luteal phase, but was unaffected by treatment in the early phase. Nevertheless, in all groups, FSH concentrations were higher (P<0.05 when compared to Day 0, subsequent ovulation) approximately 6-10 days before this next ovulation. This consistent relationship suggests a stringent requirement for a GnRH-induced elevation of FSH above a threshold at, but only at, this time; i.e. approximately 6-10 days before ovulation.  相似文献   

14.
Binding of follicle stimulating hormone (FSH) to a crude membrane fraction of bovine corpus luteum (CL) has been detected. This binding meets the usual criteria for a receptor based on specificity, time course of reaction and association constant (Ka = 8.5 x 10(10)M(-1)). Physiological studies with CL removed from heifers at specific times after estrus indicate that day-6 CL had the highest FSH binding. However, a correlation with physiological function was not obvious since some functional mid-cycle CL were high in progesterone and luteinizing hormone (LH) receptor but had nondetectable FSH receptor. Conversely, some late-cycle CL had low progesterone and LH receptor but significant quantities of FSH receptor.  相似文献   

15.
This study was designed to test the hypothesis that treatment with super-ovulatory drugs suppresses endogenous pulsatile LH secretion. Heifers (n=5/group) were superovulated with eCG (2500 IU) or FSH (equivalent to 400 mg NIH-FSH-P1), starting on Day 10 of the estrous cycle, and were injected with prostaglandin F(2alpha) on Day 12 to induce luteolysis. Control cows were injected only with prostaglandin. Frequent blood samples were taken during luteolysis (6 to 14 h after PG administration) for assay of plasma LH, estradiol, progesterone, testosterone and androstenedione. The LH pulse frequency in eCG-treated cows was significantly lower than that in control cows (2.4 +/- 0.4 & 6.4 +/- 0.4 pulses/8 h, respectively; P<0.05), and plasma progesterone (3.4 +/- 0.4 vs 1.8 +/- 0.1 ng/ml, for treated and control heifers, respectively; P<0.05) and estradiol concentrations (25.9 +/- 4.3 & 4.3 +/- 0.4 pg/ml, for treated and control heifers, respectively; P<0.05) were higher compared with those of the controls. No LH pulses were detected in FSH-treated cows, and mean LH concentrations were significantly lower than those in the controls (0.3 +/- 0.1 & 0.8 +/- 0.1, respectively; P<0.05). This suppression of LH was associated with an increase in estradiol (9.5 +/- 1.4 pg/ml; P<0.05 compared with controls) but not in progesterone concentrations (2.1 +/- 0.2 ng/ml; P>0.05 compared to controls). Both superovulatory protocols increased the ovulation rate (21.6 +/- 3.9 and 23.0 +/- 4.2, for eCG and FSH groups, respectively; P>0.05). These data demonstrate that super-ovulatory treatments decrease LH pulse frequency during the follicular phase of the treatment cycle. This could be explained by increased steroid secretion in the eCG-trated heifers but not in FSH-treated animals.  相似文献   

16.
Oxytocin receptors play an important role in the establishment of pregnancy and parturition in ruminants. Previous studies in cyclic and early pregnant ewes have indicated that receptor concentrations are regulated by steroid hormones and fetal secretory products. This study investigated the effect of oestradiol and progesterone, or co-culture with placenta or corpus luteum on oxytocin receptor expression. Endometrial explants from late pregnant ewes were cultured for up to 96 h in various treatment combinations. After culture, tissues were subjected to in situ hybridization and autoradiography with 125I-labelled oxytocin receptor antagonist to localize and measure the expression of oxytocin receptor mRNA and protein. Results were quantified as absorbance units from autoradiographs. Oxytocin receptors were confined to the endometrial luminal epithelium and both mRNA and 125I-labelled oxytocin receptor antagonist binding were upregulated spontaneously in basic serum-free medium. Upregulation occurred earlier in the presence of oestradiol (0.1 mumol l-1) but the final receptor concentration was similar to that found in the basic medium. Continuous progesterone treatment (1 mumol l-1) and co-culture with corpus luteum both delayed the increase in oxytocin receptor mRNA, but a short initial (4 h) period in progesterone-free basic medium resulted in loss of the inhibitory effect. Co-culture with placental tissues had no effect. In conclusion, oxytocin receptor expression in the luminal epithelium increased immediately on removal from the maternal environment. This occurred regardless of treatment and did not require the presence of steroid hormones, but could be accelerated or delayed by oestradiol and progesterone, respectively. There may be an additional inhibitory factor present in the corpus luteum.  相似文献   

17.
Plasma progesterone concentrations in jugular vein blood samples collected every other day after calving from 13 Friesian dairy cows indicated that ovarian cyclic activity was initiated by 16.6 +/- 1.1 (s.e.m.) days post partum, except for 1 cow which did not resume cyclic activity until Day 98 post partum. Rectal palpation of the ovaries indicated that a developing follicle was recognizable at a mean time of 15.7 +/- 2.0 days after calving. During the first oestrous cycle after parturition there was a significantly shorter period when plasma progesterone levels were elevated than during the next 2 cycles. Concentrations of progesterone, LH, FSH and prolactin were determined for 4 cows, in blood samples taken every 6 h from 2 to 36 days post partum. Tonic LH release was lower during the first 10 days than subsequently, but the lack of change in pattern for FSH suggests dissimilar control mechanisms for these hormones during this time. Three cows showed evidence of a resumption of ovarian cyclicity during the sampling period: in 2 there was an initial LH surge of a magnitude which would normally give rise to ovulation, followed 4 days later by an increase in plasma progesterone lasting only 5 and 9 days. This progesterone was considered to be of follicular origin. A second LH surge was followed by the presence of a corpus luteum.  相似文献   

18.
Early corpus luteum development in nonpregnant and pregnant goats was characterized by a steady increase in peripheral plasma concentrations of progesterone and a high release of prostacyclin (PGI-2) but low release of prostaglandin F-2 alpha (PGF-2 alpha). Jugular administration of oxytocin antagonist (OXA) (0.2 microgram/kg/day) on the day of oestrus and for 3 days thereafter to cyclic and mated goats, significantly (P less than 0.001) inhibited progesterone and prostaglandin secretion and reduced conception rate. Co-administration of PGI-2 (200 micrograms/day) with OXA resulted in a steady increase of progesterone and establishment of pregnancy, but co-administration of PGF-2 alpha (175 micrograms/day) with OXA had no effect. It is suggested that oxytocin is required for early development of the corpus luteum and such effects may be mediated via PGI-2 production.  相似文献   

19.
Measurement of plasma progesterone, LH and FSH were made every 6 h during the first 6 days of pregnancy in the mouse. Plasma progesterone and LH were low on day 1, minimum values being recorded at 24 h post coitus. Concentrations of both these hormones started rising during the second half on day 2 with the rise continuing during day 3 to a progesterone peak of 25 ng/ml early on day 4 and an LH peak of 37 ng/ml late on day 4. Levels of progesterone fell during day 4 and LH during day 5 to approximately half their respective peak values and then remained relatively constant over the remainder of the measurement period. Levels of FSH, which were high early on day 1 (180 ng/ml), fell sharply by midday with a small rise late in the day followed by a decline during day 2 to a minimum level of 2 ng/ml at 48 h post coitus. Early on day 3 FSH values rose to 120 ng/ml then fell to 50-60 ng/ml during the next 6 h and remained relatively stable at this level during days 4 and 5. It is suggested that LH is concerned with progesterone production and maintenance of the corpus luteum whilst FSH is concerned with the production of oestrogen required for implantation in this species.  相似文献   

20.
Jugular venous concentrations of oxytocin and progesterone changed in parallel during the oestrous cycle in the ewe, falling at luteal regression and rising with formation of the new corpus luteum. These fluctuations in the circulating concentration of oxytocin were not caused by changes in its metabolic clearance rate. On Days 6-9 of the cycle circulating oxytocin concentrations exhibited a diurnal rhythm, peaking at 09:00 h; this rhythm was absent on Days 11-14. Although there was no evidence for increased production of oxytocin at or preceding luteal regression in samples taken daily, more frequent sampling revealed that two thirds of detected surges of uterine secretion of prostaglandin (PG) F-2 alpha were accompanied by raised levels of oxytocin. This oxytocin was not of pituitary origin. Luteal regression induced with cloprostenol on Day 8 after oestrus caused a decrease in circulating progesterone level followed after 24 h by a fall in oxytocin. Measurements of oxytocin in the ovary and other organs before and after treatment with cloprostenol identified the corpora lutea as a major potential source of oxytocin, and suggested that 98% of luteal oxytocin was available for secretion in response to prostaglandin stimulation. The data are consistent with a role for ovarian secretion of oxytocin in response to uterine release of PGF-2 alpha in the control of luteal regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号