首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 992 毫秒
1.
Pallister Killian syndrome (OMIM: # 601803) is a rare multisystem disorder typically caused by tissue limited mosaic tetrasomy of chromosome 12p (isochromosome 12p). The clinical manifestations of Pallister Killian syndrome are variable with the most common findings including craniofacial dysmorphia, hypotonia, cognitive impairment, hearing loss, skin pigmentary differences and epilepsy. Isochromosome 12p is identified primarily in skin fibroblast cultures and in chorionic villus and amniotic fluid cell samples and may be identified in blood lymphocytes during the neonatal and early childhood period. We performed genomic expression profiling correlated with interphase fluorescent in situ hybridization and single nucleotide polymorphism array quantification of degree of mosaicism in fibroblasts from 17 Caucasian probands with Pallister Killian syndrome and 9 healthy age, gender and ethnicity matched controls. We identified a characteristic profile of 354 (180 up- and 174 down-regulated) differentially expressed genes in Pallister Killian syndrome probands and supportive evidence for a Pallister Killian syndrome critical region on 12p13.31. The differentially expressed genes were enriched for developmentally important genes such as homeobox genes. Among the differentially expressed genes, we identified several genes whose misexpression may be associated with the clinical phenotype of Pallister Killian syndrome such as downregulation of ZFPM2, GATA6 and SOX9, and overexpression of IGFBP2.  相似文献   

2.
Lethal presentation of mosaic tetrasomy 12p (Pallister-Killian) syndrome   总被引:1,自引:0,他引:1  
A lethally malformed neonate with mosaic tetrasomy 12p is presented. This is the third reported case of mosaic tetrasomy 12p to have died in the neonatal period. These three babies have shown a consistent phenotype characterized by dysmorphic facies and large diaphragmatic hernia. Mosaic tetrasomy 12p is usually not detectable from lymphocyte investigation, indicating that chromosome studies from cultured fibroblasts should be undertaken in neonates with multiple malformations which include a diaphragmatic defect.  相似文献   

3.
Pallister-Killian syndrome (PKS) is characterized cytogenetically by mosaic tetrasomy of chromosome 12p. Routine prenatal diagnosis of PKS is still complicated because of the difficulties of discriminating between the supernumerary isochromosome 12p and the duplication 21q and because of the variable level of mosaicism. The frequency of cells with an extra metacentric chromosome i(12)(p10) is usually determined by tissue-limited or tissue-specific mosaicism. We demonstrated a decrease of the abnormal clone with extra i(12p) in the amniotic fluid cells of the PKS fetus during amniocyte subculturing. The rapid loss of the i(12p) in the course of amniocyte subculturing should be the focus of attention during prenatal karyotyping. This is especially necessary for cultures with slow growth, which require further interpretation of the result during cytogenetic diagnosis of PKS.  相似文献   

4.
Summary Nine patients with transient myeloproliferative syndrome (TMS) with or without Down syndrome (DS) phenotype were studied cytogenetically, particularly with regard to the origin of trisomy 21. Of six DS patients, five had standard trisomy 21 and one a mosaic consisting of 21-tetrasomic, trisomic and disomic cell lines. The other three non-DS patients were mosaics with both 21-trisomic and-disomic cell lines. In all nine patients, the leukemoid cells in TMS stage were largely or exclusively composed of trisomy or tetrasomy 21, an indiction that the additional chromosome(s) 21 plays an important role in the occurrence of TMS. Sequential Q-and R-banding analysis of heteromorphisms demonstrated that all these patients had a duplication of a chromosome 21, as revealed by an aab pattern, regardless of DS or normal phenotype or parental origin of the extra chromosome 21. Irrespective of the possibility of recombination, the aa chromosomes are homozygous, i.e. show disomic homozygosity: this may in turn result in the duplication of a gene that controls the proliferation of the myelogenous cells, thereby leading to TMS.  相似文献   

5.
To ascertain the epigenomic features, i.e., the methylation, non-coding RNA, and gene expression patterns, associated with gain of i(12p) in Pallister-Killian syndrome (PKS), we investigated single cell clones, harboring either disomy 12 or tetrasomy 12p, from a patient with PKS. The i(12p)-positive cells displayed a characteristic expression and methylation signature. Of all the genes on 12p, 13% were overexpressed, including the ATN1, COPS7A, and NECAP1 genes in 12p13.31, a region previously implicated in PKS. However, the median expression fold change (1.3) on 12p was lower than expected by tetrasomy 12p. Thus, partial dosage compensation occurs in cells with i(12p). The majority (89%) of the significantly deregulated genes were not situated on 12p, indicating that global perturbation of gene expression is a key pathogenetic event in PKS. Three genes—ATP6V1G1 in 9q32, GMPS in 3q25.31, and TBX5 in 12q24.21—exhibited concomitant hypermethylation and decreased expression. The i(12p)-positive cells displayed global hypomethylation of gene-poor regions on 12p, a footprint previously associated with constitutional and acquired gains of whole chromosomes as well as with X-chromosome inactivation in females. We hypothesize that this non-genic hypomethylation is associated with chromatin processing that facilitates cellular adaptation to excess genetic material.  相似文献   

6.
The authors report on a patient with tetrasomy 9p and 9qh due a karyotype 47,XY,+dic(9)(q12) in lymphocytes and a normal karyotype in fibroblasts. Clinical and complementary investigation revealed a malformation syndrome with many anomalies like those of trisomy 9p as well as Dandy-Walker cyst and Hirschsprung disease not previously described in tetrasomy 9p.  相似文献   

7.
The variable phenotype in tetrasomy 18p syndrome. Apropos of a subtle dysmorphic case: Tetrasomy 18 is a rare chromosomal syndrome. Its frequency is 1/40,000 newborns and more than 40 cases have been reported. In this paper we report a 25-month-old female patient referred for chromosome examination essentially because of delayed psychomotor development. The physical examination showed: microcephaly, mild generalized spasticity, arched eyebrows, horizontal palpebral fissures with unilateral convergent strabismus, bilateral epicanthic folds, small nose, well placed ears, oral cavity with high arched palate and upper vestibular frenula, tented mouth with slightly everted upper lip, hands with normal palmar creases and long fingers. All the blood tests were normal, while the magnetic resonance imaging reported mild demyelination and polymicrogyria. The karyotype was 47,XX,+i(18)(p10).ish i(18)(plO)(D18Z1+) de novo.  相似文献   

8.
Tetrasomy 9p is a rare chromosomal syndrome and about 30% of known cases exhibit mosaicism. Approximately 50 of the reported cases with tetrasomy 9p mosaicism show a characteristic facial appearance, growth failure, and developmental delay. However, 3 patients with mosaicism for isochromosome 9p and a normal phenotype have also been reported. We report 2 additional cases of clinically normal young females with tetrasomy 9p mosaicism, one of whom also exhibited X chromosome aneuploidy mosaicism leading to an overall of 6 different cell lines. STR analysis performed on this complex mosaic case indicated that the extra isochromosome was of maternal origin while the X chromosome aneuploidy was of paternal origin, indicating a postzygotic event.  相似文献   

9.
Analysis of non-disjunction in sex chromosome tetrasomy and pentasomy   总被引:1,自引:1,他引:0  
Summary X-linked DNA markers were used to determine the parental origin of the additional sex chromosomes in eight individuals with sex chromosome tetrasomy or pentasomy. In all cases studied, one parent contributed a single sex chromosome while the other parent contributed three or four sex chromosomes. Thus, it seems likely that most, if not all, sex chromosome tetrasomy and pentasomy is attributable to successive nondisjunctional events involving the same parent.  相似文献   

10.
We report genetic characterization of isochromosome 18p using a combination of cytogenetic and molecular genetic methods, including multiplex fluorescent PCR. The patient was referred for chorionic villus sampling (CVS) due to advanced maternal age and maternal anxiety. The placental karyotype was 47,XX,+mar, with the marker having the appearance of a small supernumerary isochromosome. Because differentiating between isochromosomes and other structural rearrangements is normally very difficult, a variety of genetic tests including fluorescence in situ hybridization (FISH), PCR, and multiplex fluorescent PCR were undertaken to determine chromosomal origin and copy number and, thus, allow accurate diagnosis of the corresponding syndrome. FISH determined that the marker chromosome contained chromosome 18 material. PCR of a variety of short tandem repeats (STRs) confirmed that there was at least one extra copy of the maternal 18p material. However, neither FISH nor PCR could accurately determine copy number. Multiplex fluorescent PCR (MF-PCR) of STRs simultaneously determined that: (1) the marker included 18p material; (2) the marker was maternal in origin; (3) allele copy number indicated tetrasomy; and (4) contamination of the sample could be ruled out. Results were also rapid with accurate diagnosis of the syndrome tetrasomy 18p possible within 5 hours.  相似文献   

11.
12.
In this short report we present a 1 year old female child with tetrasomy 12p (Pallister-Killian syndrome) and emphasize the importance of the recognition of the dysmorphic stigmata of this MR/MCA syndrome.  相似文献   

13.
Summary Five females with duplication of the short arm of one chromosome 9 are reported, one tetrasomic and four trisomic for 9p. The tetrasomy is due to an isochromosome 9p while the trisomies are due in one case to an intrachromosomal duplication present in lymphocytes but not in fibroblasts, two are secondary to translocations with chromosomes 22 and 13 respectively, and one is a mosaic with a cell line with an additional deleted chromosome 9 present in lymphocytes and fibroblasts. This analysis indicates that duplications 9p may result in impairment of ovarian function. The phenotypic differences between trisomy and tetrasomy 9p are discussed.  相似文献   

14.
Report on the child of normal unrelated parents presenting the typical features of acrocallosal syndrome (craniofacial dysmorphy, mental deficiency, convulsive disorder, agenesis of corpus callosum, preaxial polydactyly "hallux duplex" of both feet, and in addition diabetes insipidus) in which a mirror duplication of nearly the entire short arm of chromosome 12 was discovered. Since the symptomatology of trisomy and tetrasomy 12p shows some overlap with acrocallosal syndrome a common origin of the monogenic disorder and the chromosomal phenotypes is discussed.  相似文献   

15.
Summary The case of a newborn girl with Zellweger syndrome and a pericentric inversion of chromosome 7, 46,XX, inv(7)(p12q11.23), is reported. The diagnosis was confirmed by marked deficiency of peroxisomal beta-oxidation enzymes in hepatic cells from autopsy samples. This is the second case of Zellweger syndrome associated with a rearrangement of chromosome 7, the tentative gene assignment to 7q11 being further supported; the gene is probably confiend to 7q11.23.  相似文献   

16.
Saethre-Chotzen syndrome is an autosomal dominant acrocephalosyndactyly syndrome whose gene has been assigned to chromosome 7p. Cytogenetic and linkage analyses have enabled the interval encompassing the disease gene to be delimited to a short region of chromosome 7p15.3–p21.2. Based on the genetic analysis of three unreported families, we confirm the location of the disease gene(s) in the interval defined by loci D7S664 and D7S493 (Zmax = 4.78 at * = 0 at the D7S488 locus) but fail to decide whether one or more disease-causing genes map in this genetic interval. Received: 2 January 1996 / Revised: 21 March 1996  相似文献   

17.
Neocentromeres are fully functional centromeres found on rearranged or marker chromosomes that have separated from endogenous centromeres. Neocentromeres often result in partial tri- or tetrasomy because their formation confers mitotic stability to acentric chromosome fragments that would normally be lost. We describe the prenatal identification and characterization of a de novo supernumerary marker chromosome (SMC) containing a neocentromere in a 20-wk fetus by the combined use of comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH). GTG-banding of fetal metaphases revealed a 47,XY,+mar karyotype in 100% of cultured amniocytes; parental karyotypes were both normal. Although sequential tricolor FISH using chromosome-specific painting probes identified a chromosome 10 origin of the marker, a complete panel of chromosome-specific centromeric satellite DNA probes failed to hybridize to any portion of the marker. The presence of a neocentromere on the marker chromosome was confirmed by the absence of hybridization of an all-human-centromere alpha-satellite DNA probe, which hybridizes to all normal centromeres, and the presence of centromere protein (CENP)-C, which is associated specifically with active kinetochores. Based on CGH analysis and FISH with a chromosome 10p subtelomeric probe, the marker was found to be an inversion duplication of the distal portion of chromosome 10p. Thus, the proband's karyotype was 47,XY,+inv dup(10)(pter-->p14 approximately 15::p14 approximately 15-->neo-->pter), which is the first report of partial tetrasomy 10p resulting from an analphoid marker chromosome with a neocentromere. This study illustrates the use of several molecular strategies in distinguishing centric alphoid markers from neocentric analphoid markers.  相似文献   

18.
Summary In one family a duplicated 21q was shown to be a true isochromosome, which segregates from mosaic mother to non-mosaic child with full Down syndrome phenotype. Densitometric analysis of Southern blots, using probe pPW228C for the distal long arm of chromosome 21, indicated that the 21q duplication contains two copies of the allele detected by the probe. Maternal mosaic karyotype of 45,XX,-21/46,XX/46, XX,-21,+21i(21q) also suggested transverse mitotic centromere division as the origin of the 21q isochromosomes. Morphologic analysis of chromosome heteromorphisms strengthened this interpretation because the free 21 missing in the cell line with 45 chromosomes was also missing in cells with the isochromosome. In a second family the cytogenetic data also suggested transmission of an i(21q) from mosaic mother to nonmosaic Down syndrome child but molecular evidence did not prove identity of alleles in the duplicated chromosome 21.  相似文献   

19.
Down syndrome is rarely due to a de novo Robertsonian translocation t(14q;21q). DNA polymorphisms in eight families with Down syndrome due to de novo t(14q;21q) demonstrated maternal origin of the extra chromosome 21q in all cases. In seven nonmosaic cases the DNA markers showed crossing-over between two maternal chromosomes 21, and in one mosaic case no crossing-over was observed (this case was probably due to an early postzygotic nondisjunction). In the majority of cases (five of six informative families) the proximal marker D21S120 was reduced to homozygosity in the offspring with trisomy 21. The data can be best explained by chromatid translocation in meiosis I and by normal crossover and segregation in meiosis I and meiosis II.  相似文献   

20.
Two families were ascertained through a proband with Down syndrome and a structural rearrangement involving two chromosomes 21. It is suggested that in one patient the chromosome is an isochromosome formed by misdivision of the centromere of a maternal telocentric chromosome 21 and that in the other a Robertsonian translocation involving chromosome 21 was inherited from the mother, who is a 46,XX/46,XX, -21,+t(21q21q) mosaic. The origin of the mosaicism is discussed and considered to be likely to be the result of breakage and reunion at the chromatid, rather than the chromosome, level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号