首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dairy starter bacterium Lactococcus lactis is able to synthesize folate and accumulates large amounts of folate, predominantly in the polyglutamyl form. Only small amounts of the produced folate are released in the extracellular medium. Five genes involved in folate biosynthesis were identified in a folate gene cluster in L. lactis MG1363: folA, folB, folKE, folP, and folC. The gene folKE encodes the biprotein 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase and GTP cyclohydrolase I. The overexpression of folKE in L. lactis was found to increase the extracellular folate production almost 10-fold, while the total folate production increased almost 3-fold. The controlled combined overexpression of folKE and folC, encoding polyglutamyl folate synthetase, increased the retention of folate in the cell. The cloning and overexpression of folA, encoding dihydrofolate reductase, decreased the folate production twofold, suggesting a feedback inhibition of reduced folates on folate biosynthesis.  相似文献   

2.
Efficient conversion of glucose to acetaldehyde is achieved by nisin-controlled overexpression of Zymomonas mobilis pyruvate decarboxylase (pdc) and Lactococcus lactis NADH oxidase (nox) in L. lactis. In resting cells, almost 50% of the glucose consumed could be redirected towards acetaldehyde by combined overexpression of pdc and nox under anaerobic conditions.  相似文献   

3.
The dairy starter bacterium Lactococcus lactis has the potential to synthesize both folate (vitamin B11) and riboflavin (vitamin B2). By directed mutagenesis followed by selection and metabolic engineering we have modified two complicated biosynthetic pathways in L. lactis resulting in simultaneous overproduction of both folate and riboflavin: Following exposure to the riboflavin analogue roseoflavin we have isolated a spontaneous mutant of L. lactis strain NZ9000 that was changed from a riboflavin consumer into a riboflavin producer. This mutant contained a single base change in the regulatory region upstream of the riboflavin biosynthetic genes. By the constitutive overproduction of GTP cyclohydrolase I in this riboflavin-producing strain, the production of folate was increased as well. Novel foods, enriched through fermentation using these multivitamin-producing starters, could compensate the B-vitamin-deficiencies that are common even in highly developed countries and could specifically be used in dietary foods for the large fraction of the Caucasian people (10-15%) with mutations in the methylene tetrahydrofolate reductase (MTHFR).  相似文献   

4.
Lactic acid bacteria display a relatively simple and well described metabolism where the sugar source is converted mainly to lactic acid. Here we will shortly describe metabolic engineering strategies that led to the efficient re-routing of the lactococcal pyruvate metabolism to end-products other than lactic acid, including diacetyl and alanine. Moreover, we will review current metabolic engineering approaches that aim at increasing the flux through complex biosynthetic pathways, leading to exopolysaccharides and folic acid. Finally, the (future) impact of the developments in the area of genomics and corresponding high-throughput technologies will be discussed.  相似文献   

5.
We report the engineering of Lactococcus lactis to produce the amino acid L-alanine. The primary end product of sugar metabolism in wild-type L. lactis is lactate (homolactic fermentation). The terminal enzymatic reaction (pyruvate + NADH-->L-lactate + NAD+) is performed by L-lactate dehydrogenase (L-LDH). We rerouted the carbon flux toward alanine by expressing the Bacillus sphaericus alanine dehydrogenase (L-AlaDH; pyruvate + NADH + NH4+ -->L-alanine + NAD+ + H2O). Expression of L-AlaDH in an L-LDH-deficient strain permitted production of alanine as the sole end product (homoalanine fermentation). Finally, stereospecific production (>99%) of L-alanine was achieved by disrupting the gene encoding alanine racemase, opening the door to the industrial production of this stereoisomer in food products or bioreactors.  相似文献   

6.
Here we developed the new expression system PZn zitR, based on the regulatory signals (PZn promoter and zitR repressor) of the Lactococcus lactis zit operon, involved in Zn2+ high-affinity uptake and regulation. A PZn zitR-controlled expression vector was constructed, and expression regulation was studied with two reporter genes, uspnuc and lacLM; these genes encode, respectively, a protein derived from Staphylococcus aureus secreted nuclease and Leuconostoc mesenteroides cytoplasmic β-galactosidase. Nuclease and β-galactosidase activities of L. lactis MG1363 cells expressing either uspnuc or lacLM under the control of PZn zitR were evaluated on plates and quantified from liquid cultures as a function of divalent metal ion, particularly Zn2+, availability in the environment. Our results demonstrate that PZn zitR is highly inducible upon divalent cation starvation, obtained either through EDTA addition or during growth in chemically defined medium, and is strongly repressed in the presence of excess Zn2+. The efficiency of the PZn zitR expression system was compared to that of the well-known nisin-controlled expression (NICE) system with the same reporter genes cloned under either PZn zitR or PnisA nisRK control. lacLM induction levels reached with both systems were on the same order of magnitude, even though the NICE system is fivefold more efficient than the PZn zitR system. An even smaller difference or no difference was observed after 3 h of induction when nuclease was used as a reporter for Western blotting detection. PZn zitR proved to be a powerful expression system for L. lactis, as it is tightly controlled by the zinc concentration in the medium.  相似文献   

7.
Lactic acid bacteria display a relatively simple metabolism wherein the sugar is converted mainly to lactic acid. The extensive knowledge of metabolic pathways and the increasing information of the genes involved allows for the rerouting of natural metabolic pathways by genetic and physiological engineering. We discuss several examples of metabolic engineering of Lactococcus lactis for the production of important compounds, including diacetyl, alanine and exopolysaccharides.  相似文献   

8.
The use of Lactococcus lactis (the most extensively characterized lactic acid bacterium) as a delivery organism for heterologous proteins is, in some cases, limited by low production levels and poor-quality products due to surface proteolysis. In this study, we combined in one L. lactis strain use of the nisin-inducible promoter PnisA and inactivation of the extracellular housekeeping protease HtrA. The ability of the mutant strain, designated htrA-NZ9000, to produce high levels of stable proteins was confirmed by using the staphylococcal nuclease (Nuc) and the following four heterologous proteins fused or not fused to Nuc that were initially unstable in wild-type L. lactis strains: (i) Staphylococcus hyicus lipase, (ii) the bovine rotavirus antigen nonstructural protein 4, (iii) human papillomavirus antigen E7, and (iv) Brucella abortus antigen L7/L12. In all cases, protein degradation was significantly lower in strain htrA-NZ9000, demonstrating the usefulness of this strain for stable heterologous protein production.  相似文献   

9.
The pab genes for para-aminobenzoic acid (pABA) biosynthesis in Lactococcus lactis were identified and characterized. In L. lactis NZ9000, only two of the three genes needed for pABA production were initially found. No gene coding for 4-amino-4-deoxychorismate lyase (pabC) was initially annotated, but detailed analysis revealed that pabC was fused with the 3' end of the gene coding for chorismate synthetase component II (pabB). Therefore, we hypothesize that all three enzyme activities needed for pABA production are present in L. lactis, allowing for the production of pABA. Indeed, the overexpression of the pABA gene cluster in L. lactis resulted in elevated pABA pools, demonstrating that the genes are involved in the biosynthesis of pABA. Moreover, a pABA knockout (KO) strain lacking pabA and pabBC was constructed and shown to be unable to produce folate when cultivated in the absence of pABA. This KO strain was unable to grow in chemically defined medium lacking glycine, serine, nucleobases/nucleosides, and pABA. The addition of the purine guanine, adenine, xanthine, or inosine restored growth but not the production of folate. This suggests that, in the presence of purines, folate is not essential for the growth of L. lactis. It also shows that folate is not strictly required for the pyrimidine biosynthesis pathway. L. lactis strain NZ7024, overexpressing both the folate and pABA gene clusters, was found to produce 2.7 mg of folate/liter per optical density unit at 600 nm when the strain was grown on chemically defined medium without pABA. This is in sharp contrast to L. lactis strains overexpressing only one of the two gene clusters. Therefore, we conclude that elevated folate levels can be obtained only by the overexpression of folate combined with the overexpression of the pABA biosynthesis gene cluster, suggesting the need for a balanced carbon flux through the folate and pABA biosynthesis pathway in the wild-type strain.  相似文献   

10.
Controlled production of stable heterologous proteins in Lactococcus lactis   总被引:2,自引:0,他引:2  
The use of Lactococcus lactis (the most extensively characterized lactic acid bacterium) as a delivery organism for heterologous proteins is, in some cases, limited by low production levels and poor-quality products due to surface proteolysis. In this study, we combined in one L. lactis strain use of the nisin-inducible promoter P(nisA) and inactivation of the extracellular housekeeping protease HtrA. The ability of the mutant strain, designated htrA-NZ9000, to produce high levels of stable proteins was confirmed by using the staphylococcal nuclease (Nuc) and the following four heterologous proteins fused or not fused to Nuc that were initially unstable in wild-type L. lactis strains: (i) Staphylococcus hyicus lipase, (ii) the bovine rotavirus antigen nonstructural protein 4, (iii) human papillomavirus antigen E7, and (iv) Brucella abortus antigen L7/L12. In all cases, protein degradation was significantly lower in strain htrA-NZ9000, demonstrating the usefulness of this strain for stable heterologous protein production.  相似文献   

11.
12.
Studies of cellular responses to stress conditions such as heat, oxygen or starvation have revealed the existence of numerous specific or interactive response pathways. We previously observed in Lactococcus lactis that inactivation of the recA gene renders the lactococcal strain sensitive not only to DNA-damaging agents but also to oxygen and heat. To further examine the stress response pathways in L. lactis, we isolated thermoresistant insertional mutants (Trm) of the recA strain. Eighteen independent trm mutations were identified and characterized. We found that mutations map in only seven genes, implicated in purine metabolism (deoB, guaA and tktA), phosphate uptake (pstB and pstS), mRNA stability (pnpA) and in one uncharacterized gene (trmA). All the trm mutations, with the exception of trmA, confer multiple stress resistance to the cell. Some of the mutations confer improved heat stress resistance not only in the recA but also in the wild-type context. Our results reveal that cellular metabolic pathways are intimately related to stress response and that the flux of particular metabolites, notably guanine and phosphate, may be implicated in stress response in lactococci.  相似文献   

13.
14.
The phage insensitivity gene of lactococcal plasmid pCI829 which encodes an abortive infection defense mechanism (Abi) was inserted into the Lactococcus lactis subsp. lactis CH919 chromosome by utilizing the integration plasmid pCI194, which contains 4.2 kb of homology with the conjugative transposon Tn919. Chloramphenicol-resistant transformants expressed phage insensitivity to the prolate-headed phage c2 and the small isometric-headed phage 712, and hybridization analysis indicated that transformants contained pCI194 integrated in single copy. The level of phage insensitivity expressed by the transformants was reduced from that observed when the abi gene was located on a replicating plasmid, as determined by plaque assay and burst size analysis. Amplification of the integrated structure after growth in increased concentrations of chloramphenicol resulted in an increase in the expression of phage insensitivity. Hybridization analysis revealed that while pCI194 was stably maintained in an integrated state over 100 generations in the absence of selective pressure, the ability to express phage insensitivity was lost. Hybridization analysis also revealed that DNA flanking the abi gene contains homology to the CH919 chromosome.  相似文献   

15.
构建重组乳酸乳球菌生产谷胱甘肽   总被引:5,自引:0,他引:5  
以大肠杆菌染色体DNA为模板,分别扩增得到编码γ-谷氨酰半胱氨酸合成酶和谷胱甘肽合成酶的基因gsbA和gshB。将gsbA和gshB基因克隆到质粒pNZSl48中,电转化乳酸乳球菌NZ9000,获得重组菌NZ9000(pNZ3203)。在添加10mmol/L谷氨酸、半胱氨酸和甘氨酸的M17培养基中培养该重组茵,当OD600达到0、4时用乳酸链球菌素诱导4h,胞内谷胱甘肽含量达到358mmol/mg蛋白(胞内浓度相当于140mmol/L),这是在革兰氏阳性茵中生产谷胱甘肽的首例报道。  相似文献   

16.
Accumulation of galactose in dairy products due to partial lactose fermentation by lactic acid bacteria yields poor-quality products and precludes their consumption by individuals suffering from galactosemia. This study aimed at extending our knowledge of galactose metabolism in Lactococcus lactis, with the final goal of tailoring strains for enhanced galactose consumption. We used directed genetically engineered strains to examine galactose utilization in strain NZ9000 via the chromosomal Leloir pathway (gal genes) or the plasmid-encoded tagatose 6-phosphate (Tag6P) pathway (lac genes). Galactokinase (GalK), but not galactose permease (GalP), is essential for growth on galactose. This finding led to the discovery of an alternative route, comprising a galactose phosphotransferase system (PTS) and a phosphatase, for galactose dissimilation in NZ9000. Introduction of the Tag6P pathway in a galPMK mutant restored the ability to metabolize galactose but did not sustain growth on this sugar. The latter strain was used to prove that lacFE, encoding the lactose PTS, is necessary for galactose metabolism, thus implicating this transporter in galactose uptake. Both PTS transporters have a low affinity for galactose, while GalP displays a high affinity for the sugar. Furthermore, the GalP/Leloir route supported the highest galactose consumption rate. To further increase this rate, we overexpressed galPMKT, but this led to a substantial accumulation of α-galactose 1-phosphate and α-glucose 1-phosphate, pointing to a bottleneck at the level of α-phosphoglucomutase. Overexpression of a gene encoding α-phosphoglucomutase alone or in combination with gal genes yielded strains with galactose consumption rates enhanced up to 50% relative to that of NZ9000. Approaches to further improve galactose metabolism are discussed.Lactococcus lactis is a lactic acid bacterium widely used in the dairy industry for the production of fermented milk products. Because of its economic importance, L. lactis has been studied extensively in the last 40 years. A small genome, a large set of genetic tools, a wealth of physiological knowledge, and a relatively simple metabolic potential render L. lactis an attractive model with which to implement metabolic engineering strategies (reviewed in references 21 and 57).In the process of milk fermentation by L. lactis, lactose is taken up and concomitantly phosphorylated at the galactose moiety (C-6) by the lactose-specific phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTSLac), after which it is hydrolyzed to glucose and galactose 6-phosphate (Gal6P) (64). The glucose moiety enters the glycolytic pathway upon phosphorylation via glucokinase to glucose 6-phosphate (G6P), whereas Gal6P is metabolized to triose phosphates via the d-tagatose 6-phosphate (Tag6P) pathway, encompassing the steps catalyzed by galactose 6-phosphate isomerase (LacAB), Tag6P kinase (LacC), and tagatose 1,6-bisphosphate aldolase (LacD) (Fig. (Fig.1).1). Curiously, during the metabolism of lactose by L. lactis, part of the Gal6P is dephosphorylated and excreted into the growth medium, while the glucose moiety is readily used (2, 7, 51, 56, 60).Open in a separate windowFIG. 1.Schematic overview of the alternative routes for galactose uptake and further catabolism in L. lactis. Galactose can be imported by the non-PTS permease GalP and metabolized via the Leloir pathway (galMKTE) to α-G1P, which is converted to the glycolytic intermediate G6P by α-phosphoglucomutase (pgmH). Alternatively, galactose can be imported by PTSLac (lacFE) and further metabolized to triose phosphates by the Tag6P pathway (lacABCD). Here, we propose a new uptake route consisting of galactose translocation via the galactose PTS, followed by dephosphorylation of the internalized Gal6P to galactose, which is further metabolized via the Leloir pathway (highlighted in the gray box). galP, galactose permease; galM, galactose mutarotase; galK, galactokinase; galT, galactose 1-phosphate uridylyltransferase; galE, UDP-galactose-4-epimerase; pgmH, α-phosphoglucomutase; lacAB, galactose 6-phosphate isomerase; lacC, Tag6P kinase; lacD, tagatose 1,6-bisphosphate aldolase; lacFE, PTSLac; PTSGal, unidentified galactose PTS; Phosphatase; unidentified Gal6P-phosphatase; pgi, phosphoglucose isomerase; pfk, 6-phosphofructo-1-kinase; fba, fructose 1,6-bisphosphate aldolase; tpi, triose phosphate isomerase; α-Gal1P, α-galactose 1-phosphate; α-G1P, α-glucose 1-phosphate; UDP-gal, UDP-galactose; UDP-glc, UDP-glucose; G6P, glucose 6-phosphate; Gal6P, galactose 6-phosphate; Tag6P, tagatose 6-phosphate; TBP, tagatose 1,6-bisphosphate; FBP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde 3-phosphate. The dotted arrow represents the conversions of GAP to pyruvate via the glycolytic pathway. Steps essential to improve galactose consumption are shown in black boxes.As a result of incomplete lactose utilization, some fermented dairy products contain significant residual amounts of galactose. The presence of galactose has been associated with shoddier qualities of the fermented product (6, 27, 43). In particular, galactose is a major contributor to the browning that occurs when dairy products (e.g., yogurt and mozzarella, Swiss, and cheddar cheese) are cooked or heated in the manufacture of pizzas, sauce preparation, or processed cheese. In addition, availability of residual galactose may result in production of CO2 by heterofermentative starters and, consequently, in textural defects such as the development of slits and fractures in cheeses. Therefore, the availability of starter strains with improved galactose utilization capacity is desirable to develop higher-quality dairy products. Additionally, strains with increased galactose metabolism could provide galactose-free foods for individuals and, in particular, children suffering from the rare disease galactosemia (36). To this end, a comprehensive understanding of galactose catabolism is essential.Galactose metabolism in L. lactis was thoroughly studied in the past and has been and still is the subject of some controversy. Indeed, conflicting results regarding the type of PTS involved in galactose uptake have been published. Some authors advocated that galactose is exclusively transported via the plasmid-encoded PTSLac, whereas others proposed transport via a galactose-specific PTS (PTSGal) to the extreme of questioning the contribution of the PTSLac (17, 20, 50, 59). However, a gene encoding PTSGal has never been identified in L. lactis. Independently of the nature of the PTS, it is generally accepted that the resulting Gal6P is metabolized via the Tag6P pathway (lac operon) (Fig. (Fig.1).1). On the other hand, galactose translocated via the highly specific galactose permease (GalP) is metabolized via the Leloir pathway to α-glucose 1-phosphate (α-G1P) through the sequential action of galactose mutarotase (GalM), galactokinase (GalK), and galactose 1-phosphate uridylyltransferase (GalT)/UDP-galactose-4-epimerase (GalE) (gal operon). Entry in glycolysis is preceded by the α-phosphoglucomutase (α-PGM)-catalyzed isomerization of α-G1P to G6P. The use of the Leloir and/or the Tag6P pathway for galactose utilization is currently viewed as being strain dependent (9, 16, 25, 32, 33, 58), but the relative efficacy in the degradation of the sugar has not been established.The ultimate aim of this study was to engineer L. lactis for improved galactose-fermenting capacity as a means to minimize the galactose content in dairy products. To gain insight into galactose catabolism via the Leloir (gal genes) and the Tag6P (lac genes) pathways, a series of L. lactis subsp. cremoris NZ9000 isogenic gal and lac mutants were constructed. Carbon 13 labeling experiments coupled with nuclear magnetic resonance (NMR) spectroscopy were used to investigate galactose metabolism in the gal and lac strains. The data obtained revealed a novel route for galactose dissimilation and provided clues to further enhance galactose utilization.  相似文献   

17.
An approach to decreasing the lactate production in Lactococcus lactis by metabolic engineering is presented. The inhibitory effects of a low pH due to the accumulation of lactate on cell growth and nisin production in L. lactis are well known. To avoid such inhibitory effects, a new strategy by rerouting carbon flow was considered. In an effort to suppress lactate production, a new gene was introduced into L. lactis to create a novel pathway for alanine synthesis to reroute the metabolic flow of lactate. Alanine dehydrogenase (E.C.1.4.1.1) encoded by alaD from Bacillus sphaericus was expressed in L. lactis. The enzyme was expressed to a specific activity of nearly 0.39 U/mg protein in the transformant. Hemin addition was also considered to decrease the lactate production in L. lactis. The effect of hemin on the alanine production in the transformant was investigated. This study showed that using the combined strategy, stronger effects on lactate and alanine productions were observed in the transformant.  相似文献   

18.
To apply recombinant DNA techniques for genetic manipulation of the industrially important lactococci, an efficient and reliable high-frequency transformation system must be available. High-voltage electric pulses have been demonstrated to enhance uptake of DNA into protoplasts and intact cells of numerous gram-negative and gram-positive microorganisms. The objective of this study was to develop a system for electroporating intact cells of Lactococcus lactis subsp. lactis LM0230 (previously designated Streptococcus lactis LM0230) with a commercially available electroporation unit (BTX Transfector 100; BTX, Inc., San Diego, Calif.). Parameters which influenced the efficiency of transformation included growth phase and final concentration of cells, ionic strength of the suspending medium, concentration of plasmid DNA, and the amplitude and duration of the pulse. Washed suspensions of intact cells suspended in deionized distilled water were subjected to one high-voltage electric pulse varying in voltage (300 to 900 V corresponding to field strengths of 5 to 17 kV/cm) and duration (100 microseconds to 1 s). Transformation efficiencies of 10(3) transformants per microgram of DNA were obtained when dense suspensions (final concentration, 5 x 10(10) CFU/ml) of stationary-phase cells were subjected to one pulse with a peak voltage of 900 V (field strength, 17 kV/cm) and a pulse duration of 5 ms in the presence of plasmid DNA. Dilution of porated cells in broth medium followed by an expression period of 2 h at 30 degrees C was beneficial in enhancing transformation efficiencies. Plasmids ranging in size from 9.8 to 30.0 kilobase pairs could be transformed by this procedure.  相似文献   

19.
Nisin is a pentacyclic peptide antibiotic produced by some Lactococcus lactis strains. Nisin contains dehydroresidues and thioether rings that are posttranslationally introduced by a membrane-associated enzyme complex, composed of a serine and threonine dehydratase NisB and the cyclase NisC. In addition, the transporter NisT is necessary for export of the modified peptide. We studied the potential of L. lactis expressing NisB and NisT to produce peptides whose serines and threonines are dehydrated. L. lactis containing the nisBT genes and a plasmid coding for a specific leader peptide fusion construct efficiently produced peptides with a series of non-naturally occurring multiple flanking dehydrobutyrines. We demonstrated NisB-mediated dehydration of serines and threonines in a C-terminal nisin(1-14) extension of nisin, which implies that also residues more distant from the leader peptide than those occurring in prenisin or any other lantibiotic can be modified. Furthermore, the feasibility and efficiency of generating a library of peptides containing dehydroresidues were demonstrated. In view of the particular shape and reactivity of dehydroamino acids, such a library provides a novel source for screening for peptides with desired biological and physicochemical properties.  相似文献   

20.
Kinetics of nisin production have been investigated in terms of endogenous features of the producer organism, Lactococcus lactis. Nisin-producing transposons (Tn Nip) were transferred to different hosts by conjugation. Constructs were cultivated in batch cultures and nisin produced was measured. The proteinase function of C2Prt (Tn Nip)-1 was eliminated by plasmid curing, resulting in the construct C2Prt - (Tn Nip)-1. C2Prt - (Tn Nip)-1 produced nisin to a higher concentration compared to C2Prt (Tn Nip)-1 and was able to maintain the maximum concentration till the end of cultivation. The final concentration of nisin produced was host-specific, because when different constructs carrying the same Tn Nip were cultivated they produced nisin to different concentrations. However, when the same host carried Tn Nip transposons derived from different donors the concentration of nisin produced was similar, suggesting that the two Tn Nip transposons may be similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号