首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thylakoids isolated from cells of the red alga Porphyridium cruentum exhibit an increased PS I activity on a chlorophyll basis with increasing growth irradiance, even though the stoichiometry of Photosystems I and II in such cells shows little change (Cunningham et al. (1989) Plant Physiol 91: 1179–1187). PS I activity was 26% greater in thylakoids of cells acclimated at 280 mol photons · m–2 · s–1 (VHL) than in cells acclimated at 10 mol photons · m–2 · s–1 (LL), indicating a change in the light absorbance capacity of PS I. Upon isolating PS I holocomplexes from VHL cells it was found that they contained 132±9 Chl/P700 while those obtained from LL cells had 165±4 Chl/P700. Examination of the polypeptide composition of PS I holocomplexes on SDS-PAGE showed a notable decrease of three polypeptides (19.5, 21.0 and 22 kDa) in VHL-complexes relative to LL-complexes. These polypeptides belong to a novel LHC I complex, recently discovered in red algae (Wolfe et al. (1994a) Nature 367: 566–568), that lacks Chl b and includes at least six different polypeptides. We suggest that the decrease in PS I Chl antenna size observed with increasing irradiance is attributable to changes occurring in the LHC I-antenna complex. Evidence for a Chl-binding antenna complex associated with PS II core complexes is lacking at this point. LHC II-type polypeptides were not observed in functionally active PS II preparations (Wolfe et al. (1994b) Biochimica Biophysica Acta 1188: 357–366), nor did we detect polypeptides that showed immunocross-reactivity with LHC II specific antisera (made to Chlamydomonas and Euglena LHC II).Abbreviations Bis-Tris bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane - DCPIP 2,6-dichlorophenol indophenol - -dm dodecyl--d-maltoside - HL high light of 150 mol photons · m–2 · s–1 - LGB lower green band - LHC I light-harvesting complex of PS I - LHC II light-harvesting complex of PS II - LL low light of 10 mol photons · m–2 · s–1 - ML medium light of 50 mol photons · m–2 · s–1 - MES 2-(N-morpholino) ethanesulfonic acid - P700 reaction center of PS I - PFD photon flux density - Trizma tris(hydroxymethyl)aminomethane - UGB upper green band - VHL very high light of 280 mol photons · m–2 · s–1  相似文献   

2.
The object of this work was to determine, using a full-factorial experiment, the influence of temperature, irradiance and salinity on growth and hepatotoxin production by Nodularia spumigena, isolated from Lake Alexandrina in the south-east of South Australia. Higher levels of biomass (determined as particulate organic carbon, POC), toxin production and intracellular toxin concentration per mg POC were produced under light limited conditions (30 mol m–2 s–1) and at salinities equal to or greater than those experienced in Lake Alexandrina. Both highest biomass and total toxin production rates were recorded at temperatures equal to or greater than those of the lake (20 and 30°C). The temperature at which maximum biomass and toxin production was recorded decreased from 30°C for cultures grown at 30 mol m–2 s–1 to 20°C when grown at 80 mol m–2 s–1. In contrast, intracellular toxin per mg POC was highest at the lowest growth temperature, 10°C, at both 30 and 80 mol m–2 s–1. It appears that the optimum temperature for biosynthetic pathways used in the production of toxin is lower than the optimum temperature for those pathways associated with growth. Intracellular toxin levels were higher in cells cultured at 10°C/30 mol m–2 s–1 whereas the majority of the toxin was extracellular in cells grown at 30°C/30 mol m–2 s–1. This implies that the highest concentration of toxin in lake water would occur under high temperature and high irradiance conditions. Individual environmental parameters of salinity, irradiance and temperature were all shown to influence growth and toxin production. Notwithstanding, the overall influence of these three parameters on toxin production was mediated through their effect upon growth rate.  相似文献   

3.
Light is a major environmental factor affecting plant growth and development. The cytokinins have many similar effects on these processes and may be involved in photomorphogenesis. In order to study the correlation between light and endogenous cytokinins, we have examined growth parameters and endogenous cytokinins in stems, leaves and other organs of Phaseolus vulgaris, cultivated for 10 days under a range of irradiances (25, 110, 350 and 500 µmol m–2 s–1). The nucleotides isopentenyladenosine-5-monophosphate and zeatin riboside-5-monophosphate were the dominant cytokinins, whereas both free bases and ribosides were below the detection level (0.5 pmol g–1). Plants grown at the highest irradiance had in their stems, leaves, petioles and roots significantly higher levels of cytokinins than had plants grown at the lowest irradiance. As expected, increased light influx increased the dry weight of the root, petiole and leaf, and increased the leaf area, with concomitant increases in the cytokinins in these plant parts. However, the stem showed a different and more complex relationship with irradiance. Stem cytokinin levels increased drastically between 350 and 500 µmol m–2 s–1, but this was not correlated with any change in stem length; the light inhibition of stem elongation was mainly seen when irradiance was increased to 110 µmol m–2 s–1. Taken as a whole, the results are consistent with an effect of irradiance and cytokinins on the processes favouring biomass production.  相似文献   

4.
Laurencia brongniartii is usually found at depths below 4 m, but can be found in shallow subtidal areas in crevices and on the walls of a coral reef in Amami Oshima Island, Kagoshima Prefecture, Japan, where irradiances were significantly lower than those at similar depths in open water. In preparation for the possible cultivation of this species for its antibiotic compounds, the effects of temperature and irradiance on photosynthesis and growth were measured. Photosynthesis and growth rates of L. brongniartii explants were highest at 26 and 28 °C, which closely corresponded to temperatures found during August to late December when it was most abundant. The estimated maximum photosynthesis rate (P max) was 4.41 mol photon m–2 s–1 at 26 °C and 4.07 mol photon m–2 s–1 at 28 °C. Saturating irradiance occurred at 95 mol photon m–2 s–1 at 26 °C and 65 mol photon m–2 s–1 at 28 °C. In contrast, growth experiments at 41.7 mol photon m–2 s–1 caused bleaching of explants and the maximum growth rate observed during the study was 3.02 ± 0.75% day–1 at 28 °C and 25 mol photon m–2 s–1. The difference in the saturating irradiance for photosynthesis and the irradiance that caused bleaching in growth experiments suggests that long-term exposure to high irradiance was detrimental and should be addressed before the initiation of large scale cultivation.  相似文献   

5.
We have isolated Chl a-Chl c-carotenoid binding proteins from the dinoflagellates Prorocentrum minimum and Heterocapsa pygmaea grown under high (500 mol m–2 s–1, HL) and low (35 mol m–2 s–1, LL) light conditions. We compared various isolation procedures of membrane bound light harvesting complexes (LHCs) and assayed the functionality of the solubilized proteins by determining the energy transfer efficiency from the accessory pigments to Chl a by means of fluorescence excitation spectra. The identity of the newly isolated protein-complexes were confirmed by immunological cross-reactions with antibodies raised against the previously described membrane bound Chl a-c proteins (Boczar et al. (1980) FEBS Lett 120: 243–247). Spectroscopic analysis demonstrated the relatedness of these proteins with the recently described Chl-a-c 2-peridinin (ACP) binding protein (Hiller et al. (1993) Photochem Photobiol 57: 125–131; Iglesias Prieto et al. (1993) Phil Trans R Soc London B 338: 381–392). The water-soluble peridinin-Chl a binding-protein (PCP) was not detectable in P. minimum. Two functional forms of ACP with different pigmentation were isolated. A variant of ACP which was isolated from high-light grown cells, that specifically binds increased amounts of diadinoxanthin was compared to the previously described ACPs that bind proportionately more peridinin.Abbreviations ACP Chl a-Chl c-peridinin binding protein - AEBSF 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride - DDM dodecyl -d maltoside - Deriphat 160 N-lauryl-beta-iminopropionic acid - HEPES (N-2-hydroxyethylpiparizine-N-2-ethanesulphonic acid) - HL high light (500 mol m–2 s–1) - LL low light (35 mol m–2 s–1) - 730 fluorescence yield (emission at 730 nm) - PCP peridinin-Chl a-binding protein - PMSF phenyl-methyl-sulfonyl-fluoride - PS I Photosystem I - PS II Photosystem II  相似文献   

6.
Egorova  E.A.  Bukhov  N.G. 《Photosynthetica》2002,40(3):343-347
Photosystem 2 (PS2)-driven electron transfer was studied in primary leaves of barley (Hordeum vulgare L.) seedlings grown under various photon fluxes (0.3–170.0 mol m–2 s–1) of blue (BR) or red (RR) radiation using modulated chlorophyll fluorescence. The Fv/Fm ratio was 0.78–0.79 in leaves of all radiation variants, except in seedlings grown under BR or RR of 0.3 mol m–2 s–1. The extent of the photochemical phase of the polyphasic Fv rise induced by very strong white light was similar in leaves of all radiation treatments. Neither radiation quality nor photon flux under plant cultivation influenced the amount of non QB-transferring centres of PS2 except in leaves of seedlings grown under BR of 0.3 mol m–2 s–1, in which the amount of such centres increased threefold. Both BR and RR stimulated the development of photochemically competent PS2 at photon fluxes as low as 3 mol m–2 s–1. Three exponential components with highly different half times were distinguished in the kinetics of Fv dark decay. This indicates different pathways of electron transfer from QA , the reduced primary acceptor of PS2, to other acceptors. Relative magnitudes of the individual decay components did not depend on the radiation quality or the photon flux during plant cultivation. Significant differences were found, however, between plants grown under BR or RR in the rate of the middle and fast components of Fv dark decay, which showed 1.5-times faster intersystem linear electron transport in BR-grown leaves.  相似文献   

7.
In vitro cultures of Nephrolepis exaltata and Cordyline fruticosa were stored at 5°, 9° or 13°C, at a low irradiance (3–5 mol m–2 s–1) or in darkness. Prior to storage the cultures were subjected to 18°, 21°, 24° or 27°C and 15, 30 or 45 mol m–2 s–1 in a factorial combination.The optimal storage conditions for Nephrolepis were 9°C in complete darkness. These cultures were still transferable to a peat/perlite mixture at the end of the experimental period of 36 months.The optimal storage conditions for Cordyline were 13°C and a low light level (±3–5 mol m-2 s-1). When the pre-storage conditions were normal growth room conditions (24°C and 30 mol m-2 s-1), in vitro cultures could be stored for 18 months. With the most favourable pre-storage treatment (18°C and 15 mol m-2 s-1) some cultures still had green shoots after 36 months of storage, but did not survive transfer to peat/perlite.Pre-conditioning before storage was most favourable for Nephrolepis, and not that important, but still favourable, for Cordyline. There was an interaction between pre-storage temperature and pre-storage irradiance. For both species a high irradiance level was less favourable than a low irradiance level when combined with high growth room temperatures.Abbreviations BA 6-benzyladenine - IAA indole-3-acetic acid - NOA 2-naphthoxyacetic acid  相似文献   

8.
Effects of light and temperature, on the growth of three freshwater green algae isolated from an eutrophic lake and identified as Selenastrum minutum, Coelastrum microporum f. astroidea and Cosmarium subprotumidumwere studied in batch cultures under non-nutrient limited conditions. Experiments were performed to determine the growth rate over a wide range of light intensities (30–456 mol m–2 s–1) and temperature (15–35°C), using a 15/9 (light/dark) photoperiod cycle. The maximum growth rates and the optimum light intensities at a temperature of 35°C were 1.73 d–1 and 420 mol m–2 s–1for Selenastrum minutum, 1.64 d–1 and 400 mol m–2 s–1 for Coelastrum microporum and 1.00 d–1 and 400 mol m–2 s1 for Cosmarium subprotumidum. The results were fitted with the mathematical models of Steele (1965), Platt & Jassby (1976) and Peeters & Eilers (1978). Steele's function and equation of Platt & Jassby don't describe correctly the relationship between the growth and light intensity. In the opposite, the equation of Peeters & Eilers provides the best fit for the three species.  相似文献   

9.
Summary Gossypium hirsutum L. var. Delta Pine 61 was cultivated in controlled-environment chambers at 1000–1100 mol photosynthetically active photons m-2 s-1 (medium photon flux density) and at 1800–2000 mol photons m-2 s-1 (high photon flux density), respectively. Air temperatures ranged from 20° to 34°C during 12-h light periods, whereas during dark periods temperature was 25° C in all experiments. As the leaf temperature decreased from about 33° to 27° C, marked reductions in dry matter production, leaf chlorophyll content and photosynthetic capacity occurred in plants growing under high light conditions, to values far below those in plants growing at 27° C and medium photon flux densities. The results show that slightly suboptimum temperatures, well above the so-called chilling range (0–12° C), greatly reduce dry matter production in cotton when combined with high photon flux densities equivalent to full sunlight.Abbreviations DW dry weight - F v variable fluorescence yield - F M maximum fluorescence yield - PFD photon flux density (400–700 nm)  相似文献   

10.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   

11.
Plant phenotype stability during ex vitro growth, one of the main requirements of plant micropropagation, was tested on tobacco. Plants cultivated in vitro in the presence of 3 % sucrose under photon flux density (PFD) of 200 mol m–2 s–1 (3 % HL plants) showed the best growth and photosynthetic parameters in the course of 7-day acclimation. However, significant change in phenotype of these plants appeared under a decrease in PFD to 50 mol m–2 s–1 during further ex vitro growth (in the period of 7th – 17th day). Much higher internodia elongation was found in 3 % HL plants in comparison with plants grown in vitro on sucrose media under PFD of 50 mol m–2 s–1 (3 % LL) or without sucrose either under PFD of 50 mol m–2 s–1 or 200 mol m–2 s–1 (0 % LL, 0 % HL). It can be presumed that 3 % HL plants show permanent demand for high PFD. Neither ABA or chlorophyll contents nor de novo thylakoid membrane synthesis were related to the morphogenic effect of low PFD. Changeable contents of hexoses in leaves of 3 % HL and 3 % LL plants were in no direct correlation to the elongated growth.  相似文献   

12.
Long  S. P.  Baker  N. R.  Raines  C. A. 《Plant Ecology》1993,(1):33-45
Understanding how photosynthetic capacity acclimatises when plants are grown in an atmosphere of rising CO2 concentrations will be vital to the development of mechanistic models of the response of plant productivity to global environmental change. A limitation to the study of acclimatisation is the small amount of material that may be destructively harvested from long-term studies of the effects of elevation of CO2 concentration. Technological developments in the measurement of gas exchange, fluorescence and absorption spectroscopy, coupled with theoretical developments in the interpretation of measured values now allow detailed analyses of limitations to photosynthesisin vivo. The use of leaf chambers with Ulbricht integrating spheres allows separation of change in the maximum efficiency of energy transduction in the assimilation of CO2 from changes in tissue absorptance. Analysis of the response of CO2 assimilation to intercellular CO2 concentration allows quantitative determination of the limitation imposed by stomata, carboxylation efficiency, and the rate of regeneration of ribulose 1:5 bisphosphate. Chlorophyll fluorescence provides a rapid method for detecting photoinhibition in heterogeneously illuminated leaves within canopies in the field. Modulated fluorescence and absorption spectroscopy allow parallel measurements of the efficiency of light utilisation in electron transport through photosystems I and IIin situ.Abbreviations A net rate of CO2 uptke per unit leaf area (µmol m–2 s–1) - Asat light-saturated A - A820 change in absorptance of PSI on removal of illumination (OD) - c CO2 concentration in air (µmol mol–1) - ca c in the bulk air; ci, c in the intercellular spaces - ce carboxylation efficiency (mol m–2 s–1) - E transpiration per unit leaf area (mol m–2 s–1) - F fluorescence emission of PSII (relative units) - Fm maximal level of F - Fo minimal level of F upon illumination when PSII is maximally oxidised - Fs the steady-state F following the m peak - Fv the difference between Fm and Fo - F'm maximal F' generated after the m peak by addition of a saturating light pulse - F'o the minimal level of F' after the m peak determined by re-oxidising PSII by far-red light - g1 leaf conductance to CO2 diffusion in the gas phase (mol m–2 s–1) - g'1 leaf conductance to water vapour diffusion in the gas phase (mol m–2 s–1) - kc and ko the Michaelis constants for CO2 and O2, respectively, (µmol mol–1); - Jmax the maximum rate of regeneration of rubP (µmol m–2 s–1) - l stomatal limitation to CO2 uptake (dimensionless, 0–1) - LCP light compensation point of photosynthesis (µmol m–2 s–1) - oi the intercellular O2 concentration (mmol mol–1) - Pi cytosol inorganic phosphate concentration - PSI photosystem I - PSII photosystem II - Q photon flux (µmol m–2 s–1) - Qabs Q absorbed by the leaf - rubisCO ribulose 1:5 bisphosphate carboxylase/oxygenase; rubP, ribulose 1:5 bisphosphate; s, projected surface area of a leaf (m2) - Vc,max is the maximum rate of carboxylation (µmol m–2 s–1) - Wc the rubisCO limited rate of carboxylation (µmol m–2 s1) - Wj the electron transport limited rate of regeneration of rubP (µmol m–2 s–1) - Wp the inorganic phosphate limited rate of regeneration of rubP (µmol m–2 s–1) - absorptance of light (dimensionless, 0–1) - a of standard black absorber 1, of leaf - s of integrating sphere walls - , CO2 compensation point of photosynthesis (µmol mol–1) - the specificity factor for rubisCO carboxylation (dimensionless) - , convexity of the response of A to Q (dimensionless 0–1) - the quantum yield of photosynthesis on an absorbed light basis (A/Qabs; dimensionless) - the quantum yield of photosynthesis on an incident light basis (A/Q; dimensionless) - app the maximum - m the maximum - m,app the photochemical efficiency of PSII (dimensionless, 0–1) - PSII,m the maximum   相似文献   

13.
Nogueira  A.  Martinez  C.A.  Ferreira  L.L.  Prado  C.H.B.A. 《Photosynthetica》2004,42(3):351-356
Leaf gas exchange characteristics were measured in twenty woody species that differ in succession status ranging from pioneer species (PS) to late succession species (LS) in a Brazilian rain-reforestation ecosystem. Photon-saturated photosynthetic rate, calculated per either a leaf area (P NA) or a dry mass (P NM) basis, differed among species. P NA and P NM were highest in PS and lowest in LS. Variation among species was 3-fold (from 7 to 23 mol m–2 s–1) for P NA, and 5-fold (from 50 to 275 mol kg–2 s–1) for P NM. The highest P NA (23 mol m–2 s–1) and P NM (275 mol kg–2 s–1) values were recorded in PS Croton urucurana, while the lowest P NA (7 mol m–2 s–1) and P NM (50 mol kg–2 s–1) values were recorded in LS Aspidosperma cylindrocarpon. A considerable overlap was recorded between PS and LS in values of stomatal conductance (g s), transpiration rate (E), and leaf mass to area ratio (ALM). However, C. urucurana also showed highest g s and E. P NM was highly correlated with ALM in both PS and LS (r=–0.75 and –0.90, respectively). The high values of instantaneous transpiration efficiency (ITE) and intrinsic water use efficiency (WUEi) were also observed in the PS when compared with the LS.  相似文献   

14.
When Porphyridium cruentum cells were illuminated with high fluence rate between 1900 and 4800 mol photons m-2s-1, a decrease in the photosynthetic activity of the cells was observed. Within the time frame of 20 min, and under the fluence rates studied, the sum of photons to be absorbed by cells (mg of chlorophyll (Chl), sufficient to initiate photoinhibition was calculated to be 9235.8 mol. The minimal specific light absorption rate to initiate photoinhibition in P. cruentum ranges between 2.29 and 4.26 mol photons s-1 mg-1 chl.a. There was a linear relationship between the specific rate of photoinhibition and the specific light absorption rate. A photon number of 2.56×104 mol mg-1 chl.a photoinhibited photosynthesis instantaneously. At 15°C, no photoinhibitory effect was observed at 2300 mol photons m-2 s-1 even after 45 min of illumination. At the other extreme of 35°C, 84% inhibition of photosynthetic activity was observed within 10 min of exposure to 2300 mol photons m-2 s-1. Between 20 and 30°C, the photoinhibitory effect was comparable. Photoinhibited P. cruentum cells recovered readily when transferred to low light (90 mol photons m-2 s-1) and darkness, and the specific rate of recovery was independent of the light intensity to which the cells were exposed, during the photoinhibitory treatment.Abbreviations Chlorophyll QL, specific light absorption rate Publication No. 28 of the Microalgal Biotechnology Laboratory  相似文献   

15.
The light-dependent rate of photosystem-II (PSII) damage and repair was measured in photoautotrophic cultures of Dunaliella salina Teod. grown at different irradiances in the range 50–3000 mol photons · m–2· s–1. Rates of cell growth increased in the range of 50–800 mol photons·m–2·s–1, remained constant at a maximum in the range of 800–1,500 mol photons·m–2 ·s–1, and declined due to photoinhibition in the range of 1500–3000 mol photons·m–2·s–1. Western blot analyses, upon addition of lincomycin to the cultures, revealed first-order kinetics for the loss of the PSII reaction-center protein (D1) from the 32-kDa position, occurring as a result of photodamage. The rate constant of this 32-kDa protein loss was a linear function of cell growth irradiance. In the presence of lincomycin, loss of the other PSII reaction-center protein (D2) from the 34-kDa position was also observed, occurring with kinetics similar to those of the 32-kDa form of D1. Increasing rates of photodamage as a function of irradiance were accompanied by an increase in the steady-state level of a higher-molecular-weight protein complex ( 160-kDa) that cross-reacted with D1 antibodies. The steady-state level of the 160-kDa complex in thylakoids was also a linear function of cell growth irradiance. These observations suggest that photodamage to D1 converts stoichiometric amounts of D1 and D2 (i.e., the D1/D2 heterodimer) into a 160-kDa complex. This complex may help to stabilize the reaction-center proteins until degradation and replacement of D1 can occur. The results indicated an intrinsic half-time of about 60 min for the repair of individual PSII units, supporting the idea that degradation of D1 after photodamage is the rate-limiting step in the PSII repair process.Abbreviations Chl chlorophyll - PSI photosystem I - PSII photosystem II - D1 the 32-kDa reaction-center protein of PSII, encoded by the chloroplast psbA gene - D2 the 34-kDa reactioncenter protein of PSII, encoded by the chloroplast psbD gene - QA primary electron-accepting plastoquinone of PSII The work was supported by grant 94-37100-7529 from the US Department of Agriculture, National Research Initiative Competitive Grants Program.  相似文献   

16.
Summary Growth of Candida valida on ethanol in pH-auxostat and chemostat has been studied. Maximal growth rate, m, and cell biomass yield, Y s, display the Arrhenius dependence on temperature within the ranges 18°–30° C and 30°–36° C and an abrupt fall above 36° C. The temprature dependence of both parameters has breaks at 30° C and 36° C. Activation energies have been measured for both m and Y s. The reason for a weaker effect of temperature on Y s than on m is discussed.  相似文献   

17.
Mechanistic aspects of the Photosystem II (PS II) damage and repair cycle in Dunaliella salina were investigated. The work addressed the role of chloroplast-encoded protein biosynthesis on the rate of the D1 protein (chloroplast psbA gene product) degradation, following photoinhibition of PS II under in vivo conditions. Cells were grown under different light-intensities and the rate of D1 photodamage and degradation was measured via pulse-chase measurements with (35S)sulfate. It is shown that no detectable difference exists in the rate of D1 degradation in D. salina, measured in the presence or absence of lincomycin, a chloroplast protein biosynthesis inhibitor. The results suggest that de novo D1 biosynthesis does not play a role in the regulation of D1 degradation. In low-light (100 mol photons m–2 s–1) grown cells, the rate of photodamage to D1 did not exceed the rate of its degradation and replacement. In high-light (2200 mol photons m–1 s–1) grown cells, the rate of D1 photodamage was faster than the rate of its degradation, resulting in a significant accumulation of photoinactivated PS II centers in the chloroplast thylakoids (chronic photoinhibition). The latter was coincident with the appearance of a 160 kD complex that contained photodamaged D1. Electron micrographs of D. salina thylakoids revealed extensive grana stacks in the thylakoid membrane of low-light grown cells. Only rudimentary appressions consisting of simple membrane pairings were found in the high-light grown cells. The results are discussed in terms of the regulation of D1 degradation in chloroplasts under in vivo conditions.Abbreviations Chl chlorophyll - D1 the 32 kD reaction center protein of PS II, encoded by the chloroplast psbA gene - D2 the 34 kD reaction center protein of PS II, encoded by the chloroplast psbD gene - HL high light - LL low light - Linc lincomycin  相似文献   

18.
The light utilization efficiency and relative photon requirement of photosynthesis in pulsed and continuous light from light emitting diodes (LEDs) has been measured. First, we chacterized the photon requirement of photosynthesis from light of LEDs that differ in spectral quality. A photon requirement of 10.3±0.4 was measured using light from a 658 nm peak wavelength (22 nm half band width) LED over the range of 0–50 mol photons m–2 s–1 in 2 kPa O2 in leaves of tomato (Lycopersicon esculentum Mill., cv. VF36). Because the conversion of electrical power to photons increased with wavelength, LED lamps with peak photon output of 668 nm were most efficient for converting electricity to photosynthetically fixed carbon. The effect of pulsed irradiation on photosynthesis was then measured. When all of the light to make the equivalent of 50 mol photons m–2 s–1 was provided during 1.5 s pulses of 5000 mol photons m–2 s–1 followed by 148.5 s dark periods, photosynthesis was the same as in continuous 50 mol photons m–2 s–1. When the pulse light and dark periods were lengthened to 200 s and 19.8 ms, respectively, photosynthesis was reduced, although the averaged photon flux density was unchanged. Under these conditions, the light pulses delivered 1017 photons m–2, which we calculate to be equivalent to the capacitance of PS I or PS II. Data support the theory that photons in pulses of 100 s or shorter are absorbed and stored in the reaction centers to be used in electron transport during the dark period. When light/dark pulses were lengthened to 2 ms light and 198 ms dark, net photosynthesis was reduced to half of that measured in continuous light. Pigments of the xanthophyll cycle were not affected by any of these pulsed light treatments even though zeaxanthin formation occurred when leaves were forced to dissipate an equal amount of continuous light.Abbreviations CWF cool white fluorescent - EPS xanthophyll epoxidation state - LED light emitting diode - LUE light utilization efficiency - PFD photon flux density - PR photon requirement (for CO2 fixation) - PS II primary donor in Photosystem II - RPR relative photon requirement  相似文献   

19.
The life cycle of Laminaria abyssalis (Laminariales,Phaeophyta) in culture   总被引:2,自引:2,他引:0  
Laminaria abyssalis occurs in deep water in tropical latitudes of the Brazilian coast (19° 23 S, 38° 28 W to 22° 54 S, 42° 13 09 W). Its life cycle has been completed in the laboratory in seven months using different conditions of light and temperature. The gametophytic stage required for growth the low photon flux density of 1.2 ± 0.3 µmol m–2 s–1 and 18 °C, while the juvenile and adult sporophytes needed 15 µmol m–2 s–1 and 18 °C. The sporophytes became fertile at 23 °C. Our results showed that light and temperature are the main factors regulating the growth and life history of this species under the culture conditions tested.  相似文献   

20.
The effects of irradiance and growth phase on the concentration ofascorbic acid (AA) were examined in Isochrysis sp.(T.ISO),one of the most popular microalgal species used in aquaculture. Across fourdifferent irradiances (15, 40, 100 and 200 mol m–2s–1 with continuous illumination; i.e., lightconditionstypically found in hatcheries), the average % AA in cultures during logarithmicphase ranged from 0.38% (15 mol m–2s–1) to 0.49% (100 mol m–2s–1) of cell dry weight. Average % AA values forcultures at 40 and 100 mol m–2s–1 reduced by more than half to 0.16% and 0.20%,respectively with the onset of stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号