首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronin is a conserved actin-binding protein that co-functions with ADF/cofilin and Arp2/3 complex to govern cellular actin dynamics. Despite emerging roles for coronin in a range of physiological processes and disease states, a detailed understanding of the molecular interactions of coronin with actin and other binding partners has been lacking. Here, we performed a systematic mutational analysis of surfaces on the yeast coronin β-propeller domain, which binds to F-actin and is conserved in all coronin family members. We generated 21 mutant alleles and analyzed their biochemical effects on actin binding and ADF/cofilin activity. Conserved actin-binding residues mapped to a discrete ridge stretching across one side of the β-propeller. Mutants defective in actin binding showed loss of synergy with ADF/cofilin in severing filaments, diminished localization to actin structures in vivo, and loss of coronin overexpression growth defects. In addition, one allele showed normal actin binding but impaired functional interactions with ADF/cofilin. Another allele showed normal actin binding but failed to cause coronin overexpression defects. Together, these results indicate that actin binding is critical for many of the biochemical and cellular functions of coronin and that the β-propeller domain mediates additional functional interactions with ADF/cofilin and possibly other ligands. Conservation of the actin-binding surfaces across distant species and in all three major classes of coronin isoforms suggests that the nature of the coronin-actin association may be similar in other family members.  相似文献   

2.
Twinfilin is an evolutionarily conserved actin monomer-binding protein that regulates cytoskeletal dynamics in organisms from yeast to mammals. It is composed of two actin-depolymerization factor homology (ADF-H) domains that show approximately 20% sequence identity to ADF/cofilin proteins. In contrast to ADF/cofilins, which bind both G-actin and F-actin and promote filament depolymerization, twinfilin interacts only with G-actin. To elucidate the molecular mechanisms of twinfilin-actin monomer interaction, we determined the crystal structure of the N-terminal ADF-H domain of twinfilin and mapped its actin-binding site by site-directed mutagenesis. This domain has similar overall structure to ADF/cofilins, and the regions important for actin monomer binding in ADF/cofilins are especially well conserved in twinfilin. Mutagenesis studies show that the N-terminal ADF-H domain of twinfilin and ADF/cofilins also interact with actin monomers through similar interfaces, although the binding surface is slightly extended in twinfilin. In contrast, the regions important for actin-filament interactions in ADF/cofilins are structurally different in twinfilin. This explains the differences in actin-interactions (monomer versus filament binding) between twinfilin and ADF/cofilins. Taken together, our data show that the ADF-H domain is a structurally conserved actin-binding motif and that relatively small structural differences at the actin interfaces of this domain are responsible for the functional variation between the different classes of ADF-H domain proteins.  相似文献   

3.
Cofilin/ADF is a ubiquitous actin-binding protein that is important for rapid actin dynamics in vivo. The long alpha-helix (helix 3 in yeast cofilin) forms the most highly conserved region in cofilin/ADF proteins, and residues in the NH2-terminal half of this alpha-helix have been shown to be essential for actin binding in cofilin/ADF. Recent studies also suggested that the basic residues in the COOH-terminal half of this alpha-helix would play an important role in F-actin binding. In contrast to these studies, we show here that the charged residues in the COOH-terminal half of helix 3 are not important for actin filament binding in yeast cofilin. Mutations in these residues, however, result in a small defect in actin monomer interactions. We also show that yeast cofilin can differentiate between various phosphatidylinositides, and mapped the PI(4,5)P2 binding site by using a collection of cofilin mutants. The PI(4,5)P2 binding site of yeast cofilin is a large positively charged surface that consists of residues in helix 3 as well as residues in other parts of the cofilin molecule. This suggests that cofilin/ADF proteins probably interact simultaneously with more than one PI(4,5)P2 molecule. The PI(4,5)P2-binding site overlaps with areas that are important for F-actin binding, explaining why the actin-related activities of cofilin/ADF are inhibited by PI(4,5)P2. The biological roles of actin and PI(4,5)P2 interactions of cofilin are discussed in light of phenotypes of specific yeast strains carrying mutations in residues that are important for actin and PI(4,5)P2 binding.  相似文献   

4.
Actin dynamics provide the driving force for many cellular processes including motility and endocytosis. Among the central cytoskeletal regulators are actin-depolymerizing factor (ADF)/cofilin, which depolymerizes actin filaments, and twinfilin, which sequesters actin monomers and caps filament barbed ends. Both interact with actin through an ADF homology (ADF-H) domain, which is also found in several other actin-binding proteins. However, in the absence of an atomic structure for the ADF-H domain in complex with actin, the mechanism by which these proteins interact with actin has remained unknown. Here, we present the crystal structure of twinfilin's C-terminal ADF-H domain in complex with an actin monomer. This domain binds between actin subdomains 1 and 3 through an interface that is conserved among ADF-H domain proteins. Based on this structure, we suggest a mechanism by which ADF/cofilin and twinfilin inhibit nucleotide exchange of actin monomers and present a model for how ADF/cofilin induces filament depolymerization by weakening intrafilament interactions.  相似文献   

5.
Apicomplexan parasites, such as the malaria-causing Plasmodium, utilize an actin-based motor for motility and host cell invasion. The actin filaments of these parasites are unusually short, and actin polymerization is under strict control of a small set of regulatory proteins, which are poorly conserved with their mammalian orthologs. Actin depolymerization factors (ADFs) are among the most important actin regulators, affecting the rates of filament turnover in a multifaceted manner. Plasmodium has two ADFs that display low sequence homology with each other and with the higher eukaryotic family members. Here, we show that ADF2, like canonical ADF proteins but unlike ADF1, binds to both globular and filamentous actin, severing filaments and inducing nucleotide exchange on the actin monomer. The crystal structure of Plasmodium ADF1 shows major differences from the ADF consensus, explaining the lack of F-actin binding. Plasmodium ADF2 structurally resembles the canonical members of the ADF/cofilin family.  相似文献   

6.
Actin-interacting protein 1 (AIP1) is a WD40 repeat protein that enhances actin filament disassembly in the presence of actin-depolymerizing factor (ADF)/cofilin. AIP1 also caps the barbed end of ADF/cofilin-bound actin filament. However, the mechanism by which AIP1 interacts with ADF/cofilin and actin is not clearly understood. We determined the crystal structure of Caenorhabditis elegans AIP1 (UNC-78), which revealed 14 WD40 modules arranged in two seven-bladed beta-propeller domains. The structure allowed for the mapping of conserved surface residues, and mutagenesis studies identified five residues that affected the ADF/cofilin-dependent actin filament disassembly activity. Mutations of these residues, which reside in blades 3 and 4 in the N-terminal propeller domain, had significant effects on the disassembly activity but did not alter the barbed end capping activity. These data support a model in which this conserved surface of AIP1 plays a direct role in enhancing fragmentation/depolymerization of ADF/cofilin-bound actin filaments but not in barbed end capping.  相似文献   

7.
肌动蛋白解聚因子(actin depolymerizing factor,ADF)/cofilin家族是一类肌动蛋白结合蛋白,它们通过切断肌动蛋白纤丝并结合到肌动蛋白单体上,在重塑肌动蛋白骨架中发挥重要作用。就ADF/cofilin家族的结构特点、调控肌动蛋白动力学的机制及其功能的最新研究进展做一简要综述,并指出了目前在ADF/cofilin功能研究方面的不足和尚需解决的问题。  相似文献   

8.
The ADF/cofilin family: actin-remodeling proteins   总被引:1,自引:0,他引:1       下载免费PDF全文
Maciver SK  Hussey PJ 《Genome biology》2002,3(5):reviews3007.1-reviews300712
The ADF/cofilins are a family of actin-binding proteins expressed in all eukaryotic cells so far examined. Members of this family remodel the actin cytoskeleton, for example during cytokinesis, when the actin-rich contractile ring shrinks as it contracts through the interaction of ADF/cofilins with both monomeric and filamentous actin. The depolymerizing activity is twofold: ADF/cofilins sever actin filaments and also increase the rate at which monomers leave the filament's pointed end. The three-dimensional structure of ADF/cofilins is similar to a fold in members of the gelsolin family of actin-binding proteins in which this fold is typically repeated three or six times; although both families bind polyphosphoinositide lipids and actin in a pH-dependent manner, they share no obvious sequence similarity. Plants and animals have multiple ADF/cofilin genes, belonging in vertebrates to two types, ADF and cofilins. Other eukaryotes (such as yeast, Acanthamoeba and slime moulds) have a single ADF/cofilin gene. Phylogenetic analysis of the ADF/cofilins reveals that, with few exceptions, their relationships reflect conventional views of the relationships between the major groups of organisms.  相似文献   

9.
肌动蛋白解聚因子/丝切蛋白(actin depolymerizing factor,ADF/cofilin)是一种重要的肌动蛋白结合蛋白。在植物细胞中,ADF/cofilin通过与肌动蛋白相结合,在植物生长发育以及响应外界刺激方面起着重要的作用,以此对各种动态生命活动进行调控。该文对国内外近年来有关ADF/cofilin家族的序列结构特征及定位,与肌动蛋白的互作机制、促进细胞生长、抗生物和非生物逆境胁迫能力等的生物学功能,以及磷酸化作用、环境pH、PIP2对其功能影响的调控模式和作用机制进行了综述,为ADF/cofilin新的抗逆功能机制解析提供参考。  相似文献   

10.
The actin depolymerizing factor (ADF)/cofilin family of proteins interact with actin monomers and filaments in a pH-sensitive manner. When ADF/cofilin binds F-actin it induces a change in the helical twist and fragmentation; it also accelerates the dissociation of subunits from the pointed ends of filaments, thereby increasing treadmilling or depolymerization. Using site-directed mutagenesis we characterized the two actin-binding sites on human cofilin. One target site was chosen because we previously showed that the villin head piece competes with ADF for binding to F-actin. Limited sequence homology between ADF/cofilin and the part of the villin headpiece essential for actin binding suggested an actin-binding site on cofilin involving a structural loop at the opposite end of the molecule to the alpha-helix already implicated in actin binding. Binding through the alpha-helix is primarily to monomeric actin, whereas the loop region is specifically involved in filament association. We have characterized the actin binding properties of each site independently of the other. Mutation of a single lysine residue in the loop region abolishes binding to filaments, but not to monomers. Using the mutation analogous to the phosphorylated form of cofilin (S3D), we show that filament binding is inhibited at physiological ionic strength but not under low salt conditions. At low ionic strength, this mutant induces both the twist change and fragmentation characteristic of wild-type cofilin, but does not activate subunit dissociation. The results suggest a two-site binding to filaments, initiated by association through the loop site, followed by interaction with the adjacent subunit through the "helix" site at the opposite end of the molecule. Together, these interactions induce twist and fragmentation of filaments, but the twist change itself is not responsible for the enhanced rate of actin subunit release from filaments.  相似文献   

11.
Here we describe the identification of a novel 37-kD actin monomer binding protein in budding yeast. This protein, which we named twinfilin, is composed of two cofilin-like regions. In our sequence database searches we also identified human, mouse, and Caenorhabditis elegans homologues of yeast twinfilin, suggesting that twinfilins form an evolutionarily conserved family of actin-binding proteins. Purified recombinant twinfilin prevents actin filament assembly by forming a 1:1 complex with actin monomers, and inhibits the nucleotide exchange reaction of actin monomers. Despite the sequence homology with the actin filament depolymerizing cofilin/actin-depolymerizing factor (ADF) proteins, our data suggests that twinfilin does not induce actin filament depolymerization. In yeast cells, a green fluorescent protein (GFP)–twinfilin fusion protein localizes primarily to cytoplasm, but also to cortical actin patches. Overexpression of the twinfilin gene (TWF1) results in depolarization of the cortical actin patches. A twf1 null mutation appears to result in increased assembly of cortical actin structures and is synthetically lethal with the yeast cofilin mutant cof1-22, shown previously to cause pronounced reduction in turnover of cortical actin filaments. Taken together, these results demonstrate that twinfilin is a novel, highly conserved actin monomer-sequestering protein involved in regulation of the cortical actin cytoskeleton.  相似文献   

12.
Toxoplasma gondii is a protozoan parasite belonging to the phylum Apicomplexa. Parasites in this phylum utilize a unique process of motility termed gliding, which is dependent on parasite actin filaments. Surprisingly, 98% of parasite actin is maintained as G-actin, suggesting that filaments are rapidly assembled and turned over. Little is known about the regulated disassembly of filaments in the Apicomplexa. In higher eukaryotes, the related actin depolymerizing factor (ADF) and cofilin proteins are essential regulators of actin filament turnover. ADF is one of the few actin-binding proteins conserved in apicomplexan parasites. In this study we examined the mechanism by which T. gondii ADF (TgADF) regulates actin filament turnover. Unlike other members of the ADF/cofilin (AC) family, apicomplexan ADFs lack key F-actin binding sites. Surprisingly, this promotes their enhanced disassembly of actin filaments. Restoration of the C-terminal F-actin binding site to TgADF stabilized its interaction with filaments but reduced its net filament disassembly activity. Analysis of severing activity revealed that TgADF is a weak severing protein, requiring much higher concentrations than typical AC proteins. Investigation of TgADF interaction with T. gondii actin (TgACT) revealed that TgADF disassembled short TgACT oligomers. Kinetic and steady-state polymerization assays demonstrated that TgADF has strong monomer-sequestering activity, inhibiting TgACT polymerization at very low concentrations. Collectively these data indicate that TgADF promoted the efficient turnover of actin filaments via weak severing of filaments and strong sequestering of monomers. This suggests a dual role for TgADF in maintaining high G-actin concentrations and effecting rapid filament turnover.  相似文献   

13.
Growth cone motility and navigation in response to extracellular signals are regulated by actin dynamics. To better understand actin involvement in these processes we determined how and in what form actin reaches growth cones, and once there, how actin assembly is regulated. A continuous supply of actin is maintained at the axon tip by slow transport, the mobile component consisting of an unassembled form of actin. Actin is co-transported with actin-binding proteins, including ADF and cofilin, structurally related proteins essential for rapid turnover of actin filaments in vivo. ADF and cofilin activity is regulated through phosphorylation by LIM kinases, downstream effectors of the Rho family of GTPases, Cdc42, Rac and Rho. Attractive and repulsive extracellular guidance cues might locally alter actin dynamics by binding specific GTPase-linked receptors, activating LIM kinases, and subsequently modulating the activity of ADF/cofilin. ADF is enriched in growth cones and is required for neurite outgrowth. In addition, signals that influence growth cone behavior alter ADF/cofilin phosphorylation, and overexpression of ADF enhances neurite outgrowth. Growth promoting effects of laminin are mimicked by expression of constitutively active Cdc42 and blocked by expression of the dominant negative Cdc42. Repulsive effects of myelin and sema3D on growth cones are blocked by expression of constitutively active Rac1 and dominant negative Rac1, respectively. Thus a series of complex pathways must exist for regulating effectors of actin dynamics. The bifurcating nature of the ADF/cofilin phosphorylation pathway may provide the integration necessary for this complex regulation.  相似文献   

14.
Ono S 《Biochemistry》2003,42(46):13363-13370
Actin depolymerizing factor (ADF)/cofilin enhances turnover of actin filaments by severing and depolymerizing filaments. A number of proteins functionally interact with ADF/cofilin to modulate the dynamics of actin filaments. Actin-interacting protein 1 (AIP1) has emerged as a conserved WD-repeat protein that specifically enhances ADF/cofilin-induced actin dynamics. Interaction of AIP1 with actin was originally characterized by a yeast two-hybrid system. However, biochemical studies revealed its unique activity on ADF/cofilin-bound actin filaments. AIP1 alone has negligible effects on actin filament dynamics, whereas in the presence of ADF/cofilin, AIP1 enhances filament fragmentation by capping ends of severed filaments. Studies in model organisms demonstrated that AIP1 genetically interacts with ADF/cofilin and participates in several actin-dependent cellular events. The crystal structure of AIP1 revealed its unique structure with two seven-bladed beta-propeller domains. Thus, AIP1 is a new class of actin regulatory proteins that selectively enhances ADF/cofilin-dependent actin filament dynamics.  相似文献   

15.
The contractile activation of airway smooth muscle tissues stimulates actin polymerization, and the inhibition of actin polymerization inhibits tension development. Actin-depolymerizing factor (ADF) and cofilin are members of a family of actin-binding proteins that mediate the severing of F-actin when activated by dephosphorylation at serine 3. The role of ADF/cofilin activation in the regulation of actin dynamics and tension development during the contractile activation of smooth muscle was evaluated in intact canine tracheal smooth muscle tissues. Two-dimensional gel electrophoresis revealed that ADF and cofilin exist in similar proportions in the muscle tissues, and that approximately 40% of the total ADF/cofilin in unstimulated tissues is phosphorylated. Phospho-ADF/cofilin decreased concurrently with tension development in response to stimulation with acetylcholine (ACh) or potassium depolarization indicating the activation of ADF/cofilin. Expression of an inactive phospho-cofilin mimetic (cofilin S3E) but not wild type cofilin in the smooth muscle tissues inhibited endogenous ADF/cofilin dephosphorylation and ACh-induced actin polymerization. Expression of cofilin S3E in the tissues depressed tension development in response to ACh, but it did not affect myosin light chain phosphorylation. The ACh-induced dephosphorylation of ADF/cofilin required the Ca2+-dependent activation of calcineurin (PP2B). The results indicate that the activation of ADF/cofilin is regulated by contractile stimulation in tracheal smooth muscle and that cofilin activation is required for actin polymerization and tension development in response to contractile stimulation.  相似文献   

16.
We examined the low molecular weight proteins transported with actin in the chicken sciatic nerve after injection of [35S]methionine into the lumbar spinal cord. A prominent component of slow axonal transport with apparent molecular mass 19 kDa comigrated on two-dimensional gels with chicken actin depolymerizing factor (ADF), previously shown to be a major actin-binding protein in brain. There was comparatively little radioactivity associated with the actin monomer sequestering proteins, profilin or cofilin, and examination of the rapid component of axonal transport failed to reveal appreciable quantities of actin, ADF, profilin, or cofilin. These results show that both actin and ADF are carried by slow axonal transport and raise the possibility that actin travels within the axon in an unpolymerized form in a complex with ADF.  相似文献   

17.
It is generally assumed that of the six domains that comprise gelsolin, domain 2 is primarily responsible for the initial contact with the actin filament that will ultimately result in the filament being severed. Other actin-binding regions within domains 1 and 4 are involved in gelsolin's severing and subsequent capping activity. The overall fold of all gelsolin repeated domains are similar to the actin depolymerizing factor (ADF)/cofilin family of actin-binding proteins and it has been proposed that there is a similarity in the actin-binding interface. Gelsolin domains 1 and 4 bind G-actin in a similar manner and compete with each other, whereas domain 2 binds F-actin at physiological salt concentrations, and does not compete with domain 1. Here we investigate the domain 2 : actin interface and compare this to our recent studies of the cofilin : actin interface. We conclude that important differences exist between the interfaces of actin with gelsolin domains 1 and 2, and with ADF/cofilin. We present a model for F-actin binding of domain 2 with respect to the F-actin severing and capping activity of the whole gelsolin molecule.  相似文献   

18.
The actin-depolymerizing factor (ADF)/cofilin family of proteins play an essential role in actin dynamics and cytoskeletal re-organization. Human tissues express two isoforms in the same cells, ADF and cofilin, and these two proteins are more than 70% identical in amino acid sequence. We show that ADF is a much more potent actin-depolymerizing agent than cofilin: the maximum level of depolymerization at pH 8 by ADF is about 20 microM compared to 5 microM for cofilin, but little depolymerization occurs at pH 6.5 with either protein. However, we find little difference between the two proteins in their binding to filaments, their severing activities or their activation of subunit release from the pointed ends of filaments. Likewise, they show no significant differences in their affinities for monomeric actin: both bind 15-fold more tightly to actin.ADP than to actin.ATP. Complexes between actin.ADP and ADF or cofilin associate with both barbed and pointed ends of filaments at similar rates (close to those of actin.ATP and much higher than those of actin.ADP). This explains why high concentrations of both proteins reverse the activation of subunit release at pointed ends. The major difference between the two proteins is that the nucleating activity of cofilin-actin.ADP complexes is twice that of ADF-actin.ADP complexes and this, in turn, is twice that of actin.ATP alone. It is this weaker nucleating potential of ADF-actin.ADP that accounts for the much higher steady-state depolymerizing activity. The pH-sensitivity is due to the nucleating activity of complexes being greater at pH 6.5 than at pH 8. Sequence analysis of mammalian and avian isoforms shows a consistent pattern of charge differences in regions of the protein associated with F-actin-binding that may account for the differences in activity between ADF and cofilin.  相似文献   

19.
The plant actin cytoskeleton is a highly dynamic, fibrous structure essential in many cellular processes including cell division and cytoplasmic streaming. This structure is stimulus responsive, being affected by internal stimuli, by biotic and abiotic stresses mediated in signal transduction pathways by actin-binding proteins. The completion of the Arabidopsis genome sequence has allowed a comparative identification of many actin-binding proteins. However, not all are conserved in plants, which possibly reflects the differences in the processes involved in morphogenesis between plant and other cells. Here we have searched for the Arabidopsis equivalents of 67 animal/fungal actin-binding proteins and show that 36 are not conserved in plants. One protein that is conserved across phylogeny is actin-depolymerizing factor or cofilin and we describe our work on the activity of vegetative tissue and pollen-specific isoforms of this protein in plant cells, concluding that they are functionally distinct.  相似文献   

20.
Cofilin and actin-depolymerizing factor (ADF) are actin-binding proteins that play an essential role in regulating actin filament dynamics and reorganization by stimulating the severance and depolymerization of actin filaments. Cofilin/ADF are inactivated by phosphorylation at the serine residue at position 3 by LIM-kinases (LIMKs) and testicular protein kinases (TESKs) and are reactivated by dephosphorylation by the slingshot (SSH) family of protein phosphatases and chronophin. This review describes recent advances in our understanding of the signaling mechanisms regulating LIMKs and SSHs and the functional roles of cofilin phospho-regulation in cell migration, tumor invasion, mitosis, neuronal development, and synaptic plasticity. Accumulating evidence demonstrates that the phospho-regulation of cofilin/ADF is a key convergence point of cell signaling networks that link extracellular stimuli to actin cytoskeletal dynamics and that spatiotemporal control of cofilin/ADF activity by LIMKs and SSHs plays a crucial role in a diverse array of cellular and physiological processes. Perturbations in the normal control of cofilin/ADF activity underlie many pathological conditions, including cancer metastasis and neurological and cardiovascular disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号