首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
王宪  吴中欣 《生理学报》1996,48(3):217-221
本实验在离体灌流大鼠肠系膜动脉床研究内毒素引起降钙素基因相关肽(CGRP)释放的机制。内毒素(50μg/ml)使CGRP释放增加16倍,一氧化氮合成酶(NOS)底物L-精氨酸(L-Arg)能促进内毒素引起的CGRP释放(41%)。NOS抑制剂N ̄G-硝基-L-精氨酸(L-NNA)及鸟苷酸环化酶抑制剂甲基蓝(MB)能使内毒素的上述作用分别降低35%与36%,L-精氨酸(t-Arg)能逆转L-NNA的作用。提示内毒素的作用机制中部分是通过一氧化氮引起细胞内cGMP升高而介导的。用化学方法破坏血管内皮细胞,L-NNA与L-Arg的上述作用依然存在。提示内毒素主要是激活血管周围感觉神经末梢的神经源NOS,而非内皮源NOS。环氧化酶抑制剂消炎痛(Indo)与布洛芬(Ibu)也能使内毒素引起CGRP释放的作用分别降低34%与39%,但与L-NNA的作用不能迭加。提示内毒素可能通过激活神经源NOS进而引起环氧化酶活化而起作用。  相似文献   

2.
目的和方法 本研究采用离子探针Fura-2/AM结合计算机图象分析技术,并通过施加NO合酶抑制剂L-NNA和NO的作用靶--鸟苷酸环化酶(GC)的抑制剂美兰(Methylene Blue;MB),观察经培养的大鼠大脑皮层微血管内皮细胞和平滑肌细胞中的〖Ca^2+〗i在低氧作用后的变化以及与有关血管舒张因子NO和cGMP之间的关系。结果 低氧时大脑微血管内皮细胞和平滑肌细胞内的Ca^2+浓度有下降,  相似文献   

3.
NO—样松弛因子对止血带休克大鼠血管舒缩活动的影响   总被引:2,自引:1,他引:1  
本工作在大鼠止血带休克(ToS)模型上观察NO前体L-精氨酸L-Arg,NO合成阻断剂L-NNA及可溶性鸟苷酸环化酶抑制剂亚甲兰(MB)对离体胸主动脉舒缩活动的影响。发现止血带休克大鼠离体灌流的主动脉对去甲肾上腺素的反应性降低。血管组织cGMP含量增加。L-Arg可增强这一变化,而L-NNA或MB可减轻上述变化,而且这些药物作用不受血管内皮是否存在的影响。实验结果提示,非内皮细胞源的NO-样松弛因子(NO-LRF)是引起止血带休克动物血管低反应性的因素之一  相似文献   

4.
目的和方法:本研究采用离子探针Fura2/AM 结合计算机图象分析技术,并通过施加NO合酶抑制剂LNNA和NO的作用靶———鸟苷酸环化酶(GC)的抑制剂美兰(Methylene Blue;MB),观察经培养的大鼠大脑皮层微血管内皮细胞和平滑肌细胞中的[Ca2+]i 在低氧作用后的变化以及与有关血管舒张因子NO和cGMP之间的关系。结果:低氧时大脑微血管内皮细胞和平滑肌细胞内的Ca2+ 浓度有所下降,变化幅度的大小与低氧的程度及低氧作用的时间有关,且可以被LNNA和MB所抑制。结论:低氧时大脑微血管的舒张反应与NO的产生有关,NO通过细胞内的多种机制,最终使得胞内Ca2+ 下降而导致血管舒张  相似文献   

5.
硝基左旋精氨酸对睡眠抑制作用的机制研究   总被引:1,自引:0,他引:1  
章茜  王书春 《生理学报》1997,49(5):585-588
本文观察了硝基左旋精氨酸(L-NNA,50mg/kg,ip)和L-精氨酸(L-arg,110mg/kg,ip)对慢性植入电极的大鼠睡眠-觉醒周期的影响及中缝核5-羟色胺(5-HT)神经元免疫阳性反应的变化。结果表明:L-NNA显著抑制慢波睡眠和快眼动睡眠,使平均动脉压(MAP)升高。L-arg则使MAP显著降低,对睡眠无明显影响。预先给予L-arg可逆转L-NNA的效应。腹腔给予L-NNA后2h,  相似文献   

6.
本研究观察了低氧对大鼠肺组织和血管内皮一氧化氮合酶(NOS)活性及内皮衍生一氧化氮(EDNO)依赖性舒张反应的影响,以及NOS抑制剂(L-NAME)对常氧和低氧大鼠肺组织和血管内皮NOS活性及颈、肺动脉血压(CAPs、mPAP)的作用。结果表明常氧大鼠肺泡内无肌性血管内皮未见NOS活性,其肺血管床对EDNO依赖性舒血管物质BK没有反应,注射L-NAME后大鼠mPAP略有降低,CAPs有所升高。低氧大鼠肺泡内无肌性血管内皮显示NOS活性,对BK的EDNO依赖性舒张反应呈剂量依赖性增大,注射L-NAME使低氧大鼠mPAP显著降低(P<0.01),CAPs显著升高(P<0.05)。提示肺血管EDNO及其合酶在维持正常成年大鼠肺循环低压低阻中的生理作用值得进一步探讨;低氧引起肺血管内皮ecNOS活性增加和EDNO生成增多可能起到限制肺动脉压过度升高的调制作用,也可能对肺血管内皮产生毒性作用,反而促进肺动脉高压的发生和发展。  相似文献   

7.
万梅  于占久 《生理学报》1995,47(3):231-237
血管内皮产生的内皮衍生舒张因子(endothelium-derived relaxing factor,EDRF)即一氧化氮(nitric oxide,NO)本工作分别在大鼠Langendorff离体心脏灌流模型和培养的大鼠心肌细胞上观察了NO、NO的前体物质L-精氨酸(L-Arg)、NO的前体物质L-精氨酸(L-Arg)、NO的合成阻断剂L-硝基精氨酸(L-NNA)对心肌缺血(缺氧)再灌注(复氧  相似文献   

8.
我们以往的工作证实成年自发高血压大鼠(SHR与SHRsp)肠系膜动脉由乙酰胆碱引起的内皮依赖性舒张(EDR)减弱。为进一步探讨EDR减弱的机制,本文观察了一氧化氮(NO)合成酶抑制剂左旋硝基精氨酸(L-NNA)及EDRF灭活剂还原型血红蛋白(RHb)对卒中易感型自发高血压大鼠(SHRsp)与常压对照(WKY)大鼠肠系膜动脉ACh内皮依赖性舒张(EDR)的影响。发现L-NNA(10(-3)mol/L)可使SHRsp弱于WKY的AChEDR(10(-8)-10(-5)mol/L)的差异消失,RHb(10(-5)mol/L)则仅在10(-7)-10(-8)mol/LACh时使SHR(sp)肠系膜动脉EDR弱于WKY的差异消失。将WKY在加入L-NNA后的与加入RHb后的ACh(10(-8)-10(-5)mol/L)EDR进行比较,无显著差异。而将SHRsp在L-NNA后的与RHb后的ACh(10(-8)-10(-6)mol/L)EDR进行比较,则有显著差异。并且,SHRsp的有内皮肠系膜动脉条对RHb的敏感性与WKY接近,对L-NNA的敏感性则低于WKY。表明高血压时肠系膜动脉内皮依赖性舒张减弱中,EDRF机制与  相似文献   

9.
肾上腺髓质素对大鼠肠系膜微血管和微淋巴管的作用   总被引:5,自引:0,他引:5  
樊贵  魏英杰 《生理学报》1997,49(1):115-118
应用活体显微电视录象技术,观察上腺髓质素对大鼠肠系膜微血管微淋巴管的作用及其对去甲肾上腺素,内皮素作用的是结果表明,ADM直接扩张肠系膜各级微血管和向一淋巴管,拮抗NE和ET引起的微血效及微循环血流液态的异常改变。ADM的上述作用可被一氧化氮生成抑制剂N^9-nitro-L-arginine(L-NNA)显著抑制。  相似文献   

10.
EDRF对PE引起的大鼠主动脉缩血管效应的作用   总被引:1,自引:0,他引:1  
本文研究EDRF(endothelium-derivedrelaxingfactor,EDRF)对PE(phenylephrine)引起的大鼠主动脉收缩反应的影响。内皮完整和去内皮的大鼠主动脉环悬挂于器官浴槽中,测定血管的张力和收缩速度的变化。所有的实验在消炎痛(indomethacin,10μmol/L)存在下进行。用美兰(methyleneblue,MB,10μmol/L)或左旋硝基精氨酸(NG-nitro-L-arginine,L-NNA,30μmol/L)处理内皮完整的大鼠主动脉环,PE的剂量-收缩张力曲线明显左移,EC30值均降低5倍,最大反应比率分别为1.6±0.4和1.6±0.5。在去内皮的大鼠主动脉环中,经MB和L-NNA处理后,仍可见EC30下降3倍,最大反应比率均为1.0±0.2。后者可能与血管平滑肌产生少量EDRF有关。我们的结果提示PE对血管的收缩反应也受血管内皮和平滑肌产生的EDRF的调控  相似文献   

11.
We investigated the histamine responsiveness of basilar arterial rings isolated from chicken. We also examined whether endothelial cells were involved in the histamine responsiveness and in resting vascular tone. Histamine induced concentration-dependent relaxations under condition of precontraction by 5-hydroxytryptamine. The concentration-response curve for histamine was shifted to the right by diphenhydramine (a H(1) receptor antagonist), cimetidine (a H(2) receptor antagonist) and Nomega-nitro-L-arginine (L-NNA, a nitric oxide synthase inhibitor); however, indomethacin (a cyclooxygenase inhibitor) had no significant effect on it. Treatment with L-NNA shifted the concentration-response curve of histamine to the right in the presence of cimetidine, but not in the presence of diphenhydramine. Treatment with cimetidine shifted the concentration-response curve of histamine to the right in the presence of diphenhydramine. L-NNA induced a contraction but indomethacin had no effect on the resting vascular tone. These results suggest that histamine-induced relaxation is mediated via activation of H(1) receptors located on endothelial cells and H(2) receptors located on smooth muscle cells. The main relaxing factor released from endothelial cells is probably nitric oxide. The resting vascular tone was modulated by spontaneously released nitric oxide, but not by prostaglandins or thromboxane A(2).  相似文献   

12.
Our goal was to examine whether exercise training alleviates impaired nitric oxide synthase (NOS)-dependent dilatation of the basilar artery in Type 1 diabetic rats. To test this hypothesis, we measured in vivo diameter of the basilar artery in sedentary and exercised nondiabetic and diabetic rats in response to NOS-dependent (acetylcholine) and -independent (nitroglycerin) agonists. To determine the potential role for nitric oxide in vasodilatation in sedentary and exercised nondiabetic and diabetic rats, we examined responses after NG-monomethyl-l-arginine (l-NMMA). We found that acetylcholine produced dilatation of the basilar artery that was similar in sedentary and exercised nondiabetic rats. Acetylcholine produced only minimal vasodilatation in sedentary diabetic rats. However, exercise alleviated impaired acetylcholine-induced vasodilatation in diabetic rats. Nitroglycerin produced dilatation of the basilar artery that was similar in sedentary and exercised nondiabetic and diabetic rats. l-NMMA produced similar inhibition of acetylcholine-induced dilatation of the basilar artery in sedentary and exercised nondiabetic and diabetic rats. Finally, we found that endothelial NOS (eNOS) protein in the basilar artery was higher in diabetic compared with nondiabetic rats and that exercise increased eNOS protein in the basilar artery of nondiabetic and diabetic rats. We conclude that 1) exercise can alleviate impaired NOS-dependent dilatation of the basilar artery during diabetes mellitus, 2) the synthesis and release of nitric oxide accounts for dilatation of the basilar artery to acetylcholine in sedentary and exercised nondiabetic and diabetic rats, and 3) exercise may exert its affect on cerebrovascular reactivity during diabetes by altering levels of eNOS protein in the basilar artery.  相似文献   

13.
Left ventricular (LV) dysfunction caused by myocardial infarction (MI) is accompanied by endothelial dysfunction, most notably a loss of nitric oxide (NO) availability. We tested the hypothesis that endothelial dysfunction contributes to impaired tissue perfusion during increased metabolic demands as produced by exercise, and we determined the contribution of NO to regulation of regional systemic, pulmonary, and coronary vasomotor tone in exercising swine with LV dysfunction produced by a 2- to 3-wk-old MI. LV dysfunction resulted in blunted systemic and coronary vasodilator responses to ATP, whereas the responses to nitroprusside were maintained. Exercise resulted in blunted systemic and pulmonary vasodilator responses in MI that resembled the vasodilator responses in normal (N) swine following blockade of NO synthase with N(omega)-nitro-L-arginine (L-NNA, 20 mg/kg iv). However, L-NNA resulted in similar decreases in systemic (43 +/- 3% in N swine and 49 +/- 4% in MI swine), pulmonary (45 +/- 5% in N swine and 49 +/- 4% in MI swine), and coronary (28 +/- 4% in N and 35 +/- 3% in MI) vascular conductances in N and MI swine under resting conditions; similar effects were observed during treadmill exercise. Selective inhibition of inducible NO synthase with aminoguanidine (20 mg/kg iv) had no effect on vascular tone in MI. These findings indicate that while agonist-induced vasodilation is already blunted early after myocardial infarction, the contribution of endothelial NO synthase-derived NO to regulation of vascular tone under basal conditions and during exercise is maintained.  相似文献   

14.
The presence of nitric oxide synthase (NOS) and role of nitric oxide (NO) in vascular regulation was investigated in the Australian lungfish, Neoceratodus forsteri. No evidence was found for NOS in the endothelium of large and small blood vessels following processing for NADPH-diaphorase histochemistry. However, both NADPH-diaphorase histochemistry and neural NOS immunohistochemistry demonstrated a sparse network of nitrergic nerves in the dorsal aorta, hepatic artery, and branchial arteries, but there were no nitrergic nerves in small blood vessels in tissues. In contrast, nitrergic nerves were found in non-vascular tissues of the lung, gut and kidney. Dual-wire myography was used to determine if NO signalling occurred in the branchial artery of N. forsteri. Both SNP and SIN-1 had no effect on the pre-constricted branchial artery, but the particulate guanylyl cyclase (GC) activator, C-type natriuretic peptide, always caused vasodilation. Nicotine mediated a dilation that was not inhibited by the soluble GC inhibitor, ODQ, or the NOS inhibitor, L-NNA, but was blocked by the cyclooxygenase inhibitor, indomethacin. These data suggest that NO control of the branchial artery is lacking, but that prostaglandins could be endothelial relaxing factors in the vasculature of lungfish.  相似文献   

15.
Hypoxia causes a regulated decrease in body temperature (T(b)), and nitric oxide (NO) is now known to participate in hypoxia-induced hypothermia. Hypoxia also inhibits lipopolysaccharide (LPS)-induced fever. We tested the hypothesis that NO may participate in the hypoxia inhibition of fever. The rectal temperature of awake, unrestrained rats was measured before and after injection of LPS, with or without concomitant exposure to hypoxia, in an experimental group treated with N(omega)-nitro-L-arginine (L-NNA) for 4 consecutive days before the experiment and in a saline-treated group (control). L-NNA is a nonspecific NO synthase inhibitor that blocks NO production. LPS caused a dose-dependent typical biphasic rise in T(b) that was completely prevented by hypoxia (7% inspired oxygen). L-NNA caused a significant drop in T(b) during days 2-4 of treatment. When LPS was injected into L-NNA-treated rats, inhibition of fever was observed. Moreover, the effect of hypoxia during fever was significantly reduced. The data indicate that the NO pathway plays a role in hypoxia inhibition of fever.  相似文献   

16.
Nitric oxide (NO) and prostacyclin (PGI(2)) are potent fetal pulmonary vasodilators, but their relative roles and interactions in the regulation of the perinatal pulmonary circulation are poorly understood. We compared the separate and combined effects of nitric oxide synthase (NOS) and cyclooxygenase (COX) inhibition during acute hemodynamic stress caused by brief mechanical compression of the ductus arteriosus (DA) in chronically prepared fetal lambs. Nitro-L-arginine (L-NNA; NOS antagonist), meclofenamate (Mec; COX inhibitor), combined drugs (L-NNA-Mec), or saline (control) was infused into the left pulmonary artery (LPA) before DA compression. In controls, DA compression decreased pulmonary vascular resistance (PVR) by 43% (P < 0.01). L-NNA, but not Mec, treatment completely blocked vasodilation and caused a paradoxical increase in PVR (+31%; P < 0.05). The effects of L-NNA-Mec and L-NNA on PVR were similar. To determine if the vasodilator effect of PGI(2) is partly mediated by NO release, we studied PGI(2)-induced vasodilation before and after NOS inhibition. L-NNA treatment blocked the PGI(2)-induced rise in LPA blood flow by 73% (P < 0.001). We conclude that NO has a greater role than PGs in fetal pulmonary vasoregulation during acute hemodynamic stress and that PGI(2)-induced pulmonary vasodilation is largely mediated by NO release in the fetal lung.  相似文献   

17.
前列环素参与低氧,高二氧化碳脑血管张力调节   总被引:1,自引:0,他引:1  
本工作是在初生小牛基底动脉血管条上,用前列环素合成酶抑制剂—消炎痛(Indomethacin)研究前列环素及内皮细胞在低氧高二氧化碳脑血管扩张机制中的作用。实验结果表明,消炎痛对常氧下脑血管张力没有影响,但可抑制低氧高二氧化碳引起的脑血管扩张反应。去除内皮细胞后低氧、高二氧化碳扩张脑血管的作用显著减小,此时再给予消炎痛对血管张力无明显作用。由此提示,前列环素和内皮细胞参与低氧,高二氧化碳的脑血管扩张作用,而前列环素是来源于内皮细胞。  相似文献   

18.
The ability of activated glia to affect cerebral vascular tone has been evaluated using an in vitro experimental system in which basilar arteries were incubated with glial cultures activated by treatment with lipopolysaccharide (LPS). Vascular tone was measured with an isometric myograph. Contraction in response to high KCl and serotonin was reduced in arteries co-incubated for 24 h with LPS-activated glia, whereas the response to acetylcholine was not modified. The reduced contraction was prevented when the nitric oxide synthase (NOS) inhibitor L-N-nitro-arginine (L-NNA) was added throughout the whole incubation time (activation of glial cells with LPS + co-incubation of glial cells with cerebral arteries). Under these conditions, nitrite levels were drastically reduced. A reduced contraction to KCl was also observed after treatment of the cerebral vessel with sodium nitroprusside. In contrast, L-NNA added to the vessel did not modify the response to contracting stimuli and the expression of endothelial NOS was not modified in cerebral arteries pre-incubated with activated glia. These results suggest that activated glia, which finds an in vivo correlate in several neuropathological conditions, can contribute to changes of vascular tone by modifying the levels of nitric oxide (NO) to which the vessel is exposed.  相似文献   

19.
We aimed to clarify responsiveness to angiotensin (Ang) II in the porcine basilar artery and the role of Ang II receptor subtypes by functional, radioligand binding, and cell culture studies. Ang II induced more potent contractions in the proximal part than in the distal part of isolated porcine basilar arteries. The contraction induced by Ang II was inhibited by the Ang II type 1 (AT1) receptor antagonist losartan, but the Ang II type 2 (AT2) receptor antagonist PD123319 enhanced it. After removal of the endothelium, the effect of losartan remained but the effect of PD123319 was abolished. The specific binding site of [3H]Ang II on the smooth muscle membrane was inhibited by losartan, but not by PD123319. Stimulation of angiotensin II increased nitric oxide (NO) production in cultured basilar arterial endothelial cells. This production was inhibited by PD123319 and the NO synthase inhibitor L-NG-nitroarginine. These results suggest that the contraction induced by Ang II might be mediated via the activation of AT1 receptors on the basilar arterial smooth muscle cells and be modulated via the activation of AT2 receptors on the endothelial cells, followed by NO production.  相似文献   

20.
Liu D  Dillon JS 《Steroids》2004,69(4):279-289
Dehydroepiandrosterone (DHEA) improves vascular function, but the mechanism of this effect is unclear. Since nitric oxide (NO) regulates vascular function, we hypothesized that DHEA affects the vasculature by increasing endothelial NO production. Physiological concentrations of DHEA stimulated NO release from intact bovine aortic endothelial cells (BAEC) within 5min. This effect was mediated by activation of endothelial nitric oxide synthase (eNOS) in BAEC and human umbilical vein endothelial cells (HUVEC). Dehydroepiandrosterone increased cyclic GMP (cGMP) levels in BAEC, consistent with its effect on NO production. Albumin-conjugated DHEA also stimulated NO release, suggesting that DHEA stimulates eNOS by a plasma membrane-initiated signal. Tamoxifen blocked estrogen-stimulated NO release from BAEC, but did not inhibit the DHEA effect. Pertussis toxin abolished the acute effect of DHEA on NO release. Dehydroepiandrosterone had no effect on intracellular calcium fluxes. However, inhibition of tyrosine kinases or the mitogen-activated protein (MAP) kinase kinase (MEK) blocked NO release and cGMP production in response to DHEA. These findings demonstrate that physiological concentrations of DHEA acutely increase NO release from intact vascular endothelial cells, by a plasma membrane-initiated mechanism. This action of DHEA is mediated by a steroid-specific, G-protein coupled receptor, which activates eNOS in both bovine and human cells. The release of NO is independent of intracellular calcium mobilization, but depends on tyrosine- and MAP kinases. This cellular mechanism may underlie some of the cardiovascular protective effects proposed for DHEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号