首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been proposed that alcohols and anesthetics selectively inhibit proteins containing easily disrupted motifs, e.g., alpha-helices. In this study, the calcineurin/calmodulin/Ca(2+) enzyme system was used to examine the effects of alcohols on calmodulin, a protein with a predominantly alpha-helical structure. Calcineurin phosphatase activity and Ca(2+) binding were monitored as indicators of calmodulin function. Alcohols inhibited enzyme activity in a concentration-dependent manner, with two-, four- and five-carbon n-alcohols exhibiting similar leftward shifts in the inhibition curves for calmodulin-dependent and -independent activities; the former was slightly more sensitive than the latter. Ca(2+) binding was measured by flow dialysis as a direct measure of calmodulin function, whereas, with the addition of a binding domain peptide, measured calmodulin-target interactions. Ethanol increased the affinity of calmodulin for Ca(2+) in the presence and absence of the peptide, indicating that ethanol stabilizes the Ca(2+) bound form of calmodulin. An increase in Ca(2+) affinity was detected in a calmodulin binding assay, but the affinity of calmodulin for calcineurin decreased at saturating Ca(2+). These data demonstrate that although specific regions within proteins may be more sensitive to alcohols and anesthetics, the presence of alpha-helices is unlikely to be a reliable indicator of alcohol or anesthetic potency.  相似文献   

2.
A neuronal Ca2+/calmodulin-dependent protein kinase (CaM kinase-Gr) undergoes autophosphorylation on a serine residue(s) in response to Ca2+ and calmodulin. Phosphate incorporation leads to the formation of a Ca(2+)-independent (autonomous) activity state, as well as potentiation of the Ca2+/calmodulin-dependent response. The autonomous enzyme activity of the phosphorylated enzyme approximately equals the Ca2+/calmodulin-stimulated activity of the unphosphorylated enzyme, but displays diminished affinity toward ATP and the synthetic substrate, syntide-2. The Km(app) for ATP and syntide-2 increased 4.3- and 1.7-fold, respectively. Further activation of the autonomous enzyme by Ca2+/calmodulin yields a marked increase in the affinity for ATP and peptide substrate such that the Km(app) for ATP and syntide-2 decreased by 14- and 8-fold, respectively. Both autophosphorylation and the addition of Ca2+/calmodulin are required to produce the maximum level of enzyme activation and to increase substrate affinity. Unlike Ca2+/calmodulin-dependent protein kinase type II that is dephosphorylated by the Mg(2+)-independent phosphoprotein phosphatases 1 and 2A, CaM kinase-Gr is dephosphorylated by a Mg(2+)-dependent phosphoprotein phosphatase that may be related to the type 2C enzyme. Dephosphorylation of CaM kinase-Gr reverses the effects of autophosphorylation on enzyme activity. A comparison between the autophosphorylation and dephosphorylation reactions of CaM kinase-Gr and Ca2+/calmodulin-dependent protein kinase type II provides useful insights into the operation of Ca(2+)-sensitive molecular switches.  相似文献   

3.
Tran QK  Leonard J  Black DJ  Persechini A 《Biochemistry》2008,47(28):7557-7566
We have investigated the effects of phosphorylation at Ser-617 and Ser-635 within an autoinhibitory domain (residues 595-639) in bovine endothelial nitric oxide synthase on enzyme activity and the Ca (2+) dependencies for calmodulin binding and enzyme activation. A phosphomimetic S617D substitution doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and enzyme activation from the wild-type values of 180 +/- 2 and 397 +/- 23 nM to values of 109 +/- 2 and 258 +/- 11 nM, respectively. Deletion of the autoinhibitory domain also doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and calmodulin-dependent enzyme activation to 65 +/- 4 and 118 +/- 4 nM, respectively. An S635D substitution has little or no effect on enzyme activity or EC 50(Ca (2+)) values, either alone or when combined with the S617D substitution. These results suggest that phosphorylation at Ser-617 partially reverses suppression by the autoinhibitory domain. Associated effects on the EC 50(Ca (2+)) values and maximum calmodulin-dependent enzyme activity are predicted to contribute equally to phosphorylation-dependent enhancement of NO production during a typical agonist-evoked Ca (2+) transient, while the reduction in EC 50(Ca (2+)) values is predicted to be the major contributor to enhancement at resting free Ca (2+) concentrations.  相似文献   

4.
Initial autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) occurs at Thr286 (the "autonomy" site) and converts the kinase from a Ca(2+)-dependent to a partially Ca(2+)-independent or autonomous enzyme. After removal of Ca2+/calmodulin, the autonomous kinase undergoes a "burst" of inhibitory autophosphorylation at sites distinct from the autonomy site which may be masked in the presence of bound calmodulin. This burst of Ca(2+)-independent autophosphorylation blocks the ability of calmodulin to activate the kinase. We have used site-directed mutagenesis to replace putative inhibitory autophosphorylation sites within the calmodulin binding domain of recombinant alpha-CaM kinase with nonphosphorylatable alanines and examined the effects on autophosphorylation, kinase activity, and calmodulin binding. Although prominent Ca(2+)-independent autophosphorylation occurs within the calmodulin binding domain at Thr305, Thr306, and Ser314 in wild-type alpha-CaM kinase, the inhibitory effect on kinase activity and calmodulin binding is retained in mutants lacking any one of these three sites. However, when both Thr305 and Thr306 are converted to alanines the kinase does not display inhibition of either activity or calmodulin binding. Autophosphorylation at either Thr305 or Thr306 is therefore sufficient to block both binding and activation of the kinase by Ca2+/calmodulin. Thr306 is also slowly autophosphorylated in a basal reaction in the continuous absence of Ca2+/calmodulin. Autophosphorylation of Thr306 by the kinase in either its basal or autonomous state suggests that in the absence of bound calmodulin, the region of the autoregulatory domain surrounding Thr306, rather than the region near the autonomy site, lies nearest the peptide substrate binding site of the kinase.  相似文献   

5.
Myometrium cell plasma membrane Ca2+, Mg(2+)-ATPase purified by an affinity chromatography on calmodulin-sepharose 4B is calmodulin-dependent enzyme. Concentration of calmodulin required for half-maximal activation of enzyme was about 26 nM. By unlike to the enzymes originated from other tissues sensitivity to the calmodulin of the myometrial sarcolemma Ca(2+)-transporting ATPase was lower: calmodulin increased Vmax of ATPase about 1.25-fold, the apparent constant of the activation of enzyme by Ca2+ failed to alter independently on the phospholipid presenting at the enzyme isolation.  相似文献   

6.
Interactions of calcineurin A, calcineurin B, and Ca2+.   总被引:1,自引:0,他引:1  
B Feng  P M Stemmer 《Biochemistry》1999,38(38):12481-12489
Calcineurin B (CN-B) is the Ca(2+)-binding, regulatory subunit of the phosphatase calcineurin. Point mutations to Ca(2+)-binding sites in CN-B were generated to disable individual Ca(2+)-binding sites and evaluate contributions from each site to calcineurin heterodimer formation. Ca(2+)-binding properties of four CN-B mutants and wild-type CN-B were analyzed by flow dialysis confirming that each CN-B mutant binds three Ca2+ and that wild-type CN-B binds four Ca2+. Macroscopic dissociation constants indicate that N-terminal Ca(2+)-binding sites have lower affinity for Ca2+ than the C-terminal sites. Each CN-B mutant was coexpressed with the catalytic subunit of calcineurin, CN-A, to produce heterodimers with specific disruption of one Ca(2+)-binding site. Enzymes containing CN-B with a mutation in Ca(2+)-binding sites 1 or 2 have a lower ratio of CN-B to CN-A and a lower phosphatase activity than those containing wild-type CN-B or mutants in sites 3 or 4. Effects of heterodimer formation on Ca2+ binding were assessed by monitoring (45)Ca2+ exchange by flow dialysis. Enzymes containing wild-type CN-B and mutants in sites 1 and 2 exchange (45)Ca2+ slowly from two sites whereas mutants in sites 3 and 4 exchange (45)Ca2+ slowly from a single site. These data indicate that the Ca2+ bound to sites 1 and 2 is likely to vary with Ca2+ concentration and may act in dynamic modulation of enzyme function, whereas Ca(2+)-binding sites 3 and 4 are saturated at all times and that Ca2+ bound to these sites is structural.  相似文献   

7.
The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.  相似文献   

8.
Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is characterized by a serine-threonine kinase domain, an autoinhibitory domain, a calmodulin-binding domain and a neural visinin-like domain with three EF-hands. The neural visinin-like Ca(2+)-binding domain at the C-terminal end of the CaM-binding domain makes CCaMK unique among all the known calmodulin-dependent kinases. Biological functions of the plant visinin-like proteins or visinin-like domains in plant proteins are not well known. Using EF-hand deletions in the visinin-like domain, we found that the visinin-like domain regulated Ca(2+)-stimulated autophosphorylation of CCaMK. To investigate the effects of Ca(2+)-stimulated autophosphorylation on the interaction with calmodulin, the equilibrium binding constants of CCaMK were measured by fluorescence emission anisotropy using dansylated calmodulin. Binding was 8-fold tighter after Ca(2+)-stimulated autophosphorylation. This shift in affinity did not occur in CCaMK deletion mutants lacking Ca(2+)-stimulated autophosphorylation. A variable calmodulin affinity regulated by Ca(2+)-stimulated autophosphorylation mediated through the visinin-like domain is a new regulatory mechanism for CCaMK activation and calmodulin-dependent protein kinases. Our experiments demonstrate the existence of two functional molecular switches in a protein kinase regulating the kinase activity, namely a visinin-like domain acting as a Ca(2+)-triggered switch and a CaM-binding domain acting as an autophosphorylation-triggered molecular switch.  相似文献   

9.
We have previously shown that 3 Ca(2+) ions are released cooperatively and 1 independently from the complex between (Ca(2+))4-calmodulin and skeletal muscle myosin light chain kinase or a peptide containing its core calmodulin-binding sequence. We now have found that three Ca(2+)-binding sites also function cooperatively in equilibrium Ca(2+) binding to these complexes. Replacement of sites I and II in calmodulin by a copy of sites III and IV abolishes these cooperative effects. Energy coupling-dependent increases in Ca(2+)-binding affinity in the mutant and native calmodulin complexes with enzyme are considerably less than in the peptide complexes, although the complexes have similar affinities. Ca(2+) binding to three sites in the native calmodulin-enzyme complex is enhanced; the affinity of the remaining site is slightly reduced. In the mutant enzyme complex Ca(2+) binding to one pair of sites is enhanced; the other pair is unaffected. In this complex reversal of enzyme activation occurs when Ca(2+) dissociates from the pair of sites with enhanced affinity; more rapid dissociation from the other pair has no effect, although both pairs participate in activation. Ca(2+)-independent interactions with calmodulin clearly play a major role in the enzyme complex, and appear to weaken Ca(2+)-dependent interactions with the core calmodulin-binding sequence.  相似文献   

10.
The plasma membrane calcium ATPase (PMCA) actively transports Ca(2+) from the cytosol to the extra cellular space. The C-terminal segment of the PMCA functions as an inhibitory domain by interacting with the catalytic core. Ca(2+)-calmodulin binds to the C-terminal segment and stops inhibition. Here we showed that residue Asp(170), in the putative "A" domain of human PMCA isoform 4xb, plays a critical role in autoinhibition. In the absence of calmodulin a PMCA containing a site-specific mutation of D170N had 80% of the maximum activity of the calmodulin-activated PMCA and a similar high affinity for Ca(2+). The mutation did not change the activation of the PMCA by ATP. Deletion of the C-terminal segment further downstream of the calmodulin-binding site led to an additional increase in the maximal activity of the mutant, which suggests that the mutation did not affect the inhibition because of this portion of the C-terminal segment. The calmodulin-activated PMCA was more sensitive to vanadate inhibition than the autoinhibited enzyme. In contrast, inhibition of the D170N mutant required higher concentrations of vanadate and was not affected by calmodulin. Despite its higher basal activity, the mutant had an apparent affinity for calmodulin similar to that of the wild type enzyme, and its rate of proteolysis at the C-terminal segment was still calmodulin-dependent. Altogether these results suggest that activation by mutation D170N does not involve the displacement of the calmodulin-binding autoinhibitory domain from the catalytic core and may arise directly from changes in the accessibility to the calcium-binding residues of the pump.  相似文献   

11.
We have recently identified PP7, a novel group of plant protein Ser/Thr phosphatases, and hypothesized that PP7 may possess a calmodulin-binding site. To test this hypothesis, we assessed the effect of calmodulin on the activity of recombinant Arabidopsis thaliana PP7 and directly tested interaction between PP7 and calmodulin using surface plasmon resonance. Calmodulin exerted a moderate inhibitory effect on the phosphatase activity of PP7 with submicromolar affinity. PP7 specifically interacted with immobilized calmodulin (but not with recoverin, another EF hand Ca(2+)-binding protein) in a strictly Ca(2+)-dependent manner with nanomolar affinity. Deletion of an insert in the catalytic domain of PP7, predicted to function as a calmodulin-binding site, greatly decreased PP7 binding to calmodulin. These findings provide the first evidence for a plant protein phosphatase directly interacting with calmodulin and indicate that PP7 might be regulated by Ca(2+) levels in vivo.  相似文献   

12.
The Ca(2+) titration of the (15)N-labeled mutant V136G calmodulin has been monitored using (1)H-(15)N HSQC NMR spectra. Up to a [Ca(2+)]/[CaM] ratio of 2, the Ca(2+) ions bind predominantly to sites I and II on the N-domain in contrast with the behavior of the wild-type calmodulin where the C-terminal domain has the higher affinity for Ca(2+). Surprisingly, the Ca(2+)-binding affinity for the N-domain in the mutant calmodulin is greater than that for the N-domain in the wild-type protein. The mutated C-domain is observed as a mixture of unfolded, partially folded (site III occupied), and native-like folded (sites III and IV occupied) conformations, with relative populations dependent on the [Ca(2+)]/[CaM] ratio. The occupancy of site III independently of site IV in this mutant shows that the cooperativity of Ca(2+) binding in the C-domain is mediated by the integrity of the domain structure. Several NH signals from residues in the Ca(2+)-bound N-domain appear as two signals during the Ca(2+) titration indicating separate species in slow exchange, and it can be deduced that these result from the presence and absence of interdomain interactions in the mutant. It is proposed that an unfolded part of the mutated C-domain interacts with sites on the N-domain that normally bind to target proteins. This would also account for the increase in the Ca(2+) affinity for the N-domain in the mutant compared with the wild-type calmodulin. The results therefore show the wide-ranging effects of a point mutation in a single Ca(2+)-binding site, providing details of the involvement of individual residues in the calcium-induced folding reactions.  相似文献   

13.
An anti-calmodulin monoclonal antibody having an absolute requirement for Ca2+ has been produced from mice immunized with a mixture of calmodulin and calmodulin-binding proteins. Radioimmune assays were developed for the determination of its specificity. the epitope for this antibody resides on the COOH-terminal half of the mammalian protein. Plant calmodulin or troponin C had little reactivity. The apparent affinity of the antibody for calmodulin was increased approximately 60-fold in the presence of heart calmodulin-dependent phosphodiesterase. The presence of heart phosphodiesterase in the radioimmune assay greatly enhanced the sensitivity for calmodulin. The intrinsic calmodulin subunit of phosphorylase kinase and calmodulin which was bound to brain phosphodiesterases was also recognized with high affinity by the antibody. The antibody reacted poorly with calmodulin which was bound to heart or brain calcineurin, skeletal muscle myosin light chain kinase, or other calmodulin-binding proteins. In direct binding experiments, most of the calmodulin-binding proteins studied were unreactive with the antibody. This selectivity allowed purification of heart and two brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes on immobilized antibody affinity columns. Phosphodiesterase activity was adsorbed directly from crude samples and specifically eluted with EGTA. Isozyme separation was accomplished using a previously described anti-heart phosphodiesterase monoclonal antibody affinity support. The brain isozymes differed not only in reactivity with the anti-phosphodiesterase antibody, but also in apparent subunit molecular weight, and relative specificity for cAMP and cGMP as substrates. The calmodulin activation constants for the brain enzymes were 10-20-fold greater than for the heart enzyme. The data suggest that the binding of ligands to Ca2+/calmodulin induce conformation changes in calmodulin which alter reactivity with the anti-calmodulin monoclonal antibody. The differential antibody reactivity toward calmodulin-enzyme complexes indicates that target proteins either induce very different conformations in calmodulin and/or interact with different geometries relative to the antibody binding site. The anti-calmodulin monoclonal antibody should be useful for the purification of other calmodulin-dependent phosphodiesterases as well as isozymes of phosphorylase kinase.  相似文献   

14.
The 63-kDa subunit, but not the 60-kDa subunit, of brain calmodulin-dependent cyclic nucleotide phosphodiesterase was phosphorylated in vitro by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II. When calmodulin was bound to the phosphodiesterase, 1.33 +/- 0.20 mol of phosphate was incorporated per mol of the 63-kDa subunit within 5 min with no significant effect on enzyme activity. Phosphorylation in the presence of low concentrations of calmodulin resulted in a phosphorylation stoichiometry of 2.11 +/- 0.21 and increased about 6-fold the concentration of calmodulin necessary for half-maximal activation of the phosphodiesterase. Peptide mapping analyses of complete tryptic digests of the 63-kDa subunit revealed two major (P1, P4) and two minor (P2, P3) 32P-peptides. Calmodulin-binding to the phosphodiesterase almost completely inhibited phosphorylation of P1 and P2 with reduced phosphorylation rates of P3 and P4, suggesting the affinity change of the enzyme for calmodulin may be caused by phosphorylation of P1 and/or P2. When Ca2+/calmodulin-dependent protein kinase II was added without prior autophosphorylation, there was no phosphorylation of the 63-kDa phosphodiesterase subunit or of the kinase itself in the presence of a low concentration of calmodulin, and with excess calmodulin the phosphodiesterase subunit was phosphorylated only at P3 and P4. Thus the 63-kDa subunit of phosphodiesterase has a regulatory phosphorylation site(s) that is phosphorylated by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II and blocked by Ca2+/calmodulin binding to the subunit.  相似文献   

15.
A calmodulin-dependent protein phosphatase (calcineurin) was converted to an active, calmodulin-independent form by a Ca2+-dependent protease (calpain I). Proteolysis could be blocked by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, leupeptin, or N-ethylmaleimide, but other protease inhibitors such as phenylmethanesulfonyl fluoride, aprotinin, benzamidine, diisopropyl fluorophosphate, and trypsin inhibitor were ineffective. Phosphatase proteolyzed in the absence of calmodulin was insensitive to Ca2+ or Ca2+/calmodulin; the activity of the proteolyzed enzyme was greater than the Ca2+/calmodulin-stimulated activity of the unproteolyzed enzyme. Proteolysis of the phosphatase in the presence of calmodulin proceeded at a more rapid rate than in its absence, and the proteolyzed enzyme retained a small degree of sensitivity to Ca2+/calmodulin, being further stimulated some 15-20%. Proteolytic stimulation of phosphatase activity was accompanied by degradation of the 60-kilodalton (kDa) subunit; the 19-kDa subunit was not degraded. In the absence of calmodulin, the 60-kDa subunit was sequentially degraded to 58- and 45-kDa fragments; the 45-kDa fragment was incapable of binding 125I-calmodulin. In the presence of calmodulin, the 60-kDa subunit was proteolyzed to fragments of 58, 55 (2), and 48 kDa, all of which retained some ability to bind calmodulin. These data, coupled with our previous report that the human platelet calmodulin-binding proteins undergo Ca2+-dependent proteolysis upon platelet activation [Wallace, R. W., Tallant, E. A., & McManus, M. C. (1987) Biochemistry 26, 2766-2773], suggest that the Ca2+-dependent protease may have a role in the platelet as an irreversible activator of certain Ca2+/calmodulin-dependent reactions.  相似文献   

16.
R K Sharma 《Biochemistry》1991,30(24):5963-5968
Calmodulin-dependent phosphodiesterase was purified to apparent homogeneity from the total calmodulin-binding fraction of bovine heart in a single step by immunoaffinity chromatography. The isolated enzyme had significantly higher affinity for calmodulin than the bovine brain 60-kDa phosphodiesterase isozyme. The cAMP-dependent protein kinase was found to catalyze the phosphorylation of the purified cardiac calmodulin-dependent phosphodiesterase with the incorporation of 1 mol of phosphate/mol of subunit. The phosphodiesterase phosphorylation rate was increased severalfold by histidine without affecting phosphate incorporation into the enzyme. Phosphorylation of phosphodiesterase lowered its affinity for calmodulin and Ca2+. At constant saturating concentrations of calmodulin (650 nM), the phosphorylated calmodulin-dependent phosphodiesterase required a higher concentration of Ca2+ (20 microM) than the nonphosphorylated phosphodiesterase (0.8 microM) for 50% activity. Phosphorylation could be reversed by the calmodulin-dependent phosphatase (calcineurin), and dephosphorylation was accompanied by an increase in the affinity of phosphodiesterase for calmodulin.  相似文献   

17.
Mills E  Pham E  Truong K 《Cell calcium》2010,48(4):195-201
The Rho proteins are important regulators of cell morphology, and the prototypical protein RhoA is known to regulate contraction, blebbing and bleb retraction. We have identified and experimentally confirmed that RhoA has a binding site for calmodulin, a ubiquitous transducer of the Ca(2+) second messenger. Using structural modeling, a fusion protein was designed wherein RhoA activity was controlled by Ca(2+) via calmodulin. Living cells transfected with this synthetic protein underwent Ca(2+) sensitive and calmodulin-dependent bleb retraction within minutes. Further, the modularity of Ca(2+) signaling was exploited to induce bleb retraction in response to blue light (using channelrhodopsin-2) or exogenous chemicals (with acetylcholine receptor), showing input signal versatility. The widespread use of Ca(2+) signaling in nature suggests that fully exploring its signaling potential may allow powerful applications to other synthetic biological systems.  相似文献   

18.
We describe a suppressor of the calmodulin mutant cam1 in Paramecium tetraurelia. The cam1 mutant, which has a SER----PHE change at residue 101 of the third calcium-binding domain, inhibits the activity of the Ca(2+)-dependent K+ current and causes exaggerated behavioral responses to most stimuli. An enrichment scheme, based on an increased sensitivity to Ba2+ in cam1 cells, was used to isolate suppressors. One such suppressor, designated cam101, restores both the activity of the Ca(2+)-dependent K+ current and behavioral responses of the cells. We show that the cam101 mutant is an intragenic suppressor of cam1, based on genetic and microinjection data. The cam101 calmodulin is shown to be similar to wild-type calmodulin in terms of its ability to stimulate calmodulin-dependent phosphodiesterase at low concentrations of free calcium. However, the cam101 calmodulin has a reduced affinity for a monoclonal antibody to wild-type Paramecium calmodulin, as does the parental cam1 calmodulin, and a different mobility on acid-urea gels relative to both wild-type and cam1 calmodulin. We have been able to demonstrate that the isolation of intragenic suppressors of a calmodulin mutation is possible, which allows for the further genetic analysis of structure-function relationships in the calmodulin molecule.  相似文献   

19.
20.
A calmodulin inhibitor, trifluoperazine, suppresses ATP-dependent Ca2+ uptake into microsomes prepared from bovine aortic smooth muscle. From this microsomal preparation which we expected to contain calmodulin-dependent Ca2+-transport ATPase [EC 3.6.1.3], we purified (Ca2+-Mg2+)ATPase by calmodulin affinity chromatography. The protein peak eluted by EDTA had calmodulin-dependent (Ca2+-Mg2+)ATPase activity. The major band (135,000 daltons) obtained after sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) accounted for about 80% of the total protein eluted. This major band was phosphorylated by [gamma-32P]ATP in a Ca2+-dependent manner. All the 32P incorporated into the major band was released by hydroxylaminolysis. The ATPase reconstituted in soybean phospholipid liposomes showed ATP, calmodulin-dependent Ca2+ uptake. The affinity of the ATPase for Ca2+, Km, was 7 microM and the maximum ATPase activity was 1.4 mumol/mg/min. These values were changed to 0.17 microM and 3.5 mumol/mg/min, respectively by the addition of calmodulin. The activity of the purified (Ca2+-Mg2+)ATPase was inhibited by orthovanadate, and the concentration required for half-maximal inhibition was about 1.8 microM which is close to that of plasma membrane ATPases. Judging from the effect of orthovanadate and the molecular weight, the purified (Ca2+-Mg2+)ATPase was considered to have originated from the plasma membrane not from the sarcoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号