共查询到20条相似文献,搜索用时 0 毫秒
1.
Gutierrez JA Dorocke JA Knierman MD Gelfanova V Higgs RE Koh NL Hale JE 《BioTechniques》2005,(Z1):13-17
A method is described for the quantitative determination of peptides using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Known limitations imposed by crystal heterogeneity, peptide ionization differences, data handling, and protein quantification with MALDI-TOF mass spectrometry are addressed in this method with a "seed crystal" protocol for analyte-matrix formation, the use of internal protein standards, and a software package called maldi_quant. The seed crystal protocol, a new variation of the fast-evaporation method, minimizes crystal heterogeneity and allows for consistent collection of protein spectra. The software maldi_quant permits rapid and automated analysis of peak intensity data, normalization of peak intensities to internal standards, and peak intensity deconvolution and estimation for vicinal peaks. Using insulin proteins in a background of other unrelated peptides, this method shows an overall coefficient of variance of 4.4%, and a quantitative working range of 0.58-37.5 ng bovine insulin per spot. Coupling of this methodology to powerful analytical procedures such as immunoprecipitation is likely to lead to the rapid and reliable quantification of biologically relevant proteins and their closely related variants. 相似文献
2.
Petković M Müller J Müller M Schiller J Arnold K Arnhold J 《Analytical biochemistry》2002,308(1):61-70
Different methods were established for monitoring the phospholipase A(2)(PLA(2)) activity but all of them are rather cumbersome and time consuming. In this paper we have investigated the suitability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the determination of the PLA(2) activity. Phosphatidylcholine (PC) was digested with pancreatic PLA(2) under different conditions, i.e., various Ca(2+), PC, and PLA(2) concentrations. The digestion products were analyzed by MALDI-TOF MS and the concentration of lysophosphatidylcholine (LPC)-generated upon PLA(2) digestion-was determined by the application of an internal standard (known concentration) and by a comparison of their signal-to-noise ratios. The results clearly demonstrate that the LPC concentration determined from the MALDI-TOF mass spectra correlates directly with the activity of the applied enzyme. Additionally, LPC concentration increased with an increase in Ca(2+), as well as in the PC concentration. A single MALDI-TOF mass spectrum provides immediate information on the digestion products as well as on the residual substrate without requirements for any previous derivatization. MALDI-TOF MS can be easily and simply applied for monitoring the PLA(2) activity and we assume that this method might also be useful for other types of phospholipases. 相似文献
3.
The physiological response to small molecules (secondary messengers) is the outcome of a delicate equilibrium between biosynthesis and degradation of the signal. Cyclic diguanosine monophosphate (c-di-GMP) is a novel secondary messenger present in many bacteria. It has a complex cellular metabolism whereby usually more than one enzyme synthesizing and degrading c-di-GMP is encoded by a bacterial genome. To assess the in vivo conditions of c-di-GMP signaling, we developed a high-performance liquid chromatography (HPLC)-mass spectrometry-based method to detect c-di-GMP with high sensitivity and to quantify the c-di-GMP concentration in the bacterial cell as described here in detail. We successfully used the methodology to determine and compare the c-di-GMP concentrations in bacterial species such as Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae. We describe the use of the methodology to assess the change in c-di-GMP concentration during the growth phase and the contribution of a point mutation in S. typhimurium to the overall cellular c-di-GMP concentration. 相似文献
4.
《Expert review of proteomics》2013,10(3):407-420
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry – one of the most commonly used analytical tools in proteomics – for high-throughput analyses. 相似文献
5.
Florence Gaucher-Wieczorek Vincent GuérineauDavid Touboul Sophie Thétiot-LaurentFranck Pelissier Marie-Ange Badet-DenisotBernard Badet Philippe Durand 《Analytical biochemistry》2014
Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5′-diphospho-N-acetyl-d-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts d-fructose-6-phosphate (Fru-6P) and l-glutamine (Gln) into d-glucosamine-6-phosphate (GlcN-6P) and l-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme. 相似文献
6.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) serves as a rapid and accurate
means to determine masses of proteins independent of their shapes or interactions with other molecules. It provides one of
the most fundamental characterizations of major plasma proteins. Purified proteins in saline or serum specimens were prepared
for analysis by dilution, mixing with a solution of sinapinic acid, and drying on a target plate. Specimens were analyzed
in a linear TOF mode with external calibration. Analyses of 24 purified plasma proteins showed predominance of singly charged
ions with lesser amounts of dimer and doubly charged monomer, and provided measured masses for these proteins. A number of
proteins, including albumin, transferrin, apolipoproteins A-I, A-II, C-I, C-II, and C-III, and prealbumin, could be analyzed
directly in serum with appropriate dilution. Measured values for masses of major plasma proteins will assist in analysis of
serum and plasma. It is possible to analyze a number of components by MALDI-TOF/MS directly in diluted serum. Extremely simple
sample preparation techniques may be useful in analyzing structural variation of several major plasma proteins, particularly
those with masses <30 kDa, including a number of apolipoproteins and markers of nutritional status or acute phase responses. 相似文献
7.
8.
S. Benard J. Arnhold M. Lehnert J. Schiller K. Arnold 《Chemistry and physics of lipids》1999,100(1-2):115-125
As recently shown, different physiologically relevant lipid classes can easily be analyzed by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI–TOF MS). In the present study the first application of MALDI–TOF for the quantitative analysis of diacylglycerols is described. It is shown that the use of a suitable reference sample enables the quantification of diacylglycerols up to the picomolar range. The best reproducibility of quantitative results for diacylglycerols was obtained using a matrix of 2,5-dihydroxybenzoic acid in ethylacetate and incorporation of an internal standard of the same lipid class. A moderate laser power was used, resulting in a very low extent of fragmentation, allowing a quantification by using solely the highest signal arising from sodium adduct formation of diacylglycerols. A linear correlation between peak intensity and lipid concentration over one order of magnitude was found. The applicability of this new technique for the analysis of other lipids like phosphatidylcholines is also discussed. 相似文献
9.
We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet -- matrix-assisted laser desorption/ionisation -- mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. The low-femtomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydroxybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and low-mass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher. 相似文献
10.
Kurien BT Patel NC Porter AC Kurono S Matsumoto H Wang H Scofield RH 《Analytical biochemistry》2004,331(2):224-229
Proline-containing peptides of the X-proline type are cleaved by the dipeptidase prolidase. The classical method of prolidase assay relied on the colorimetric estimation of the liberated proline with ninhydrin using acidic media and heat. This method, however, gave inconsistent results due to the nonspecificity of the ninhydrin color reaction. We report here a method for the detection of the liberated proline using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Human sera were incubated with a mixture containing the dipeptide glycyl-proline in Tris-HCl supplemented with manganese at 37 degrees C for 24h. The samples were precipitated with trifluoroacetic acid and centrifuged. An aliquot of the supernatant was mixed with an equal volume of ferulic acid solution. An aliquot from this mixture was spotted on a stainless steel mass spectrometry grid and analyzed using MALDI-TOF mass spectrometry. The activity of the enzyme was determined by the complete disappearance of the glycyl-proline peak with the concomitant appearance of the proline peak and can be expressed in terms of the ratio of the area beneath the proline to the area beneath the glycyl-proline peak. Subjects homozygous for prolidase deficiency had a ratio ranging from 0.006 to 0.04 while obligatory heterozygotes had a ratio ranging from around 1.1 to 2.4. Normal subjects had ratios ranging from 9 to 239. Using this method we have unambiguously identified subjects with homozygous or heterozygous prolidase deficiency. In addition to the advantage of rapid sample preparation time, this method is highly specific, reproducible, and sensitive. 相似文献
11.
Szabò I Seraglia R Rigoni F Traldi P Giacometti GM 《The Journal of biological chemistry》2001,276(17):13784-13790
Photosystem II of higher plants and cyanobacteria is composed of more than 20 polypeptide subunits. The pronounced hydrophobicity of these proteins hinders their purification and subsequent analysis by mass spectrometry. This paper reports the results obtained by application of matrix-assisted laser desorption/ionization mass spectrometry directly to isolated complexes and thylakoid membranes prepared from cyanobacteria and spinach. Changes in protein contents following physiopathological stimuli are also described. Good correlations between expected and measured molecular masses allowed the identification of the main, as well as most of the minor, low molecular weight components of photosystem II. These results open up new perspectives for clarifying the functional role of the various polypeptide components of photosystems and other supramolecular integral membrane complexes. 相似文献
12.
In view of the fact that memory effects associated with instrument calibration hinder the use of many mass-to-charge (m/z) ratios and tuning standards, identification of robust, comprehensive, inexpensive, and memory-free calibration standards is of particular interest to the mass spectrometry community. Glucose and its isomers are known to have a residue mass of 162.05282 Da; therefore, both linear and branched forms of polyhexose oligosaccharides possess well-defined masses, making them ideal candidates for mass calibration. Using a wide range of maltooligosaccharides (MOSs) derived from commercially available beers, ions with m/z ratios from approximately 500 to 2500 Da or more have been observed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and time-of-flight mass spectrometry (TOF-MS). The MOS mixtures were further characterized using infrared multiphoton dissociation (IRMPD) and nano-liquid chromatography/mass spectrometry (nano-LC/MS). In addition to providing well-defined series of positive and negative calibrant ions using either electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI), the MOSs are not encumbered by memory effects and, thus, are well-suited mass calibration and instrument tuning standards for carbohydrate analysis. 相似文献
13.
Multiplex single-nucleotide polymorphism genotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 总被引:1,自引:0,他引:1
A robust high-throughput single-nucleotide polymorphism (SNP) genotyping method is reported, which applies allele-specific extension to achieve allelic discrimination and uses matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to measure the natural molecular weight difference of oligonucleotides for determination of the base in a single-nucleotide polymorphic location. Tenfold PCR is performed successfully by carefully designing the primers and adjusting the conditions of PCR. In addition, two ways used for PCR product purification are compared and the matrix used in mass spectrometry for high-throughput oligonucleotide analysis is evaluated. The result here shows that the method is very effective and suitable for high-throughput genotyping of SNPs. 相似文献
14.
Mass spectrometry is becoming the major analytical tool in biology research. This short review summarizes the state-of-the-art in the interface miniaturization and strategies for analysis of limited sample amounts by matrix assisted laser desorption/ionization mass spectrometry. 相似文献
15.
The low-molecular-weight (LMW), low-abundance protein composition of lupin
and pea phloem exudates was determined using matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)>
Phloem sap was collected from lupin inflorescence stalks and pods (using
shallow incisions) or pea seedlings (by placing cut stems in an EDTA
solution). Western blot analysis of phloem exudate proteins with either a
polyclonal antibody raised against Ricinus communis
sieve-tube exudate proteins or pea Rubisco antibody revealed that the
collected exudates contained phloem sap, and that contamination with other
plant fluids was negligible. Three matrix combinations were tested to
assess their ability to facilitate protein ionization. Sinapinic acid in
combination with trifluoroacetic acid yielded the cleanest mass spectra,
and revealed an array of LMW proteins ranging from 2 to 10 kDa. For pea
phloem exudate, the addition of protease inhibitors to the exudate
collection solution prevented proteolysis of endogenous proteins; the
inhibitors did not interfere with the detection of proteins. The
sensitivity of this technique was sufficient to detect changes in LMW
phloem peptides throughout plant development in lupin, or to detect
differences in the phloem peptide composition of two genotypes of pea.
Because only limited sample preparation is required, MALDI-TOF-MS is a
useful technique for characterizing complex fluids such as phloem
sap. 相似文献
16.
《Expert review of proteomics》2013,10(1):153-161
Laser desorption/ionization mass spectrometry (MS) is rapidly growing in popularity as an analytical characterization method in several fields. The technique shot to prominence using matrix-assisted desorption/ionization for large biomolecules (>700 Da), such as proteins, peptides and nucleic acids. However, because the matrix, which consists of small organic molecules, is also ionized, the technique is of limited use in the low-molecular-mass range (<700 Da). Recent advances in surface science have facilitated the development of matrix-free laser desorption/ionization MS approaches, which are referred to here as surface-assisted laser desorption/ionization (SALDI) MS. In contrast to traditional matrix-assisted techniques, the materials used for SALDI-MS are not ionized, which expands the usefulness of this technique to small-molecule analyses. This review discusses the current status of SALDI-MS as a standard analytical technique, with an emphasis on potential applications in proteomics. 相似文献
17.
We report a method to detect the presence of dimethylarginines on proteins. Peptides with dimethylarginines were hydrolyzed in acid. The hydrolysates were subjected to matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric analysis using a mixture of alpha-cyano-4-hydroxycinnamic acid and nitrocellulose as matrix. Both asymmetric omega-N(G),N(G)-dimethylarginine and symmetric omega-N(G),N(G')-dimethylarginine give a clear signal at m/z 203. Recombinant Sbp1p modified by Hmt1p in vivo were isolated by affinity chromatography followed by electrophoresis on a polyacrylamide gel and subjected to acid hydrolysis. MALDI-TOF analysis of the acid hydrolysates confirmed the presence of dimethylarginines. The detection limit of the method is estimated at approximately 1pmol of protein. 相似文献
18.
19.
Quantification of oligosaccharides is of great importance to investigate variations or changes in the glycans of glycoconjugates. Mass spectrometry (MS) has been widely applied to identification and structural analysis of complex oligosaccharides. However, quantification using MS alone is still quite challenging due to heterogeneous charge states and different ionization efficiency of various types of oligosaccharides. To overcome such shortcomings, derivatization with carboxymethyl trimethylammonium hydrazide (Girard’s reagent T [GT]) was introduced to generate a permanent cationic charge at the reducing end of neutral oligosaccharides, resulting in mainly [M]+ ion using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), so that the ambiguities caused by metal adduct peaks such as [M+K]+ and [M + Na]+ were avoided. To verify our method, the relative and absolute quantification of neutral glycans from human immunoglobulin G (IgG) and ovalbumin with internal standards of dextran ladders using MALDI-TOF MS were compared with those performed by conventional normal-phase high-performance liquid chromatography (NP-HPLC) profiling. The quantification using GT derivatization and MALDI-TOF MS agreed well with the HPLC profiling data and showed excellent reliability and reproducibility with better resolution and sensitivity. This method was further applied to quantify the enzymatically desialylated N-glycans from miniature pig kidney membrane proteins. The results showed that the low-abundance structures that could not be resolved by NP-HPLC were quantified with high sensitivity. Thus, this novel method of using modification of neutral sugars with GT is quite powerful for neutral glycan analysis, especially to quantify minute glycan samples with undetectable levels using HPLC. 相似文献
20.
Synthesis of an organomercury hapten and conjugation of the hapten to proteins and peptides is described. Starting with allylamine, synthesis of the organomercury hapten was completed in five steps using readily available and inexpensive reagents. The key transformation in the synthesis, intramolecular oxymercuration, was achieved in good yield and under mild conditions. Hapten conjugation was afforded via disuccinimide active ester coupling chemistry, and the resulting conjugates were analyzed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). To exploit the accurate mass measuring capabilities of MALDI-MS, the conjugates were digested with trypsin prior to analysis. The masses of the peptides resulting from tryptic digestion of the organomercury conjugates were accurately measured, and five hapten attachments were identified in the mass range of 1000-2200 m/z. The organomercury bioconjugate synthesized in this study was designed to contain a stable carbon-metal bond, constituting an underutilized approach for preparing protein-metal complexes and may result in mAbs consisting of unique recognition capabilities. 相似文献