首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HCV NS4B, a highly hydrophobic protein involved in the alteration of the intracellular host membranes forming the replication complex, plays a critical role in the HCV life cycle. NS4B is a multifunctional membrane protein that possesses different regions where diverse and significant functions are located. One of these important regions is the AH2 segment, which besides being highly conserved has been shown to play a significant role in NS4B functioning. We have carried out an in-depth biophysical study aimed at the elucidation of the capacity of this region to interact, modulate and disrupt membranes, as well as to study the structural and dynamic features relevant for that disruption. We show that a peptide derived from this region, NS4BAH2, is capable of specifically binding phosphatidyl inositol phosphates with high affinity, and its interfacial properties suggest that this segment could behave similarly to a pre-transmembrane domain partitioning into and interacting with the membrane depending on the membrane composition and/or other proteins. Moreover, NS4BAH2 is capable of rupturing membranes even at very low peptide-to-lipid ratios and its membrane-activity is modulated by lipid composition. NS4BAH2 is located in a shallow position in the membrane but it is able to affect the lipid environment from the membrane surface down to the hydrophobic core. The NS4B region where peptide NS4BAH2 resides might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the membrane structure and hence the replication complex.  相似文献   

2.
We have identified a membrane-active region in the HCV NS5A protein by performing an exhaustive study of membrane rupture induced by a NS5A-derived peptide library on model membranes having different phospholipid compositions. We report the identification in NS5A of a highly membranotropic region located at the suggested membrane association domain of the protein. We report the binding and interaction with model membranes of two peptides patterned after this segment, peptides 1A and 1B, derived from the strains 1a_H77 and 1b_HC-4J respectively. We show that they insert into phospholipid membranes, interact with them, and are located in a shallow position in the membrane. The NS5A region where this segment resides might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the replication complex, and consequently, directly implicated in the HCV life cycle.  相似文献   

3.
We have identified a membrane-active region in the HCV NS4B protein by studying membrane rupture induced by a NS4B-derived peptide library on model membranes. This segment corresponds to one of two previously predicted amphipathic helix and define it as a new membrane association domain. We report the binding and interaction with model membranes of a peptide patterned after this segment, peptide NS4BH2, and show that NS4BH2 strongly partitions into phospholipid membranes, interacts with them, and is located in a shallow position in the membrane. Furthermore, changes in the primary sequence cause the disruption of the hydrophobicity along the structure and prevent the resulting peptide from interacting with the membrane. Our results suggest that the region where the NS4BH2 is located might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the replication complex. Our findings therefore identify an important region in the HCV NS4B protein which might be implicated in the HCV life cycle and possibly in the formation of the membranous web.  相似文献   

4.
Elazar M  Liu P  Rice CM  Glenn JS 《Journal of virology》2004,78(20):11393-11400
Like other positive-strand RNA viruses, hepatitis C virus (HCV) is believed to replicate its RNA in association with host cell cytoplasmic membranes. Because of its association with such membranes, NS4B, one of the virus's nonstructural proteins, may play an important role in this process, although the mechanistic details are not well understood. We identified a putative N-terminal amphipathic helix (AH) in NS4B that mediates membrane association. Introduction of site-directed mutations designed to disrupt the hydrophobic face of the AH abolishes the AH's ability to mediate membrane association. An AH in NS4B is conserved across HCV isolates. Completely disrupting the amphipathic nature of NS4B's N-terminal helix abolished HCV RNA replication, whereas partial disruption resulted in an intermediate level of replication. Finally, immunofluorescence studies revealed that HCV replication complex components were mislocalized in the AH-disrupted mutant. These results identify a key membrane-targeting domain which can form the basis for developing novel antiviral strategies.  相似文献   

5.
The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV) infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web) and assists viral assembly in the close vicinity of lipid droplets (LDs). To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1–31), a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47) as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon), indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A) in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47—via its interaction with NS5A—serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web.  相似文献   

6.
Hepatitis C virus (HCV) NS4B protein is a transmembrane highly hydrophobic protein responsible for many key aspects of the viral replication process. The C-terminal part of NS4B is essential for replication and is a potential target for HCV replication inhibitors. In this work we have carried out a study of the binding to and interaction with model biomembranes of a peptide corresponding to the C-terminal domain of NS4B, NS4B(Cter). We show that NS4B(Cter) partitions into phospholipid membranes, is capable of rupturing membranes even at very low peptide-to-lipid ratios and its membrane-activity is modulated by lipid composition. NS4B(Cter) is located in a shallow position in the membrane but it is able to affect the lipid environment from the membrane surface down to the hydrophobic core. Our results identify the C-terminal region of the HCV NS4B protein as a membrane interacting domain, and therefore directly implicated in the HCV life cycle and possibly in the formation of the membranous web.  相似文献   

7.
Semliki Forest virus (SFV) infects cells by an acid-dependent membrane fusion reaction catalyzed by the virus spike protein, a complex containing E1 and E2 transmembrane subunits. E1 carries the putative virus fusion peptide, and mutations in this domain of the spike protein were previously shown to shift the pH threshold of cell-cell fusion (G91A), or block cell-cell fusion (G91D). We have used an SFV infectious clone to characterize virus particles containing these mutations. In keeping with the previous spike protein results, G91A virus showed limited secondary infection and an acid-shifted fusion threshold, while G91D virus was noninfectious and inactive in both cell- cell and virus-liposome fusion assays. During the low pH- induced SFV fusion reaction, the E1 subunit exposes new epitopes for monoclonal antibody (mAb) binding and forms an SDS-resistant homotrimer, the virus associates hydrophobically with the target membrane, and fusion of the virus and target membranes occurs. After low pH treatment, G91A spike proteins were shown to bind conformation-specific mAbs, associate with target liposome membranes, and form the E1 homotrimer. However, both G91A membrane association and homotrimer formation had an acid-shifted pH threshold and reduced efficiency compared to wt virus. In contrast, studies of the fusion-defective G91D mutant showed that the virus efficiently reacted with low pH as assayed by mAb binding and liposome association, but was essentially inactive in homotrimer formation. These results suggest that the G91D mutant is noninfectious due to a block in a late step in membrane fusion, separate from the initial reaction to low pH and interaction with the target membrane, and involving the lack of efficient formation of the E1 homotrimer.  相似文献   

8.
We identified an N-terminal amphipathic helix (AH) in one of hepatitis C virus (HCV)'s nonstructural proteins, NS5A. This AH is necessary and sufficient for membrane localization and is conserved across isolates. Genetically disrupting the AH impairs HCV replication. Moreover, an AH peptide-mimic inhibits the membrane association of NS5A in a dose-dependent manner. These results have exciting implications for the HCV life cycle and novel antiviral strategies.  相似文献   

9.
10.
Hepatitis C virus (HCV) is a single-stranded RNA virus that replicates on endoplasmic reticulum-derived membranes. HCV particle assembly is dependent on the association of core protein with cellular lipid droplets (LDs). However, it remains uncertain whether HCV assembly occurs at the LD membrane itself or at closely associated ER membranes. Furthermore, it is not known how the HCV replication complex and progeny genomes physically associate with the presumed sites of virion assembly at or near LDs. Using an unbiased proteomic strategy, we have found that Rab18 interacts with the HCV nonstructural protein NS5A. Rab18 associates with LDs and is believed to promote physical interaction between LDs and ER membranes. Active (GTP-bound) forms of Rab18 bind more strongly to NS5A than a constitutively GDP-bound mutant. NS5A colocalizes with Rab18-positive LDs in HCV-infected cells, and Rab18 appears to promote the physical association of NS5A and other replicase components with LDs. Modulation of Rab18 affects genome replication and possibly also the production of infectious virions. Our results support a model in which specific interactions between viral and cellular proteins may promote the physical interaction between membranous HCV replication foci and lipid droplets.  相似文献   

11.
Gao L  Aizaki H  He JW  Lai MM 《Journal of virology》2004,78(7):3480-3488
The lipid raft membrane has been shown to be the site of hepatitis C virus (HCV) RNA replication. The mechanism of formation of the replication complex is not clear. We show here that the formation of the HCV RNA replication complex on lipid raft (detergent-resistant membranes) requires interactions among the HCV nonstructural (NS) proteins and may be initiated by the precursor of NS4B, which has the intrinsic property of anchoring to lipid raft membrane. In hepatocyte cell lines containing an HCV RNA replicon, most of the other NS proteins, including NS5A, NS5B, and NS3, were also localized to the detergent-resistant membranes. However, when individually expressed, only NS4B was associated exclusively with lipid raft. In contrast, NS5B and NS3 were localized to detergent-sensitive membrane and cytosolic fractions, respectively. NS5A was localized to both detergent-sensitive and -resistant membrane fractions. Furthermore, we show that a cellular vesicle membrane transport protein named hVAP-33 (the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein), which binds to both NS5A and NS5B, plays a critical role in the formation of HCV replication complex. The hVAP-33 protein is partially associated with the detergent-resistant membrane fraction. The expression of dominant-negative mutants and small interfering RNA of hVAP-33 in HCV replicon cells resulted in the relocation of NS5B from detergent-resistant to detergent-sensitive membranes. Correspondingly, the amounts of both HCV RNA and proteins in the cells were reduced, indicating that hVAP-33 is critical for the formation of HCV replication complex and RNA replication. These results indicate that protein-protein interactions among the various HCV NS proteins and hVAP-33 are important for the formation of HCV replication complex.  相似文献   

12.
《Biophysical journal》2020,118(10):2385-2399
The nuclear envelope (NE) consists of two concentric nuclear membranes separated by the lumen, an ∼40-nm-wide fluid layer. NE proteins are implicated in important cellular processes ranging from gene expression to nuclear positioning. Although recent progress has been achieved in quantifying the assembly states of NE proteins in their native environment with fluorescence fluctuation spectroscopy, these studies raised questions regarding the association of NE proteins with nuclear membranes during the assembly process. Monitoring the interaction of proteins with membranes is important because the binding event is often associated with conformational changes that are critical to cellular signaling pathways. Unfortunately, the close physical proximity of both membranes poses a severe experimental challenge in distinguishing luminal and membrane-associated NE proteins. This study seeks to address this problem by introducing new, to our knowledge, fluorescence-based assays that overcome the restrictions imposed by the NE environment. We found that luminal proteins violate the Stokes-Einstein relation, which eliminates a straightforward use of protein mobility as a marker of membrane association within the NE. However, a surprising anomaly in the temperature-dependent mobility of luminal proteins was observed, which was developed into an assay for distinguishing between soluble and membrane-bound NE proteins. We further introduced a second independent tool for distinguishing both protein populations by harnessing the previously reported undulations of the nuclear membranes. These membrane undulations introduce local volume changes that produce an additional fluorescence fluctuation signal for luminal, but not for membrane-bound, proteins. After testing both methods using simple model systems, we apply the two assays to investigate a previously proposed model of membrane association for the luminal domain of SUN2, a constituent protein of the linker of nucleoskeleton and cytoskeleton complex. Finally, we investigate the effect of C- and N-terminal tagging of the luminal ATPase torsinA on its ability to associate with nuclear membranes.  相似文献   

13.
We demonstrated recently that a fraction of the matrix (M) protein of vesicular stomatitis virus (VSV) binds tightly to cellular membranes in vivo when expressed in the absence of other VSV proteins. This membrane-associated M protein was functional in binding purified VSV nucleocapsids in vitro. Here we show that the membrane-associated M protein is largely associated with a membrane fraction having the density of plasma membranes, indicating membrane specificity in the binding. In addition, we analyzed truncated forms of M protein to identify regions responsible for membrane association and nucleocapsid binding. Truncated M protein lacking the amino-terminal basic domain still associated with cellular membranes, although not as tightly as wild-type M protein, and could not bind nucleocapsids. In contrast, deletion of the carboxy-terminal 14 amino acids did not disrupt stable membrane association or nucleocapsid interaction. These results suggest that the amino terminus of M protein either interacts directly with membranes and nucleocapsids or stabilizes a conformation that is required for M protein to mediate both of these interactions.  相似文献   

14.
《The Journal of cell biology》1994,127(6):1815-1827
Mastoparan is a cationic amphipathetic peptide that activates trimeric G proteins, and increases binding of the coat protein beta-COP to Golgi membranes. ARFp13 is a cationic amphipathic peptide that is a putative specific inhibitor of ARF function, and inhibits coat protein binding to Golgi membranes. Using a combination of high resolution, three- dimensional electron microscopy and cell-free Golgi transport assays, we show that both of these peptides inhibit in vitro Golgi transport, not by interfering in the normal functioning of GTP-binding proteins, but by damaging membranes. Inhibition of transport is correlated with inhibition of nucleotide sugar uptake and protein glycoslation, a decrease in the fraction of Golgi cisternae exhibiting normal morphology, and a decrease in the density of Golgi-coated buds and vesicles. At peptide concentrations near the IC50 for transport, those cisternae with apparently normal morphology had a higher steady state level of coated buds and vesicles. Kinetic analysis suggests that this increase in density was due to a decrease in the rate of vesicle fission. Pertussis toxin treatment of the membranes appeared to increase the rate of vesicle formation, but did not prevent the membrane damage induced by mastoparan. We conclude that ARFp13 is not a specific inhibitor of ARF function, as originally proposed, and that surface active peptides, such as mastoparan, have the potential for introducing artifacts that complicate the analysis of trimeric G protein involvement in regulation of Golgi vesicle dynamics.  相似文献   

15.
Membrane association of pp60v-src, the myristylated transforming protein of Rous sarcoma virus, has been shown to be a receptor-mediated process, which is inhibited by myristylated src peptides containing the N-terminal 11 amino acids of the v-src sequence (MGYsrc). By cross-linking radiolabelled MGYsrc peptide to fibroblast membranes, a 32-kilodalton membrane protein was identified as a candidate src receptor. To elucidate the potential role of p32 in binding pp60v-src, we studied the relationship between binding of MGYsrc peptide and pp60v-src polypeptide to cellular membranes. The subcellular membrane distribution of p32 was distinct from that of pp60v-src in transformed cells. Moreover, under certain defined in vitro conditions, it was possible to inhibit peptide cross-linking to p32 without significantly affecting pp60v-src membrane binding. However, when internal sequences were removed from pp60v-src, the binding characteristics of the src deletion polypeptide and MGYsrc peptide became identical. These data indicate that the presence of internal membrane binding domains influences the interaction of myristylated N-terminal src sequences with p32, and suggest that accessory binding factors might be involved in establishing stable contact between pp60v-src and the membrane phospholipid bilayer.  相似文献   

16.
NS4B protein from hepatitis C virus (HCV) is a highly hydrophobic protein inducing a rearrangement of endoplasmic reticulum membranes responsible of the HCV replication process. Different helical elements have been found in the N- and C- terminal domains of the protein, which seem to be responsible for many key aspects of the viral replication process. In this work we have carried out a study of the binding and interaction with model biomembranes of peptide NS4B(H1), patterned after segment H1, one of these C-terminal previously identified segments. We show that NS4B(H1) partitions into phospholipid membranes; its membrane activity is modulated by lipid composition, interacting preferentially with negatively charged phospholipids as well as with sphingomyelin. Furthermore, the change in its sequence prevents the resulting peptide from interacting with the membrane. These data would support its role in the interaction of NS4B with the membrane and suggest that the region where this peptide resides could be involved in the membrane alteration which must occur in the HCV replication and/or assembly process.  相似文献   

17.
Hepatitis C virus (HCV) nonstructural protein 2 (NS2) is required for HCV polyprotein processing and particle assembly. It comprises an N-terminal membrane domain and a C-terminal, cytosolically oriented protease domain. Here, we demonstrate that the NS2 protease domain itself associates with cellular membranes. A single charged residue in the second α-helix of the NS2 protease domain is required for proper membrane association, NS2 protein stability, and efficient HCV polyprotein processing.  相似文献   

18.
Some transmembrane proteins must associate with lipid rafts to function. However, even if acylated, transmembrane proteins should not pack well with ordered raft lipids, and raft targeting is puzzling. Acylation is necessary for raft targeting of linker for activation of T cells (LAT). To determine whether an acylated transmembrane domain is sufficient, we examined raft association of palmitoylated and nonpalmitoylated LAT transmembrane peptides in lipid vesicles by a fluorescence quenching assay, by microscopic examination, and by association with detergent-resistant membranes (DRMs). All three assays detected very low raft association of the nonacylated LAT peptide. DRM association was the same as a control random transmembrane peptide. Acylation did not measurably enhance raft association by the first two assays but slightly enhanced DRM association. The palmitoylated LAT peptide and a FLAG-tagged LAT transmembrane domain construct expressed in cells showed similar DRM association when both were reconstituted into mixed vesicles (containing cell-derived proteins and lipids and excess artificial raft-forming lipids) before detergent extraction. We conclude that the acylated LAT transmembrane domain has low inherent raft affinity. Full-length LAT in mixed vesicles associated better with DRMs than the peptide. However, cells appeared to contain two pools of LAT, with very different raft affinities. Since some LAT (but not the transmembrane domain construct) was isolated in a protein complex, and the Myc- and FLAG-tagged forms of LAT could be mutually co-immunoprecipitated, oligomerization or interactions with other proteins may enhance raft affinity of one pool of LAT. We conclude that both acylation and other factors, possibly protein-protein interactions, target LAT to rafts.  相似文献   

19.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A), a phosphoprotein of unknown function, is believed to be a component of a membrane-associated viral replication complex. The determinants for membrane association of NS5A, however, have not been defined. By double label immunofluorescence analyses, NS5A was found to be associated with the endoplasmic reticulum (ER) or an ER-derived modified compartment both when expressed alone or in the context of the entire HCV polyprotein. Systematic deletion and green fluorescent protein fusion analyses allowed us to map the membrane anchor to the amino-terminal 30 amino acid residues of NS5A. Membrane association occurred by a posttranslational mechanism and resulted in properties of an integral membrane protein. Circular dichroism structural studies of a synthetic peptide corresponding to the NS5A membrane anchor, designated NS5A(1-31), demonstrated the presence of an amphipathic alpha-helix that was found to be highly conserved among 280 HCV isolates of various genotypes. The detergent-binding properties of this helical peptide together with the nature and location of its amino acids suggest a mechanism of membrane insertion via the helix hydrophobic side, yielding a topology parallel to the lipid bilayer in the cytoplasmic leaflet of the ER membrane. These findings have important implications for the structural and functional organization of the HCV replication complex and may define novel targets for antiviral intervention.  相似文献   

20.
We report here an in vitro system designed to study the interactions of vesicular stomatitis virus (VSV) proteins with cellular membranes. We have synthesized the VSV nucleocapsid (N) protein, nonstructural (NS) protein, glycoprotein (G protein), and membrane (M) protein in a wheat germ, cell-free, protein-synthesizing system directed by VSV 12 to 18S RNA. When incubated at low salt concentrations with purified cytoplasmic membranes derived from Chinese hamster ovary cells, the VSV M andG proteins bind to membranes, whereas the VSV N and NS proteins do not. The VSV M protein binds to membranes in low or high divalent cation concentrations, whereas binding of significant amounts of G protein requires at least 5 mM magnesium acetate concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号