首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After the dormancy of Saccharomyces cerevisiae ascospores had been broken, the synthesis of proteins was observed first, followed rapidly by synthesis of ribonucleic acid (RNA) and much later by deoxyribonucleic acid (DNA) synthesis. Phosphoglucomutase activity increased in a periodic (step) fashion, whereas the activity of five other enzymes increased linearly during germination and outgrowth. The rate of synthesis of these enzymes was highest at about the period of DNA replication. The amino acid pools of dormant spores contained high levels of proline, glutamic acid, and histidine. At 2 h after onset of germination, the pools of phenylalanine and methionine had disappeared and the other components had decreased significantly. By 3.5 h, with the exception of proline and cystine, most amino acid pool components had significantly increased.  相似文献   

2.
Haploid methionine auxotrophs of Saccharomyces cerevisiae continue to multiply for several hours after withdrawal of a required amino acid from the medium. Macro-molecular synthesis continues during this period of residual growth, although the net ribonucleic acid (RNA) and protein content is constant during the later part of this period. In this study, growth after withdrawal of methionine was in some cases accompanied by accumulation of transfer RNA (tRNA), which was shown by methylation in vitro to be deficient in methyl groups. This phenomenon was shown by only four of nine methionine auxotrophs tested, but no evidence could be found that these four strains had "relaxed" control of RNA synthesis. The nine methionine-requiring strains represent mutations in five different positions in the methionine biosynthesis pathway, and only mutants blocked at two of these five positions accumulated methyl-deficient tRNA. This accumulation therefore appears to be correlated with the position of the strain's block in the pathway of methionine biosynthesis.  相似文献   

3.
The effects of inhibitors of bacterial deoxyribonucleic acid (DNA) synthesis upon logarithmically growing cultures of Saccharomyces cerevisiae were investigated. Cell division, ribonucleic acid (RNA) synthesis, and DNA synthesis were measured after addition of nalidixic acid, fluorodeoxyuridine, or phenethyl alcohol to cultures of yeast growing in defined and complex media. Both nalidixic acid and fluorodeoxyuridine had only temporary effects on nucleic acid synthesis in cultures growing in defined medium, and little or no observable effect on cultures growing in complex medium. Neither compound inhibited colony formation on complex solid medium, although growth was slow on defined solid medium. Phenethyl alcohol caused complete inhibition of DNA synthesis, RNA synthesis, and cell division in cultures growing in defined medium. In cultures growing in complex medium, RNA synthesis and cell division were inhibited to a lesser extent. A slight increase in DNA was observed in the presence of the inhibitor.  相似文献   

4.
Summary Glycerol has been known as an important by-product of wine fermentations improving the sensory quality of wine. This study was carried out with an endogenic wine yeast strain Saccharomyces cerevisiae Kalecik 1. The kinetics of growth and glycerol biosynthesis were analysed at various initial concentrations of glucose, fructose, and sucrose in a batch system. Depending on the determined values of Monod constants, glucose (Ks = 28.09 g/l) was found as the most suitable substrate for the yeast growth. Initial glucose, fructose and sucrose concentrations necessary for maximum specific yeast growth rate were determined as 175 g, 100 l, and 200 g/l, respectively. The yeast produced glycerol at very high concentrations in fructose medium. Fructose was determined as the most suitable substrate for glycerol production while the strain showed low tendency to use it for growth. S. cerevisiae Kalecik 1 could not produce glycerol below 200 g/l initial sucrose concentration. When natural white grape juice was used as fermentation medium, maximum glycerol concentration and dry weight of the yeast were determined as 9.3 g/l and 11.8 g/l, respectively.  相似文献   

5.
Pyruvate-decarboxylase (Pdc)-negative Saccharomyces cerevisiae has been reported to grow in batch cultures on glucose-containing complex media, but not on defined glucose-containing media. By a combination of batch and chemostat experiments it is demonstrated that even in complex media, Pdc- S. cerevisiae does not exhibit prolonged growth on glucose. Pdc- strains do grow in carbon-limited cultures on defined media containing glucose-acetate mixtures. The acetate requirement for glucose-limited growth, estimated experimentally by continuously decreasing the acetate feed to chemostat cultures, matched the theoretical acetyl-CoA requirement for lipid and lysine synthesis, consistent with the proposed role of pyruvate decarboxylase in the synthesis of cytosolic acetyl-CoA.  相似文献   

6.
Synthesis of ribosomes in Saccharomyces cerevisiae.   总被引:53,自引:1,他引:52       下载免费PDF全文
  相似文献   

7.
Growth and Assimilation in Cultures of Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
  相似文献   

8.
9.
Summary Baker's yeast was aerobically grown in gaseous fluidized beds in the form of solid particles. Air was used as the fluidizing fluid and as a source of oxygen, while the concentrated nutrient solution was sprayed at the top of the bed. Five glucose concentrations 125, 160, 200, 250 und 350 gl–1 were used. A maximum in the growth rate and in the yield coefficient occurred at 250 and 200 g l–1, respectively. The calculated growth rates are one order of magnitude less than the growth rates in submerged cultures, but the maintenance energy coefficient is the same in both systems. Alcohol ppm level in the exhaust gases increased with increasing glucose concentration in the nutrient solution. Oscillations in the alcohol production indicated product inhibition of the cell growth under high glucose concentrations in the nutrient feed solution.  相似文献   

10.
The effect of cellular capsule elimination in Saccharomyces cerevisiae yeasts (protoplast formation) on the heat-shock protein synthesis and the synthesis of the proteins in protoplasts were studied. The methods of mono- and dimeric electrophoresis have demonstrated that (1) about 18 heat-shock proteins with the molecular masses 26-98 Kd are synthesized in cells at 41 degrees C; (2) protoplast formation per se does not induce the synthesis of heat-shock proteins, but the induction of these proteins in protoplasts at 41 degrees C is similar to the one in intact cells. The protoplast formation induces the synthesis of specific proteins different from heat-shock proteins and the synthesis is inhibited by the heat-shock. The heat-shock induces modification of 88 and 86 Kd heat-shock proteins. It inhibits the synthesis of a number of peptides (15-50 Kd) in cells and protoplasts.  相似文献   

11.
12.
Lipid Synthesis During Sporulation of Saccharomyces cerevisiae   总被引:9,自引:5,他引:4  
Lipid synthesis was studied in both sporulating (diploid) and nonsporulating (haploid) cells of Saccharomyces cerevisiae. Two phases of lipid synthesis occur in diploid cells transferred to sporulation medium. Phase I, which occurs during the first 12 h of exposure to sporulation medium, was also observed in the haploid strains. Phase II, occurring from the 20th to the 25th h, coincided with the appearance of mature asci and was observed only in the diploid cells. The majority of phospholipid synthesis took place during period I, whereas neutral lipid synthesis occurred during both periods. Phospholipid synthesis was virtually identical in both type and quantity in the sporulating and nonsporulating strains.  相似文献   

13.
Methionine limitation during growth and sporulation of a methionine-requiring diploid of Saccharomyces cerevisiae causes two significant changes in the normal synthesis of ribonucleic acid (RNA). First, whereas 18S ribosomal RNA is produced, there is no significant accumulation of either 26S ribosomal RNA or 5.8S RNA. The effect of methionine on the accumulation of these RNA species occurs after the formation of a common 35S precursor molecule which is still observed in the absence of methionine. During sporulation, diploid strains of S. cerevisiae produce a stable, virtually unmethylated 20S RNA which has previously been shown to be largely homologous to methylated 18S ribosomal RNA. The appearance of this species is not affected by the presence or absence of methionine from sporulation medium. However, when exponentially growing vegetative cells are starved for methionine, unmethylated 20S RNA is found. The 20S RNA, which had previously been observed only in cells undergoing sporulation, accumulates at the same time as a methylated 18S RNA. These effects on ribosomal RNA synthesis are specific for methionine limitation, and are not observed if protein synthesis is inhibited by cycloheximide or if cells are starved for a carbon source or for another amino acid. The phenomena are not marker specific as analogous results have been obtained for both a methionine-requiring diploid homozygous for met13 and a diploid homozygous for met2. The results demonstrate that methylation of ribosomal RNA or other methionine-dependent events plays a critical role in the recognition and processing of ribosomal precursor RNA to the final mature species.  相似文献   

14.
Growth and metabolism of inositol-starved Saccharomyces cerevisiae.   总被引:26,自引:12,他引:14       下载免费PDF全文
Upon starvation for inositol, a phospholipid precursor, an inositol-requiring mutant of Saccharomyces cerevisiae has been shown to die if all other conditions are growth supporting. The growth and metabolism of inositol-starved cells has been investigated in order to determine the physiological state leading to "inositolless death". The synthesis of the major inositol-containing phospholipid ceases within 30 min after the removal of inositol from the growth medium. The cells, however, continue in an apparently normal fashion for one generation (2 h under the growth conditions used in this study). The cessation of cell division is not preceded or accompanied by any detectable change in the rate of macromolecular synthesis. When cell division ceases, the cells remain constant in volume, whereas macromolecular synthesis continues at first at an unchanged rate and eventually at a decreasing rate. Macromolecular synthesis terminates after about 4 h of inositol starvation, at approximately the time when the cells begin to die. Cell death is also accompanied by a decline in cellular potassium and adenosine triphosphate levels. The cells can be protected from inositolless death by several treatments that block cellular metabolism. It is concluded that inositol starvation results in a imbalance between the expansion of cell volume and the accumulation of cytoplasmic constituents. This imbalance is very likely the cause of inositolless death.  相似文献   

15.
Subcellular Sites Involved in Lipid Synthesis in Saccharomyces cerevisiae   总被引:2,自引:2,他引:0  
When the crude ribosomal fraction of Saccharomyces cerevisiae was separated into "light" and "heavy" fractions, fatty acid synthetase was concentrated in the former, whereas acetyl-Coenzyme A synthetase, fatty acid "desaturase," and squalene oxidocyclase were found in the latter. The "desaturase" sedimented with the ribosomal material and was not solubilized by low concentrations of sodium deoxycholate (DOC). The other two systems found in the "heavy" fraction sedimented with the membranes, but, upon solubilization of the membranes by DOC, these enzyme systems remained as particles.  相似文献   

16.
Glycerol, a major by-product of ethanol fermentation by Saccharomyces cerevisiae, is of significant importance to the wine, beer, and ethanol production industries. To gain a clearer understanding of and to quantify the extent to which parameters of the pathway affect glycerol flux in S. cerevisiae, a kinetic model of the glycerol synthesis pathway has been constructed. Kinetic parameters were collected from published values. Maximal enzyme activities and intracellular effector concentrations were determined experimentally. The model was validated by comparing experimental results on the rate of glycerol production to the rate calculated by the model. Values calculated by the model agreed well with those measured in independent experiments. The model also mimics the changes in the rate of glycerol synthesis at different phases of growth. Metabolic control analysis values calculated by the model indicate that the NAD+-dependent glycerol 3-phosphate dehydrogenase-catalyzed reaction has a flux control coefficient (Cv1J) of approximately 0.85 and exercises the majority of the control of flux through the pathway. Response coefficients of parameter metabolites indicate that flux through the pathway is most responsive to dihydroxyacetone phosphate concentration (RDHAPJ = 0.48 to 0.69), followed by ATP concentration (RATPJ = −0.21 to −0.50). Interestingly, the pathway responds weakly to NADH concentration (RNADHJ = 0.03 to 0.08). The model indicates that the best strategy to increase flux through the pathway is not to increase enzyme activity, substrate concentration, or coenzyme concentration alone but to increase all of these parameters in conjunction with each other.  相似文献   

17.
Synthesis and secretion of wheat alpha-amylase in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
A wheat alpha-amylase cDNA clone has been fused to the phosphoglycerate kinase initiator methionine to enable synthesis in the yeast Saccharomyces cerevisiae of an alpha-amylase enzyme that is identical in size to the wild-type alpha-amylase. The alpha-amylase is synthesized with an N-terminal plant signal peptide which is recognized in the yeast host, leading to efficient processing and secretion into the medium. The secretion of alpha-amylase into the medium is quite efficient in rich medium, but barely detectable in a minimal medium.  相似文献   

18.
19.
20.
Yeast cells of mating type α excrete a sex factor which inhibits cell division and deoxyribonucleic acid replication but not ribonucleic acid or protein synthesis in cells of opposite mating type a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号