首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tang Z  Wang K  Tan W  Li J  Liu L  Guo Q  Meng X  Ma C  Huang S 《Nucleic acids research》2003,31(23):e148
Nucleic acids ligation is a vital process in the repair, replication and recombination of nucleic acids. Traditionally, it is assayed by denatured gel electrophoresis and autoradiography, which are not sensitive, and are complex and discontinuous. Here we report a new approach for ligation monitoring using molecular beacon DNA probes. The molecular beacon, designed in such a way that its sequence is complementary with the product of the ligation process, is used to monitor the nucleic acid ligation in a homogeneous solution and in real-time. Our method is fast and simple. We are able to study nucleic acids ligation kinetics conveniently and to determine the activity of DNA ligase accurately. We have studied different factors that influence DNA ligation catalyzed by T4 DNA ligase. The major advantages of our method are its ultrasensitivity, excellent specificity, convenience and real-time monitoring in homogeneous solution. This method will be widely useful for studying nucleic acids ligation process and other nucleic acid interactions.  相似文献   

2.
3.
Molecular beacons are efficient and useful tools for quantitative detection of specific target nucleic acids. Thanks to their simple protocol, molecular beacons have great potential as substrates for biomolecular computing. Here we present a molecular beacon-based biomolecular computing method for quantitative detection and analysis of target nucleic acids. Whereas the conventional quantitative assays using fluorescent dyes have been designed for single target detection or multiplexed detection, the proposed method enables us not only to detect multiple targets but also to compute their quantitative information by weighted-sum of the targets. The detection and computation are performed on a molecular level simultaneously, and the outputs are detected as fluorescence signals. Experimental results show the feasibility and effectiveness of our weighted detection and linear combination method using molecular beacons. Our method can serve as a primitive operation of molecular pattern analysis, and we demonstrate successful binary classifications of molecular patterns made of synthetic oligonucleotide DNA molecules.  相似文献   

4.
Yang CJ  Wang L  Wu Y  Kim Y  Medley CD  Lin H  Tan W 《Nucleic acids research》2007,35(12):4030-4041
To take full advantage of locked nucleic acid (LNA) based molecular beacons (LNA-MBs) for a variety of applications including analysis of complex samples and intracellular monitoring, we have systematically synthesized a series of DNA/LNA chimeric MBs and studied the effect of DNA/LNA ratio in MBs on their thermodynamics, hybridization kinetics, protein binding affinity and enzymatic resistance. It was found that the LNA bases in a MB stem sequence had a significant effect on the stability of the hair-pin structure. The hybridization rates of LNA-MBs were significantly improved by lowering the DNA/LNA ratio in the probe, and most significantly, by having a shared-stem design for the LNA-MB to prevent sticky-end pairing. It was found that only MB sequences with DNA/LNA alternating bases or all LNA bases were able to resist nonspecific protein binding and DNase I digestion. Additional results showed that a sequence consisting of a DNA stretch less than three bases between LNA bases was able to block RNase H function. This study suggested that a shared-stem MB with a 4 base-pair stem and alternating DNA/LNA bases is desirable for intracellular applications as it ensures reasonable hybridization rates, reduces protein binding and resists nuclease degradation for both target and probes. These findings have implications on the design of LNA molecular probes for intracellular monitoring application, disease diagnosis and basic biological studies.  相似文献   

5.
For quantitative NASBA-based viral load assays using homogeneous detection with molecular beacons, such as the NucliSens EasyQ HIV-1 assay, a quantitation algorithm is required. During the amplification process there is a constant growth in the concentration of amplicons to which the beacon can bind while generating a fluorescence signal. The overall fluorescence curve contains kinetic information on both amplicon formation and beacon binding, but only the former is relevant for quantitation. In the current paper, mathematical modeling of the relevant processes is used to develop an equation describing the fluorescence curve as a function of the amplification time and the relevant kinetic parameters. This equation allows reconstruction of RNA formation, which is characterized by an exponential increase in concentrations as long as the primer concentrations are not rate limiting and by linear growth over time after the primer pool is depleted. During the linear growth phase, the actual quantitation is based on assessing the amplicon formation rate from the viral RNA relative to that from a fixed amount of calibrator RNA. The quantitation procedure has been successfully applied in the NucliSens EasyQ HIV-1 assay.  相似文献   

6.
We report the design, synthesis, and characterization of molecular beacons (MB) consisting of three distinct fluorophores, 6-carboxyfluorescein (Fam), N,N,N',N'-tetramethyl-6-carboxyrhodamine (Tam), and Cyanine-5 (Cy5). The primary light absorber/energy donor (Fam) is located on one terminus of the MB, whereas the primary energy acceptor/secondary donor (Tam) and secondary acceptor (Cy5) are located at the other terminus of the MB. In the absence of target DNA or RNA, the MB exists in the stem-closed form. Excitation of Fam initiates an energy transfer cascade from Fam to Tam and further to Cy5 generating unique fluorescence signatures defined as the ratio of the emission from each of the three fluorophores. This energy transfer cascade was investigated in detail by steady-state and time-resolved fluorescence spectroscopy, as well as fluorescence depolarization studies. In the presence of the complementary target DNA, the MB opened efficiently and hybridized with the target separating Fam and Tam by a large distance, so that energy transfer from Fam to Tam was blocked in the stem-open form. This opening of the MB generates a "bar code" fluorescence signature, which is different from the signature of the stem-closed MB. The fluorescence signature of this combinatorial fluorescence energy transfer MB can be tuned by variation of the spacer length between the individual fluorophores.  相似文献   

7.
We demonstrate that single-nucleotide differences in a DNA sequence can be detected in homogeneous assays using molecular beacons. In this method, the region surrounding the site of a sequence variation is amplified in a polymerase chain reaction and the identity of the variant nucleotide is determined by observing which of four differently colored molecular beacons binds to the amplification product. Each of the molecular beacons is perfectly complementary to one variant of the target sequence and each is labeled with a different fluorophore. To demonstrate the specificity of these assays, we prepared four template DNAs that only differed from one another by the identity of the nucleotide at one position. Four amplification reactions were prepared, each containing all four molecular beacons, but each initiated with only one of the four template DNAs. The results show that in each reaction a fluorogenic response was elicited from the molecular beacon that was perfectly complementary to the amplified DNA, but not from the three molecular beacons whose probe sequence mismatched the target sequence. The color of the fluorescence that appeared in each tube during the course of the amplification indicated which nucleotide was present at the site of variation. These results demonstrate the extraordinary specificity of molecular beacons. Furthermore, the results illustrate how the ability to label molecular beacons with differently colored fluorophores enables simple multiplex assays to be carried out for genetic analysis.  相似文献   

8.
In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns.  相似文献   

9.
MicroRNAs (miRNAs), a class of non-coding RNAs, have become a major focus of molecular biology research because of their diverse genomic origin and ability to regulate an array of cellular processes. Although the biological functions of miRNA are yet to be fully understood, tissue levels of specific miRNAs have been shown to correlate with pathological development of disease. Here, we demonstrate that molecular beacons can readily distinguish mature- and pre-miRNAs, and reliably quantify miRNA expression. We found that molecular beacons with DNA, RNA and combined locked nucleic acid (LNA)–DNA backbones can all detect miRNAs of low (<1 nM) concentrations in vitro, with RNA beacons having the highest detection sensitivity. Furthermore, we found that molecular beacons have the potential to distinguish miRNAs that have slight variations in their nucleotide sequence. These results suggest that the molecular beacon-based approach to assess miRNA expression and distinguish mature and precursor miRNA species is quite robust, and has the promise for assessing miRNA levels in biological samples.  相似文献   

10.
Oligonucleotide probes containing locked nucleic acid (LNA) hybridize to complementary single-stranded target DNA sequences with an increased affinity compared to oligonucleotide DNA probes. As a consequence of the incorporation of LNA residues into the oligonucleotide sequence, the melting temperature of the oligonucleotide increases considerably, thus allowing the successful use of shorter LNA probes as allele-specific tools in genotyping assays. In this article, we report the use of probes containing LNA residues for the development of qualitative fluorescent multiplex assays for the detection of single nucleotide polymorphisms (SNPs) in real-time polymerase chain reaction using the 5'-nuclease detection assay. We developed two applications that show the improved specificity of LNA probes in assays for allelic discrimination. The first application is a four-color 5'-nuclease assay for the detection of SNPs for two of the most common genetic factors involved in thrombotic risk, factor V Leiden and prothrombin G20210A. The second application is a two-color assay for the specific detection of the A-to-T tranversion in codon 6 of the beta-globin gene, responsible for sickle cell anemia. Both real-time genotyping assays were evaluated by comparing the performance of our method to that of a reference method and in both cases, we found a 100% concordance. This approach will be useful for research and molecular diagnostic laboratories in situations in which the specificity provided by oligonucleotide DNA probes is insufficient to discriminate between two DNA sequences that differ by only one nucleotide.  相似文献   

11.
van Schie RC  Marras SA  Conroy JM  Nowak NJ  Catanese JJ  de Jong PJ 《BioTechniques》2000,29(6):1296-300, 1302-4, 1306 passim
Conventional, high-throughput PCR analysis of common elements utilizing numerous primer sets and template DNA requires multiple rounds of PCR to ensure optimal conditions. Laborious gel electrophoresis and staining is then necessary to visualize amplification products. We propose novel multicolor molecular beacons, to establish a high-throughput, PCR-based sequence tagged site (STS) detection system that swiftly and accurately confirms marker content in template containing common repeat elements. A simple, one-tube, real-time PCR assay system was developed to specifically detect regions containing CA and GATA repeats. Ninety-six samples can be confirmed for marker content in a closed-tube format in 3 h, eliminating product confirmation on agarose gels and avoiding crossover contamination. Multiple STSs can be detected simultaneously in the same reaction tube by utilizing molecular beacons labeled with multicolor fluorophores. Template DNA from 260 RPCI-11 bacterial artificial chromosome (BAC) clones was examined for the presence of CA and/or GATA repeats using molecular beacon PCR and compared with conventional PCR results of the same clones. Of the 205 clones containing CA and GATA repeats, we were able to identify 129 clones (CA, n = 99; GATA, n = 30) by using molecular beacons and only 121 clones (CA, n = 92; GATA, n = 29) by conventional PCR amplification. As anticipated, 55 clones that contained sequences other than CA or GATA failed molecular beacon detection. Molecular beacon PCR, employing beacons specific for tandem repeat elements, provides a fast, accurate, and sensitive multiplex detection assay that will expedite verification of marker content in a multitude of template containing these repeats.  相似文献   

12.
A stable streamlining trend in the field of medical diagnostics by practical adoption of high-tech and knowledge-intensive analytical systems providing for molecular level studies has appeared during the last few decades. An illustrative example of such technologies is mass spectrometry methods for analyzing biomolecules. This review is intended to brief the potential of the state-of-the-art inventory of spectrometry equipment and illustrate the application of mass spectrometry of nucleic acids (DNA and RNA) for solving practical problems related to the analysis of human genomic DNA and clinically significant microorganisms of bacterial and viral natures.  相似文献   

13.
14.
Shedding light on health and disease using molecular beacons.   总被引:2,自引:0,他引:2  
The detection and identification of pathogens is often painstaking due to the low abundance of diseased cells in clinical samples. The genomic sequences of the pathogen can be amplified through methods such as the polymerase chain reaction and nucleic acid sequence-based amplification, but the nucleic acid targets are often lost among other unintended products of amplification. Novel nucleic acid probes known as molecular beacons have been developed allowing for the rapid and specific detection of genetic markers of a disease. Molecular beacons are hairpin-forming oligonucleotides labelled at one end with a quencher and at the other end with a fluorescent reporter dye. In the absence of target, the fluorescence is quenched. In the presence of target, the hairpin structure opens upon beacon/target hybridisation, resulting in the restoration of fluorescence. The ability to transduce target recognition into a fluorescence signal with high signal-to-background ratio, coupled with an improved specificity, has allowed molecular beacons to enjoy a wide range of biological and biomedical applications. Here, we describe the basic features of molecular beacons, review their applications in disease detection and diagnosis and discuss some of the issues and challenges of in vivo studies. The aim of this paper is to foster the development of new molecular beacon-based assays and to stimulate the application of this technology in laboratory and clinical studies of health and disease.  相似文献   

15.
16.
Analysis, storage, and transfer of molecular dynamic trajectories are becoming the bottleneck of computer simulations. In this paper we discuss different approaches for data mining and data processing of huge trajectory files generated from molecular dynamic simulations of nucleic acids.  相似文献   

17.
A TAT peptide-delivered molecular beacon was developed and utilized to enumerate murine norovirus 1, a human norovirus (NoV) surrogate, in RAW 264.7 cells. This allowed the detection of a single infective virus within 6 h, a 12-fold improvement in time required for viral detection and quantification compared to that required by the conventional plaque assay.  相似文献   

18.
19.
While molecular beacons are primarily known as biosensors for the detection of nucleic acids, it has proven possible to adapt other nucleic acid binding species (aptamers) to function in a manner similar to molecular beacons, yielding fluorescent signals only in the presence of a cognate ligand. Unfortunately, engineering aptamer beacons requires a detailed knowledge of aptamer sequence and structure. In order to develop a general method for the direct selection of aptamer beacons we have first developed a selection method for molecular beacons. A pool of random sequence DNA molecules were immobilized via a capture oligonucleotide on an affinity column, and those variants that could be released from the column by a target oligonucleotide were amplified. After nine rounds of selection and amplification the elution characteristics of the population were greatly improved. A fluorescent reporter in the selected beacons was located adjacent to a DABCYL moiety in the capture oligonucleotide; addition of the target oligonucleotide led to release of the capture oligonucleotide and up to a 17-fold increase in fluorescence. Signaling was specific for the target oligonucleotide, and occurred via a novel mechanism, relative to designed molecular beacons. When the target oligonucleotide is bound it can form a stacked helical junction with an intramolecular hairpin in the selected beacon; formation of the intramolecular hairpin in turn leads to release of the capture oligonucleotide. The ability to select molecular beacons may prove useful for identifying available sites on complex targets, such as mRNAs, while the method for selection can be easily generalized to other, non-nucleic acid target classes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号